Degeneracy in Linear Programming
|
|
|
- Opal Morris
- 9 years ago
- Views:
Transcription
1
2 Degeneracy in Linear Programming I heard that today s tutorial is all about Ellen DeGeneres Sorry, Stan. But the topic is just as interesting. It s about degeneracy in Linear Programming. Degeneracy? Students at MIT shouldn t learn about degeneracy. And I heard that students have already studied convicts sex. Photo removed due to copyright restrictions. Photo removed due to copyright restrictions. Pat Robertson Stan Ellen DeGeneres Actually, they studied convex sets. 2
3 What is degeneracy? As you know, the simplex algorithm starts at a corner point and moves to an adjacent corner point by increasing the value of a non-basic variable x s with a positive cost coefficient. Typically, the entering variable x s does increase in value, and the objective value z improves. But it is possible that x s does not increase at all. This situation can occur when one of the RHS coefficients is. In this case, the objective value and solution does not change, but there is an exiting variable. This situation is called degeneracy. -z x 1 x 2 x 3 x = = 6 = 2 A basic feasible solution is called degenerate if one of its RHS coefficients (excluding the objective value) is. This bfs is degenerate. 3
4 Thanks. That was a short tutorial. No, Nooz**. This tutorial has many more slides. Degeneracy adds complications to the simplex algorithm. And if you understand what occurs under degeneracy, you really understand what is going on with the simplex algorithm. Incidentally, if you are reading this tutorial before you have understood the simplex algorithm, you should stop reading. You really need to understand the simplex algorithm in order to understand this tutorial. Nooz Ella ** As you know, No, Nooz is good news. 4
5 Degeneracy and Basic Feasible Solutions We may think that every two distinct bases lead to two different solutions. This would be true if there was no degeneracy. But with degeneracy, we can have two different bases, and the same feasible solution. -z x 1 x 2 x 3 x 4 -z x 1 x 2 x 3 x = = = 6-3/ /2 = = 2-1/2 12 1/2 1 = 2 We now pivot on the 2 in Constraint 2 and obtain a second tableau. Both tableaus correspond to the same feasible solution with z = 2, x 1 = x 2 = x 4 = ; x 3 = 6. But the basic variables and the coefficients of the two tableaus are different. 5
6 z x 1 x 2 x 3 x 4 z x 1 x 2 x 3 x = = = 6-3/ /2 = = 2-1/2 12 1/2 1 = 2 Not only are the two tableaus different, but the second tableau satisfies the optimality conditions. This means that the first basic feasible solution was optimal, even though we were not aware that this solution was optimal when we looked at the first tableau. But this all seems very technical. Is it really important? Tom, it turns out to be very important. We can show that the simplex algorithm is finite and guaranteed to be valid when there is no degeneracy. When there is degeneracy, we have to modify the algorithm to guarantee finiteness. Tom 6
7 I m now going to reveal a secret. The definition of degeneracy given here is slightly different than the one given in the lecture on geometry. To the right is a picture of what I said in that lecture. When a corner point is the solution of two different sets of equality constraints, then this is called degeneracy. This will turn out to be important for the simplex algorithm. It wasn t that I was misinforming you. There just wasn t a better way of describing the situation during that lecture. From Lecture 3. 7
8 -z x 1 x 2 x 3 x 4 -z x 1 x 2 x 3 x = = = 6-3/ /2 = = 2-1/2 12 1/2 1 = 2 Whenever two different bases correspond to the same basic solution, then some basic variable must be. (If variable x s is pivoted in, its value will change unless the RHS is.) But it is possible for the RHS to be, and for there still to be only one basis for that solution. The tableau to my right illustrates this point. -z x 1 x 2 x = -2-3/2 3 1 = = 2 We say that we say that a basis is degenerate if a basic variable is. This is far simpler than the alternative definition in which one needs to check if there are two bases corresponding to the same solution.. 8
9 The Finiteness of the Simplex Algorithm when there is no degeneracy Recall that the simplex algorithm tries to increase a non-basic variable x s. If there is no degeneracy, then x s will be positive after the pivot, and the objective value will improve. Recall also that each solution produced by the simplex algorithm is a basic feasible solution with m basic variables, where m is the number of constraints. There are a finite number of ways of choosing the basic variables. (An upper bound is n! / (n-m)! m!, which is the number of ways of selecting m basic variables out of n.) So, the simplex algorithm moves from bfs to bfs. And it never repeats a bfs because the objective is constantly improving. This shows that the simplex method is finite, so long as there is no degeneracy. 9
10 Cycling If a sequence of pivots starting from some basic feasible solution ends up at the exact same basic feasible solution, then we refer to this as cycling. If the simplex method cycles, it can cycle forever. Klee and Minty [1972] gave an example in which the simplex algorithm really does cycle. Here is their example, with the pivot elements outlined. -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1 3/4-2 1/ / / / Initial tableau -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS / / After 1 pivot 1
11 Cycling Example Continued -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS /8-3 3/4-1/2 1/ After 2 pivots -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1-1/ / /2-1 1/2 1-3/64 1 3/16 1/16-1/8-1/8 1 1/2 1 1/ After 3 pivots -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1 1/ / /4 5 1/3 1 1/3-2/3 2 1/ After 4 pivots 11
12 Cycling Example Continued -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1 1 3/ / /4 28 1/ / /6 1 1/ After 5 pivots -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1 3/4-2 1/ / / / After 6 pivots And Klee and Minty said The first shall be last and the last shall be first, and they saw that their example of cycling was good. 12
13 I have another admission. In the lecture on geometry, I said that the simplex method was finite. But it s only finite if we are guaranteed not to repeat solutions. In particular, it is finite if there is no degeneracy. I still don t understand what you are talking about. But I am very saddened that you didn t tell the truth in the other lecture. Cheer up, Stan. There is a technique that prevents bases from repeating in the simplex method, even if they are degenerate bases. This will guarantee the finiteness of the simplex algorithm, provided that the technique is used. 13
14 Is the simplex method finite? So, how do we know that the simplex method will terminate if there is degeneracy? There are several approaches to guaranteeing that the simplex method will be finite, including one developed by Professors Magnanti and Orlin. And there is the perturbation technique that entirely avoids degeneracy. But we re going to show you Bland s rule, developed by Bob Bland. It s the simplest rule to guarantee finiteness of the simplex method. Photo of Bob Bland removed due to copyright restrictions. Bob Bland 14
15 Bland s Rule. 1.The entering variable should be the lowest index variable with positive reduced cost. 2.The leaving variable (in case of a tie in the min ratio test) should be the lowest index row. (It is the row closest to the top, regardless of the leaving variable.) -z x 1 x 2 x 3 x 4 x 5 x 6 Variables x 1, x 2, and x 7 are all eligible to enter the basis. We choose the lowest index one, which is x 1. {click now} We can pivot on the 4 in the column for x 1. Or we can pivot on the 1. We pivot on the 4 because it is the row that is closes to the top = = 6 1 = 2 1 = 15
16 More on Bland s rule This seems both easy and practical. But why does it work? If you use Bland s rule, the simplex algorithm will never repeat a basis. But no one knows why it works. It remains a mystery to this day. Nooz is not being serious. I proved that using the rule will prevent bases from repeating. I know why it works, and so does anyone who has read my proof. But the proof is too complicated to present here. So, please take our word for it. Photo of Bob Bland removed due to copyright restrictions. Bob Bland 16
17 Degeneracy and the Simplex Algorithm The simplex method without degeneracy The solution changes after each pivot. The objective value strictly improves after a pivot. The simplex method is guaranteed to be finite. Two different tableaus in canonical form give two different solutions. The simplex method with degeneracy The solution may stay the same after a pivot. The objective value may stay the same. The simplex method may cycle and be infinite. But it becomes finite if we use the Bland s rule or several other approaches. It is possible that there are two different sets of basic variables that give the same solution. 17
18 Degeneracy vs. Alternative Optima Finally, degeneracy is similar to but different from the condition for alternate optima. In degeneracy, one of the RHS values is. For alternate optima, in an optimal tableau one of the non-basic cost coefficients is. -z x 1 x 2 x 3 x = = = 2 The optimal solution is: z = 8, x 1 = x 2 =, x 3 = 6, and x 4 = 2. x 1 is nonbasic, and its cost coefficient is. Increasing x 1 (and adjusting x 3 and x 4 ) does not change z, and so the solution value remains optimal. 18
19 Summary Degeneracy is important because we want the simplex method to be finite, and the generic simplex method is not finite if bases are permitted to be degenerate. In principle, cycling can occur if there is degeneracy. In practice, cycling does not arise, but no one really knows why not. Perhaps it does occur, but people assume that the simplex algorithm is just taking too long for some other reason, and they never discover the cycling. Researchers have developed several different approaches to ensure the finiteness of the simplex method, even if the bases can be degenerate. Bob Bland developed a very simple rule that prevents cycling. 19
20 It also turns out that one can test a student s knowledge of the simplex algorithm by asking questions about what will happen if the current bfs is degenerate. Does this mean that we can expect questions on a test that involve degeneracy? That is exactly what I mean. I m sure that the students will understand it well. As for me, I m not taking for credit. 2
21 Last Slide And that is all for our tutorial on degeneracy. We hope to see you again for our next tutorial. We thank Stan, Tom, Ella, and Nooz for sharing all of their insights on degeneracy. I also want to thank Ellen DeGeneres for making a cameo appearance. Amit Mita 21
22 MIT OpenCourseWare Optimization Methods in Management Science Spring 213 For information about citing these materials or our Terms of Use, visit:
Simplex method summary
Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for
15.053/8 February 26, 2013
15.053/8 February 26, 2013 Sensitivity analysis and shadow prices special thanks to Ella, Cathy, McGraph, Nooz, Stan and Tom 1 Quotes of the Day If the facts don't fit the theory, change the facts. --
Special Situations in the Simplex Algorithm
Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the
Solving Linear Programs
Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,
1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2
IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3
Basic Components of an LP:
1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic
Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS
Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and
Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints
Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and
Linear Programming Notes VII Sensitivity Analysis
Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization
International Doctoral School Algorithmic Decision Theory: MCDA and MOO
International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire
Duality in Linear Programming
Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow
This exposition of linear programming
Linear Programming and the Simplex Method David Gale This exposition of linear programming and the simplex method is intended as a companion piece to the article in this issue on the life and work of George
Linear Programming: Theory and Applications
Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................
3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max
SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right
Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood
PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 $3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced
4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma
Lecture 2: August 29. Linear Programming (part I)
10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
Nonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
Mathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
Linear Programming in Matrix Form
Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,
56:171 Operations Research Midterm Exam Solutions Fall 2001
56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the
Standard Form of a Linear Programming Problem
494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,
1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
Linear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
Row Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation
Chapter 2 Solving Linear Programs
Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A
OPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON
Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/ jburkardt/presentations/cg lab fem basis tetrahedron.pdf
A Labeling Algorithm for the Maximum-Flow Network Problem
A Labeling Algorithm for the Maximum-Flow Network Problem Appendix C Network-flow problems can be solved by several methods. In Chapter 8 we introduced this topic by exploring the special structure of
Linear Programming. Solving LP Models Using MS Excel, 18
SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting
Chapter 6: Sensitivity Analysis
Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
Lecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
Session 7 Bivariate Data and Analysis
Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares
LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005
LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK [email protected] 1. Overview Typical Linear Programming problems Standard form and converting
An Introduction to Linear Programming
An Introduction to Linear Programming Steven J. Miller March 31, 2007 Mathematics Department Brown University 151 Thayer Street Providence, RI 02912 Abstract We describe Linear Programming, an important
1 Review of Least Squares Solutions to Overdetermined Systems
cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares
1 Portfolio Selection
COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # Scribe: Nadia Heninger April 8, 008 Portfolio Selection Last time we discussed our model of the stock market N stocks start on day with
Point and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
What is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
Linear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
Network Models 8.1 THE GENERAL NETWORK-FLOW PROBLEM
Network Models 8 There are several kinds of linear-programming models that exhibit a special structure that can be exploited in the construction of efficient algorithms for their solution. The motivation
Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov
Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES
Question 2: How do you solve a linear programming problem with a graph?
Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.
Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material
6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Optimization Modeling for Mining Engineers
Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
CHAPTER 2. Logic. 1. Logic Definitions. Notation: Variables are used to represent propositions. The most common variables used are p, q, and r.
CHAPTER 2 Logic 1. Logic Definitions 1.1. Propositions. Definition 1.1.1. A proposition is a declarative sentence that is either true (denoted either T or 1) or false (denoted either F or 0). Notation:
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
1 Introduction. 2 Prediction with Expert Advice. Online Learning 9.520 Lecture 09
1 Introduction Most of the course is concerned with the batch learning problem. In this lecture, however, we look at a different model, called online. Let us first compare and contrast the two. In batch
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
7 Gaussian Elimination and LU Factorization
7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method
Mortgage Secrets. What the banks don t want you to know.
Mortgage Secrets What the banks don t want you to know. Copyright Notice: Copyright 2006 - All Rights Reserved Contents may not be shared or transmitted in any form, so don t even think about it. Trust
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
Sensitivity Report in Excel
The Answer Report contains the original guess for the solution and the final value of the solution as well as the objective function values for the original guess and final value. The report also indicates
5.5. Solving linear systems by the elimination method
55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
The Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
How to Use StartWire
How to Use StartWire How to Use StartWire StartWire is a free site you can use to manage your job search from getting recommendations on where to apply to getting automatic updates on the status of your
Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept
Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
Introduction Solvability Rules Computer Solution Implementation. Connect Four. March 9, 2010. Connect Four
March 9, 2010 is a tic-tac-toe like game in which two players drop discs into a 7x6 board. The first player to get four in a row (either vertically, horizontally, or diagonally) wins. The game was first
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
Equations, Lenses and Fractions
46 Equations, Lenses and Fractions The study of lenses offers a good real world example of a relation with fractions we just can t avoid! Different uses of a simple lens that you may be familiar with are
0.1 Linear Programming
0.1 Linear Programming 0.1.1 Objectives By the end of this unit you will be able to: formulate simple linear programming problems in terms of an objective function to be maximized or minimized subject
Project II Using Body Temperature to Estimate Time Since Death
Project II Using Body Temperature to Estimate Time Since Death or A Solution to the Mystery Answer to questions in boldface must be in your final report 1 Part I. A Little History and One Method Though
The Basics of FEA Procedure
CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
ONLINE SAFETY TEACHER S GUIDE:
TEACHER S GUIDE: ONLINE SAFETY LEARNING OBJECTIVES Students will learn how to use the Internet safely and effectively. Students will understand that people online are not always who they say they are.
Solving Linear Programs in Excel
Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
Systems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
0.75 75% ! 3 40% 0.65 65% Percent Cards. This problem gives you the chance to: relate fractions, decimals and percents
Percent Cards This problem gives you the chance to: relate fractions, decimals and percents Mrs. Lopez makes sets of cards for her math class. All the cards in a set have the same value. Set A 3 4 0.75
When I think about using an advanced scientific or graphing calculator, I feel:
Slide 2.11, 2.14 & 3.2 MATH HISTORY QUESTION EXERCISE ONE My last math course was (course, year, and school): I would say that my experience in that course was: A math course I especially remember was:
Computational Geometry. Lecture 1: Introduction and Convex Hulls
Lecture 1: Introduction and convex hulls 1 Geometry: points, lines,... Plane (two-dimensional), R 2 Space (three-dimensional), R 3 Space (higher-dimensional), R d A point in the plane, 3-dimensional space,
MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
How to Give a Bible Study
How to Give a Bible Study Suggestions for finding Bible study interests and effective tips for leading them to Christ Kurt Johnson Pacific Press Publishing Association Nampa, Idaho Oshawa, Ontario, Canada
4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY
PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences
Algorithms are the threads that tie together most of the subfields of computer science.
Algorithms Algorithms 1 Algorithms are the threads that tie together most of the subfields of computer science. Something magically beautiful happens when a sequence of commands and decisions is able to
Scott Hughes 7 April 2005. Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005. Lecture 15: Mutual and Self Inductance.
Scott Hughes 7 April 2005 151 Using induction Massachusetts nstitute of Technology Department of Physics 8022 Spring 2005 Lecture 15: Mutual and Self nductance nduction is a fantastic way to create EMF;
Activity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
Vieta s Formulas and the Identity Theorem
Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion
