Optimization Modeling for Mining Engineers

Size: px
Start display at page:

Download "Optimization Modeling for Mining Engineers"

Transcription

1 Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2 Mixed Integer Linear Programming Network Models Nonlinear Programming 1

2 Linear Programming Consider the following system: (P) min cx Slide 3 subject to Ax = b x 0 where x is an n 1 vector of decision variables, and A, c, and b are known data in the format of an m n matrix, a 1 n row vector, and an m 1 column vector, respectively. Linear Programming in Mining Blend raw materials with certain characteristics into final products with specifications on the characteristics Slide 4 Given a mining sequence, compute a production schedule Allocate equipment to a task for a given number of hours Make tactical production decisions, e.g., regarding sending product to mills 2

3 Example 1: Linear Programming Slide 5 The Metalco Company desires to blend a new alloy of 40% tin, 35% zinc, and 25% lead from several available alloys having the properties given in Table 1. Formulate a linear program whose solution would yield the proportions of these alloys that should be blended to produce a new alloy at minimum cost. Example 1: Linear Programming Table 1: Alloy properties Alloy 1 Alloy 2 Alloy 3 Alloy 4 Alloy 5 Slide 6 %Tin %Zinc %Lead Cost ($/lb.)

4 Solution 1a: Linear Programming Let x i = proportion of alloy i used {i = 1,2,3,4,5} minimize 22x x x x x 5 Slide 7 subject to : 60x x x x x 5 = 40 10x x x x x 5 = 35 30x x x x x 5 = 25 x 1 + x 2 + x 3 + x 4 + x 5 = 1 x 1 0,x 2 0,x 3 0,x 4 0,x 5 0 Solutions to the Linear Optimization Problem If Ax = b is: a uniquely determined system, then x is unique. Slide 8 an over-determined system, then x may not exist. an underdetermined system, then there may be many sets of values for x. 4

5 Linear Programming in Two Dimensions The intersection of the constraints Ax = b form a feasible region. Slide 9 One can move realizations of the objective parallel to each other (up for a maximization problem, down for a minimization problem) until one such realization contour last touches the feasible region. This extreme point is the optimal solution. Linear Program with an Optimal Solution y infeasible maximum Slide 10 feasible region objective function realizations x 5

6 Linear Program with Multiple Optimal Solutions y Slide 11 x Unbounded Linear Program y Slide 12 x 6

7 Infeasible Linear Program y Slide 13 x Two Linear Optimization Algorithms Simplex Method: theoretical performance is exponential, but practical performance is good (only check extreme points, and usually not all of them) Slide 14 Interior Point (Barrier) Method: theoretical performance is polynomial, and practical performance is good for large-scale problems 7

8 Simplex Method y Slide 15 x Interior Point Method y Slide 16 x 8

9 Solution 1b: Linear Programming Minimum cost: $23.46 Alloy 1: Alloy 2: Slide 17 Alloy 3: Integer Linear Programming Consider the following system: (P) min cy Slide 18 subject to Ay = b y 0 and integer (and binary) where y is an n 1 vector of decision variables, and A, c, and b are known data in the format of an m n matrix, a 1 n row vector, and an m 1 column vector, respectively. 9

10 Integer Linear Programming in Mining Delineate an ore body, determine an economic envelope Schedule long-term production, e.g., machine placements Slide 19 Make decisions with logical, e.g., precedence, constraints: open pit block sequencing, mining strata Example 2: Integer Programming Slide 20 W.R. Grace a strip mines phosphates in strata numbered from i = 1 at the top to i = n at the deepest level. Each stratum must be removed before the next can be mined, but only some of the layers contain enough suitable minerals to justify processing into the company s three products: pebble, concentrate, and flotation feed (j = 1, 2, 3). a Based on D. Klingman and N. Phillips (1988), Integer Programming for Optimal Phosphate-Mining Strategies, Journal of the Operational Research Society, 9, pp

11 Example 2: Integer Programming Slide 21 The company can estimate from drill samples the quantity a ij of product j available in each stratum i, the fraction b ij of BPL (a measure of phosphate content) in the part of i suitable for j, and the corresponding fraction p ij of pollutant chemicals. The company wishes to choose a mining plan that maximizes the product output while keeping the average fraction BPL of material processed for each product j at least b j and the average pollution fraction at most p j. Formulate an integer linear program model of this mining problem. Example 2: Integer Programming Table 2: Quantity, BPL, and pollutant for each product and stratum Stratum a i1 a i2 a i3 b i1 b i2 b i3 p i1 p i2 p i3 Slide Limits

12 Solution 2a: Integer Programming Let x i = 1 if we remove stratum i and 0 otherwise Let y i = 1 if we process stratum i and 0 otherwise Slide 23 n 3 max a ij y i i=1 j=1 subject to x i x i 1 i = 2,...,n y i x i i = 1,...,n n n b ij a ij y i b j a ij y i j = 1,2,3 i=1 n p ij a ij y i p j i=1 i=1 i=1 n a ij y i j = 1,2,3 Integer Linear Programming y Slide 24 x 12

13 Integer Programming Optimization Algorithm Now, there are a finite, rather than an infinite, number of feasible solutions. Slide 25 So, we could enumerate all the feasible solutions, test them in the objective function, and choose the best one. This would take a long time. In fact, even though the conventional algorithm uses smarter techniques to reduce enumeration, the algorithm still has theoretical exponential complexity. And, in practice, integer programs require far more solution time than linear programs of commensurate size. Solution 2b: Integer Programming Maximum product output: 12 Remove strata 1, 2, 3, and 4 Process strata 3 and 4 Slide 26 13

14 Mixed Integer Linear Programming Consider the following system: (P) min cx + dy Slide 27 subject to Ax + Ey = b x 0, y 0 and integer (and binary) where x is an n 1 vector of decision variables, y is an n 1 vector of decision variables, and A, E, c, d and b are known data in the format of an m n matrix, an m n matrix, a 1 n row vector, a 1 n row vector, and an m 1 column vector, respectively. Mixed Integer Linear Programming in Mining Scheduling production with sequence and tonnage decisions Slide 28 Supporting development decisions with production constraints Combined resolution production scheduling models 14

15 Example 3: Mixed Integer Linear Programming Slide 29 A steel mill has received an order for 25 tons of steel. The steel must be 5% carbon and 5% molybdenum by weight. The steel is manufactured by combining three types of metal: steel ingots, scrap steel, and alloys. Four steel ingots are available for purchase. The weight (in tons), cost per ton, carbon, and molybdenum content of each ingot are given in Table 3. Three types of alloys can be purchased. The cost per ton and chemical makeup of each alloy are given in Table 4. Steel scrap can be purchased at a cost of $100 per ton. Example 3: Mixed Integer Linear Programming Slide 30 Steel scrap contains 3% carbon and 9% molybdenum. Formulate a mixed integer programming model whose solution will tell the steel mill how to minimize the cost of filling their order. Table 3: Ingot properties Ingot Weight Cost per Ton ($) Carbon % Molybdenum %

16 Example 3: Mixed Integer Linear Programming Table 4: Alloy properties Slide 31 Alloy Cost per Ton ($) Carbon % Molybdenum % Solution 3a: Mixed Integer Linear Programming s = amount of steel scrap purchased (tons) a i = amount of alloy i purchased (i = 1...3) (tons) Slide 32 y i = 1 if ingot i is purchased (i = 1...4), 0 otherwise x i = amount of ingot i used (i = 1...4) (tons) 16

17 Solution 3a: Mixed Integer Linear Programming min 175y y y y a a a s subject to a 1 + a 2 + a 3 + s + x 1 + x 2 + x 3 + x 4 = a a a s x x x x 4 = 1.25 Slide a a s x x x x 4 = 1.25 x 1 5y 1 x 2 3y 2 x 3 4y 3 x 4 6y 4 s,a i,x i 0 i; y i binary i Mixed Integer Linear Programming Optimization Algorithm These are solved the same way as integer linear programs are. Slide 34 17

18 Solution 3b: Mixed Integer Linear Programming Slide 35 Minimum cost: $3,894 Scrap: 4.28 tons Alloy 1: 5.8 tons Amounts of ingots 1, 2, 3, and 4: 5, 3, 4, 2.92, respectively (all tons) All indicator variables (y i ) are 1. Network Models Slide 36 Consider the following system: (P) min c ij x ij (i,j) A subject to s j + x ij = d j + x jk j i k l ij x ij u ij (i,j) A where A is the set of arcs, x ij is the flow on arc (i,j), c ij is the per unit cost of sending flow on arc (i,j), s j is the supply at node j, d j is the demand at node j, l ij is the lower bound on arc (i,j), and u ij is the upper bound on arc (i,j). 18

19 Network Models in Mining Assigning equipment to jobs Making equipment replacement decisions Slide 37 Block sequencing with special structure Determining the ultimate pit limits Benefits of Network Models You get integrality for free You can solve them very quickly Slide 38 You can depict them graphically 19

20 A Network Slide 39 supplies (1,3) (0,4) 7 8 costs demands lower and upper bounds Network Formulation A = {(1,3), (2,3), (3,4), (4,5)} x ij = amount of flow on arc (i,j) Slide 40 min 7x x x x 35 subject to 2 = x 13 3 = x 23 x 13 + x 23 = x 34 + x 35 1 x x 23 4 x 34, x

21 Example 4: Network Models Slide 41 The district manager of the Whiskey Coal Mining Company wants to maximize his profits from his district operations. The district has two mines and two mills in operation. Products from Mine #1 are shipped to Mills #1 and/or #2; however, Mine #2 ships coal only to Mill #2. Production and transportation schemes, capacities, and costs are given in Tables 5-7 below. Mill #1 yields $4 profit per ton mined, and Mill #2 yields $5 profit per ton mined. Please draw a corresponding minimum cost flow graph whose solution would maximize profits. Label all supplies, demands, costs, and lower and upper bounds on your directed network, as applicable. Explain your answer. Example 4: Network Models Table 5: Capacity (tons) of and cost of mining at each mine Mine lower bound on capacity upper bound on capacity mining cost per ton $ $2 Slide 42 Table 6: Capacity (tons) of and cost of transporting coal from mine to mill Mine Mill lower bound on capacity upper bound on capacity transportation cost per ton $ $ $4 21

22 Example 4: Network Models Table 7: Capacity (tons) of each mill Mill lower bound on capacity upper bound on capacity Slide 43 Solution 4a: Network Models Mine Mill Slide 44 2 (1, 6) 1 1 (2, 4) 1 (0, 5) 4 S 2 (0, 5) T (1, 7) 2 2 (2, 8) 4 2 (1, 9) 5 22

23 Solution 4a: Network Models Slide 45 Costs of extraction at each mine, and transporting the ore from the mines to the mills are given on the arcs from the source to the mines, and from the mines to the mills, respectively. Profits from each mill are given as negative costs on the arcs terminating at the sink. Lower and upper bounds on capacity at the mines, and between the mines and the mills are given on the arcs from the source to the mines, and from the mines to the mills, respectively. Capacities at the mills are given on the arcs terminating at the sink. An optimal solution to this minimum cost flow problem will yield the optimal distribution plan from the mines through the mills. Solving Network Models There are very fast (polynomial time) algorithms to solve network models. Slide 46 Performance gains (over conventional linear programming solvers) are significant for large models. If the model is small or fast solutions are not important, use a linear programming solver to solve a network model. 23

24 Solution 4b: Network Models Minimum cost: $4 Mine 1: Extract 6 tons of coal and send 2 tons to mill 1 and 4 tons to mill 2 Slide 47 Mine 2: Extract 2 tons of coal and send both to mill 2 Mill 1: Process and sell 2 tons of coal Mill 2: Process and sell 6 tons of coal Nonlinear Programming We will only consider nonlinear programs with continuous-valued decision variables. Slide 48 Generally, nonlinear programming is divided into constrained and unconstrained nonlinear models. Why did we not address unconstrained linear programming? You have seen many unconstrained nonlinear optimization problems before. 24

25 Nonlinear Programming in Mining Fitting curves to data Minimizing quadratic deviation of production output from target levels (in the short-, medium-, or long-terms) Slide 49 Incorporating geotechnical considerations into production scheduling or other planning models Example 5: Nonlinear Programming Slide 50 A mine manager wants to allocate between 10% and 60% of his available mining capacity to mining each of the precious metals gold, silver, and copper. With market prices varying wildly from year to year, he has done some research on past performance to guide his decisions. Table 8 shows the average return for each precious metal ($/oz.) and the covariances among the categories that he has computed. Formulate a constrained nonlinear program whose solution would tell the mine manager the least risk plan (using only covariance terms as a measure of risk) that will average a return of at least $90. 25

26 Example 5: Nonlinear Programming Table 8: Return and covariance matrix for precious metals Slide 51 Gold Silver Copper Dollar Return ($/oz.) Covariance Gold Silver Copper Solution 5a: Nonlinear Programming Indices: i = type of metal in first category, i = 1,2,3 j = type of metal in second category, j = 1,2,3 Slide 52 Parameters: R i = average return of metal type i ($/oz) (see table) V ij = covariance between metal i and metal j (see table) h = minimum return required ($) ($90) l = lower bound on capacity (10%) u = upper bound on capacity (60%) 26

27 Solution 5a: Nonlinear Programming Variables: P i = proportion of capacity devoted to mining metal type i Slide 53 ˆP i = amount of precious metal i mined (oz.) Formulation: min 3 3 V ij P i P j i=1 j=1 Solution 5a: Nonlinear Programming Formulation: Slide 54 s.t. l i P i u i i 3 P i = 1 i=1 3 R i ˆP i h i=1 ˆP 1 = ˆP 2 = ˆP 3 P 1 P 2 P 3 ˆP i 0 i 27

28 Constrained Nonlinear Optimization Problem min f(x) subject to h i (x) = b i i = 1...j Slide 55 g i (x) c i i = j + 1,...,m Difficulties with Nonlinear Optimization Functions may not be well behaved. Specifically, f may not be convex (or concave). Slide 56 A local optimal solution may not be a global optimal solution. 28

29 Illustration of an Ill-behaved Nonlinear Function Slide 57 Convex and Concave Functions Certain functional forms for f will ensure that a local optimal solution is globally optimal. Slide 58 Specifically, if f is convex and the sense of the objective is minimize, then a local optimal solution will be globally optimal. And if f is concave and the sense of the objective is maximize, then a local optimal solution will be globally optimal. 29

30 Illustration of Convex and Concave Functions Slide 59 CONVEX FUNCTION CONCAVE FUNCTION Solution 5b: Nonlinear Programming Least risk:.1403 P 1, P 2, P 3 :.6,.3,.1, respectively ˆP 1, ˆP 2, ˆP 3 :.645,.323,.108, respectively Slide 60 30

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

constraint. Let us penalize ourselves for making the constraint too big. We end up with a

constraint. Let us penalize ourselves for making the constraint too big. We end up with a Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Simplex method summary

Simplex method summary Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

More information

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK dbernick@soe.ucsc.edu 1. Overview Typical Linear Programming problems Standard form and converting

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

A new short- and medium-term production scheduling tool MineSight Schedule Optimizer (MSSO)

A new short- and medium-term production scheduling tool MineSight Schedule Optimizer (MSSO) A new short- and medium-term production scheduling tool MineSight Schedule Optimizer (MSSO) Zhanyou Huang a, Wenlong Cai a, A. Frederick Banfield a a Mintec, Inc., Tucson, Arizona, USA The MineSight Schedule

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

Can linear programs solve NP-hard problems?

Can linear programs solve NP-hard problems? Can linear programs solve NP-hard problems? p. 1/9 Can linear programs solve NP-hard problems? Ronald de Wolf Linear programs Can linear programs solve NP-hard problems? p. 2/9 Can linear programs solve

More information

Optimization in R n Introduction

Optimization in R n Introduction Optimization in R n Introduction Rudi Pendavingh Eindhoven Technical University Optimization in R n, lecture Rudi Pendavingh (TUE) Optimization in R n Introduction ORN / 4 Some optimization problems designing

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Batch Production Scheduling in the Process Industries. By Prashanthi Ravi

Batch Production Scheduling in the Process Industries. By Prashanthi Ravi Batch Production Scheduling in the Process Industries By Prashanthi Ravi INTRODUCTION Batch production - where a batch means a task together with the quantity produced. The processing of a batch is called

More information

Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

More information

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach

Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

Discuss the size of the instance for the minimum spanning tree problem.

Discuss the size of the instance for the minimum spanning tree problem. 3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

More information

International Doctoral School Algorithmic Decision Theory: MCDA and MOO

International Doctoral School Algorithmic Decision Theory: MCDA and MOO International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

Study Guide 2 Solutions MATH 111

Study Guide 2 Solutions MATH 111 Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested

More information

Module1. x 1000. y 800.

Module1. x 1000. y 800. Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

More information

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR Solutions Of Some Non-Linear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

Chapter 11 Monte Carlo Simulation

Chapter 11 Monte Carlo Simulation Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Two-Stage Stochastic Linear Programs

Two-Stage Stochastic Linear Programs Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic

More information

Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Optimization Theory for Large Systems

Optimization Theory for Large Systems Optimization Theory for Large Systems LEON S. LASDON CASE WESTERN RESERVE UNIVERSITY THE MACMILLAN COMPANY COLLIER-MACMILLAN LIMITED, LONDON Contents 1. Linear and Nonlinear Programming 1 1.1 Unconstrained

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Optimization Methods in Finance

Optimization Methods in Finance Optimization Methods in Finance Gerard Cornuejols Reha Tütüncü Carnegie Mellon University, Pittsburgh, PA 15213 USA January 2006 2 Foreword Optimization models play an increasingly important role in financial

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

9.4 THE SIMPLEX METHOD: MINIMIZATION

9.4 THE SIMPLEX METHOD: MINIMIZATION SECTION 9 THE SIMPLEX METHOD: MINIMIZATION 59 The accounting firm in Exercise raises its charge for an audit to $5 What number of audits and tax returns will bring in a maximum revenue? In the simplex

More information

Basic Components of an LP:

Basic Components of an LP: 1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

More information

Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

More information

Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1

Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1 Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Linear Programming. Before studying this supplement you should know or, if necessary, review

Linear Programming. Before studying this supplement you should know or, if necessary, review S U P P L E M E N T Linear Programming B Before studying this supplement you should know or, if necessary, review 1. Competitive priorities, Chapter 2 2. Capacity management concepts, Chapter 9 3. Aggregate

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

A New Method for Estimating Maximum Power Transfer and Voltage Stability Margins to Mitigate the Risk of Voltage Collapse

A New Method for Estimating Maximum Power Transfer and Voltage Stability Margins to Mitigate the Risk of Voltage Collapse A New Method for Estimating Maximum Power Transfer and Voltage Stability Margins to Mitigate the Risk of Voltage Collapse Bernie Lesieutre Dan Molzahn University of Wisconsin-Madison PSERC Webinar, October

More information

1 Portfolio Selection

1 Portfolio Selection COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # Scribe: Nadia Heninger April 8, 008 Portfolio Selection Last time we discussed our model of the stock market N stocks start on day with

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance Advanced Lecture on Mathematical Science and Information Science I Optimization in Finance Reha H. Tütüncü Visiting Associate Professor Dept. of Mathematical and Computing Sciences Tokyo Institute of Technology

More information

Airport Planning and Design. Excel Solver

Airport Planning and Design. Excel Solver Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of

More information

Chapter 2: Introduction to Linear Programming

Chapter 2: Introduction to Linear Programming Chapter 2: Introduction to Linear Programming You may recall unconstrained optimization from your high school years: the idea is to find the highest point (or perhaps the lowest point) on an objective

More information

Equilibrium computation: Part 1

Equilibrium computation: Part 1 Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium

More information

Dynamic programming formulation

Dynamic programming formulation 1.24 Lecture 14 Dynamic programming: Job scheduling Dynamic programming formulation To formulate a problem as a dynamic program: Sort by a criterion that will allow infeasible combinations to be eli minated

More information

A Labeling Algorithm for the Maximum-Flow Network Problem

A Labeling Algorithm for the Maximum-Flow Network Problem A Labeling Algorithm for the Maximum-Flow Network Problem Appendix C Network-flow problems can be solved by several methods. In Chapter 8 we introduced this topic by exploring the special structure of

More information

Using EXCEL Solver October, 2000

Using EXCEL Solver October, 2000 Using EXCEL Solver October, 2000 2 The Solver option in EXCEL may be used to solve linear and nonlinear optimization problems. Integer restrictions may be placed on the decision variables. Solver may be

More information

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

Binary Image Reconstruction

Binary Image Reconstruction A network flow algorithm for reconstructing binary images from discrete X-rays Kees Joost Batenburg Leiden University and CWI, The Netherlands kbatenbu@math.leidenuniv.nl Abstract We present a new algorithm

More information

Linear Programming. April 12, 2005

Linear Programming. April 12, 2005 Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Lecture 11: 0-1 Quadratic Program and Lower Bounds

Lecture 11: 0-1 Quadratic Program and Lower Bounds Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite

More information

Definition and Properties of the Production Function: Lecture

Definition and Properties of the Production Function: Lecture Definition and Properties of the Production Function: Lecture II August 25, 2011 Definition and : Lecture A Brief Brush with Duality Cobb-Douglas Cost Minimization Lagrangian for the Cobb-Douglas Solution

More information

Chapter 4. Duality. 4.1 A Graphical Example

Chapter 4. Duality. 4.1 A Graphical Example Chapter 4 Duality Given any linear program, there is another related linear program called the dual. In this chapter, we will develop an understanding of the dual linear program. This understanding translates

More information

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS Linear programming is a mathematical technique for finding optimal solutions to problems that can be expressed using linear equations and inequalities. If a real-world problem can be represented accurately

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Convex Programming Tools for Disjunctive Programs

Convex Programming Tools for Disjunctive Programs Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible

More information

Understanding the Impact of Weights Constraints in Portfolio Theory

Understanding the Impact of Weights Constraints in Portfolio Theory Understanding the Impact of Weights Constraints in Portfolio Theory Thierry Roncalli Research & Development Lyxor Asset Management, Paris thierry.roncalli@lyxor.com January 2010 Abstract In this article,

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

Compact Representations and Approximations for Compuation in Games

Compact Representations and Approximations for Compuation in Games Compact Representations and Approximations for Compuation in Games Kevin Swersky April 23, 2008 Abstract Compact representations have recently been developed as a way of both encoding the strategic interactions

More information

THE SCHEDULING OF MAINTENANCE SERVICE

THE SCHEDULING OF MAINTENANCE SERVICE THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

How the European day-ahead electricity market works

How the European day-ahead electricity market works How the European day-ahead electricity market works ELEC0018-1 - Marché de l'énergie - Pr. D. Ernst! Bertrand Cornélusse, Ph.D.! bertrand.cornelusse@ulg.ac.be! October 2014! 1 Starting question How is

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

Sensitivity Report in Excel

Sensitivity Report in Excel The Answer Report contains the original guess for the solution and the final value of the solution as well as the objective function values for the original guess and final value. The report also indicates

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

LINEAR PROGRAMMING WITH THE EXCEL SOLVER

LINEAR PROGRAMMING WITH THE EXCEL SOLVER cha06369_supa.qxd 2/28/03 10:18 AM Page 702 702 S U P P L E M E N T A LINEAR PROGRAMMING WITH THE EXCEL SOLVER Linear programming (or simply LP) refers to several related mathematical techniques that are

More information

Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

More information