SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
|
|
|
- Blake Lucas
- 9 years ago
- Views:
Transcription
1 SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
2 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis Compare groups Non-parametric statistics T-tests One-way analysis of variance ANOVA Two-way between groups ANOVA Multivariate analysis of variance MANOVA
3 Correlation Aim: find out whether a relationship exists and determine its magnitude and direction Correlation coefficients: Pearson product moment correlation coefficient Spearman rank order correlation coefficient Assumptions: relationship is linear Homoscedasticity: variability of DV should remain constant at all values of IV
4 Partial correlation Aim: to explore the relationship between two variables while statistically controlling for the effect of another variable that may be influencing the relationship Assumptions: same as correlation c a b
5 Regression Aim: use after there is a significant correlation to find the appropriate linear model to predict DV (scale or ordinal) from one or more IV (scale or ordinal) Assumptions: sample size needs to be large enough multicollinearity and singularity outliers normality IV2 linearity homoscedasticity IV1 IV3 Types: standard hierarchical DV stepwise
6 Logistic regression Aim: create a model to predict DV (categorical 2 or more categories) given one or more IV (categorical or numerical/scale) Assumptions: sample size large enough multicollinearity outliers Procedure note: use Binary Logistic for DV of 2 categories (coding 0/1) use Multinomial Logistic for DV for more then 2 categories
7 Factor analysis Aim: to find what items (variables) clump together. Usually used to create subscales. Data reduction. Factor analysis: exploratory confirmatory SPSS -> Principal component analysis
8 Three steps of factor analysis 1. Assessment of the suitability of the data for factor analysis 2. Factor extraction 3. Factor rotation and interpretation
9 1. Assessment of the suitability 1. Sample size: 10 to 1 ratio 2. Strength of the relationship among variables (items)
10 Step 2. Factor extraction 1. Commonly used technique principal components analysis 2. Kaiser s criterion: only factors with eigenvalues of 1.0 or more are retained may give too many factors 3. Scree test: plot of the eigenvalues, retain all the factors above the elbow 4. Parallel analysis: compares the size of the eigenvalues with those obtained from randomly generated data set of the same size
11 Step 3: factor rotation and interpretation 1. Orthogonal rotation 1. uncorrelated 2. Easier to interpret 3. Varimax 2. Oblique rotation 1. Correlated 2. Harder to interpret 3. Direct Oblimin
12 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis Compare groups Non-parametric statistics T-tests One-way analysis of variance ANOVA Two-way between groups ANOVA Multivariate analysis of variance MANOVA
13 Nonparametric tests Non-parametric techniques Chi-square test for goodness of fit Chi-square test for independence Kappa measure of agreement Mann-Whitney U Test Wilcoxon Signed Rank Test Kruskal-Wallis Test Friedman Test Parametric techniques None None None Independent samples t-test Paired samples t-test One-way between groups ANOVA One-way repeated measures ANOVA
14 T-test for independent groups Aim: Testing the differences between the means of two independent samples or groups Requirements: Only one independent (grouping) variable IV (ex. Gender) Only two levels for that IV (ex. Male or Female) Only one dependent variable (DV) Assumptions: Sampling distribution of the difference between the means is normally distributed Homogeneity of variances Tested by Levene s Test for Equality of Variances Procedure: ANALYZE>COMPARE MEANS>INDEPENDENT SAMPLES T-TEST Test variable DV Grouping variable IV DEFINE GROUPS (need to remember your coding of the IV) Can also divide a range by using a cut point
15 Paired Samples T-test Aim:used in repeated measures or correlated groups designs, each subject is tested twice on the same variable, also matched pairs Requirements: Looking at two sets of data (ex. pre-test vs. post-test) Two sets of data must be obtained from the same subjects or from two matched groups of subjects Assumptions: Sampling distribution of the means is normally distributed Sampling distribution of the difference scores should be normally distributed Procedure: ANALYZE>COMPARE MEANS>PAIRED SAMPLES T-TEST
16 One-way Analysis of Variance Aim: looks at the means from several independent groups, extension of the independent sample t-test Requirements: Only one IV (categorical) More than two levels for that IV Only one DV (numerical) Assumptions: The populations that the sample are drawn are normally distributed Homogeneity of variances Observations are all independent of one another Procedure: ANALYZE>COMPARE MEANS>One-Way ANOVA Dependent List DV Factor IV
17 Two-way Analysis of Variance Aim: test for main effect and interaction effects on the DV Requirements: Two IV (categorical variables) Only one DV (continuous variable) Procedure: ANALYZE>General Linear Model>Univariate Dependent List DV Fixed Factor IVs
18 MANOVA Aim: extension of ANOVA when there is more than one DV (should be related) Assumptions: sample size normality outliers linearity homogeneity of regression multicollinearity and singularity homogeneity of variance-covariance matrices
Data analysis process
Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis
T-test & factor analysis
Parametric tests T-test & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue
Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS
Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical
SPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
Research Methods & Experimental Design
Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and
SPSS Explore procedure
SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,
(and sex and drugs and rock 'n' roll) ANDY FIELD
DISCOVERING USING SPSS STATISTICS THIRD EDITION (and sex and drugs and rock 'n' roll) ANDY FIELD CONTENTS Preface How to use this book Acknowledgements Dedication Symbols used in this book Some maths revision
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
Analysing Questionnaires using Minitab (for SPSS queries contact -) [email protected]
Analysing Questionnaires using Minitab (for SPSS queries contact -) [email protected] Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
SPSS 3: COMPARING MEANS
SPSS 3: COMPARING MEANS UNIVERSITY OF GUELPH LUCIA COSTANZO [email protected] REVISED SEPTEMBER 2012 CONTENTS SPSS availability... 2 Goals of the workshop... 2 Data for SPSS Sessions... 3 Statistical
4. There are no dependent variables specified... Instead, the model is: VAR 1. Or, in terms of basic measurement theory, we could model it as:
1 Neuendorf Factor Analysis Assumptions: 1. Metric (interval/ratio) data 2. Linearity (in the relationships among the variables--factors are linear constructions of the set of variables; the critical source
2. Linearity (in relationships among the variables--factors are linear constructions of the set of variables) F 2 X 4 U 4
1 Neuendorf Factor Analysis Assumptions: 1. Metric (interval/ratio) data. Linearity (in relationships among the variables--factors are linear constructions of the set of variables) 3. Univariate and multivariate
THE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON
Instructions for SPSS 21
1 Instructions for SPSS 21 1 Introduction... 2 1.1 Opening the SPSS program... 2 1.2 General... 2 2 Data inputting and processing... 2 2.1 Manual input and data processing... 2 2.2 Saving data... 3 2.3
Chapter Eight: Quantitative Methods
Chapter Eight: Quantitative Methods RESEARCH DESIGN Qualitative, Quantitative, and Mixed Methods Approaches Third Edition John W. Creswell Chapter Outline Defining Surveys and Experiments Components of
Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models
Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis
Overview of Factor Analysis
Overview of Factor Analysis Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August 1,
Rank-Based Non-Parametric Tests
Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
Simple Predictive Analytics Curtis Seare
Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use
Deciding which statistical test to use:
Deciding which statistical test to use: (b) Parametric tests: z-scores (one score compared against the distribution of scores to which it belongs) Relationship between two IV s - Pearson s r (correlation
Exploratory Factor Analysis
Exploratory Factor Analysis ( 探 索 的 因 子 分 析 ) Yasuyo Sawaki Waseda University JLTA2011 Workshop Momoyama Gakuin University October 28, 2011 1 Today s schedule Part 1: EFA basics Introduction to factor
Chapter 7 Factor Analysis SPSS
Chapter 7 Factor Analysis SPSS Factor analysis attempts to identify underlying variables, or factors, that explain the pattern of correlations within a set of observed variables. Factor analysis is often
Multivariate Analysis of Variance (MANOVA)
Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction
UNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER
SPSS Guide How-to, Tips, Tricks & Statistical Techniques
SPSS Guide How-to, Tips, Tricks & Statistical Techniques Support for the course Research Methodology for IB Also useful for your BSc or MSc thesis March 2014 Dr. Marijke Leliveld Jacob Wiebenga, MSc CONTENT
Parametric and non-parametric statistical methods for the life sciences - Session I
Why nonparametric methods What test to use? Rank Tests Parametric and non-parametric statistical methods for the life sciences - Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute
The Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
DATA ANALYSIS. QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University
DATA ANALYSIS QEM Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University Quantitative Research What is Statistics? Statistics (as a subject) is the science
The Statistics Tutor s Quick Guide to
statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence The Statistics Tutor s Quick Guide to Stcp-marshallowen-7
Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model
Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity
Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples
Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours
January 26, 2009 The Faculty Center for Teaching and Learning
THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i
Using Principal Components Analysis in Program Evaluation: Some Practical Considerations
http://evaluation.wmich.edu/jmde/ Articles Using Principal Components Analysis in Program Evaluation: Some Practical Considerations J. Thomas Kellow Assistant Professor of Research and Statistics Mercer
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Factor Analysis. Advanced Financial Accounting II Åbo Akademi School of Business
Factor Analysis Advanced Financial Accounting II Åbo Akademi School of Business Factor analysis A statistical method used to describe variability among observed variables in terms of fewer unobserved variables
Nonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
Exploratory Factor Analysis and Principal Components. Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016
and Principal Components Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016 Agenda Brief History and Introductory Example Factor Model Factor Equation Estimation of Loadings
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
An introduction to IBM SPSS Statistics
An introduction to IBM SPSS Statistics Contents 1 Introduction... 1 2 Entering your data... 2 3 Preparing your data for analysis... 10 4 Exploring your data: univariate analysis... 14 5 Generating descriptive
MASTER COURSE SYLLABUS-PROTOTYPE PSYCHOLOGY 2317 STATISTICAL METHODS FOR THE BEHAVIORAL SCIENCES
MASTER COURSE SYLLABUS-PROTOTYPE THE PSYCHOLOGY DEPARTMENT VALUES ACADEMIC FREEDOM AND THUS OFFERS THIS MASTER SYLLABUS-PROTOTYPE ONLY AS A GUIDE. THE INSTRUCTORS ARE FREE TO ADAPT THEIR COURSE SYLLABI
Analyzing Research Data Using Excel
Analyzing Research Data Using Excel Fraser Health Authority, 2012 The Fraser Health Authority ( FH ) authorizes the use, reproduction and/or modification of this publication for purposes other than commercial
UNDERSTANDING THE TWO-WAY ANOVA
UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
SPSS Modules Features Statistics Premium
SPSS Modules Features Statistics Premium Core System Functionality (included in every license) Data access and management Data Prep features: Define Variable properties tool; copy data properties tool,
5.2 Customers Types for Grocery Shopping Scenario
------------------------------------------------------------------------------------------------------- CHAPTER 5: RESULTS AND ANALYSIS -------------------------------------------------------------------------------------------------------
SPSS Introduction. Yi Li
SPSS Introduction Yi Li Note: The report is based on the websites below http://glimo.vub.ac.be/downloads/eng_spss_basic.pdf http://academic.udayton.edu/gregelvers/psy216/spss http://www.nursing.ucdenver.edu/pdf/factoranalysishowto.pdf
Parametric and Nonparametric: Demystifying the Terms
Parametric and Nonparametric: Demystifying the Terms By Tanya Hoskin, a statistician in the Mayo Clinic Department of Health Sciences Research who provides consultations through the Mayo Clinic CTSA BERD
Factor Analysis: Statnotes, from North Carolina State University, Public Administration Program. Factor Analysis
Factor Analysis Overview Factor analysis is used to uncover the latent structure (dimensions) of a set of variables. It reduces attribute space from a larger number of variables to a smaller number of
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
Statistics for Sports Medicine
Statistics for Sports Medicine Suzanne Hecht, MD University of Minnesota ([email protected]) Fellow s Research Conference July 2012: Philadelphia GOALS Try not to bore you to death!! Try to teach
Mathematics within the Psychology Curriculum
Mathematics within the Psychology Curriculum Statistical Theory and Data Handling Statistical theory and data handling as studied on the GCSE Mathematics syllabus You may have learnt about statistics and
Directions for using SPSS
Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...
DISCRIMINANT FUNCTION ANALYSIS (DA)
DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant
Data Analysis in SPSS. February 21, 2004. If you wish to cite the contents of this document, the APA reference for them would be
Data Analysis in SPSS Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Heather Claypool Department of Psychology Miami University
Multivariate Analysis. Overview
Multivariate Analysis Overview Introduction Multivariate thinking Body of thought processes that illuminate the interrelatedness between and within sets of variables. The essence of multivariate thinking
Intro to Parametric & Nonparametric Statistics
Intro to Parametric & Nonparametric Statistics Kinds & definitions of nonparametric statistics Where parametric stats come from Consequences of parametric assumptions Organizing the models we will cover
Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data. Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York
Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York . NONPARAMETRIC STATISTICS I. DEFINITIONS A. Parametric
Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to
Multivariate Statistical Inference and Applications
Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim
Post-hoc comparisons & two-way analysis of variance. Two-way ANOVA, II. Post-hoc testing for main effects. Post-hoc testing 9.
Two-way ANOVA, II Post-hoc comparisons & two-way analysis of variance 9.7 4/9/4 Post-hoc testing As before, you can perform post-hoc tests whenever there s a significant F But don t bother if it s a main
Introduction to Statistics Used in Nursing Research
Introduction to Statistics Used in Nursing Research Laura P. Kimble, PhD, RN, FNP-C, FAAN Professor and Piedmont Healthcare Endowed Chair in Nursing Georgia Baptist College of Nursing Of Mercer University
To do a factor analysis, we need to select an extraction method and a rotation method. Hit the Extraction button to specify your extraction method.
Factor Analysis in SPSS To conduct a Factor Analysis, start from the Analyze menu. This procedure is intended to reduce the complexity in a set of data, so we choose Data Reduction from the menu. And the
FACTOR ANALYSIS. Factor Analysis is similar to PCA in that it is a technique for studying the interrelationships among variables.
FACTOR ANALYSIS Introduction Factor Analysis is similar to PCA in that it is a technique for studying the interrelationships among variables Both methods differ from regression in that they don t have
How To Understand Multivariate Models
Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models
Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS
Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple
Introduction to Multilevel Modeling Using HLM 6. By ATS Statistical Consulting Group
Introduction to Multilevel Modeling Using HLM 6 By ATS Statistical Consulting Group Multilevel data structure Students nested within schools Children nested within families Respondents nested within interviewers
HLM software has been one of the leading statistical packages for hierarchical
Introductory Guide to HLM With HLM 7 Software 3 G. David Garson HLM software has been one of the leading statistical packages for hierarchical linear modeling due to the pioneering work of Stephen Raudenbush
Data Analysis, Research Study Design and the IRB
Minding the p-values p and Quartiles: Data Analysis, Research Study Design and the IRB Don Allensworth-Davies, MSc Research Manager, Data Coordinating Center Boston University School of Public Health IRB
Using Multivariate Statistics
/ K FIFTH EDITION 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Using Multivariate Statistics Barbara G. Tabachnick
A Framework for Analyses with Numeric and Categorical Dependent Variables. An Exercise in Using GLM. Analyses with Categorical Dependent Variables
-1- A Framework for Analyses with Numeric and Categorical Dependent Variables An Exercise in Using GLM Analyses with Categorical Dependent Variables 100 90 80 23 70 60 50 Salary in 1000s of $ 40 30 20
Come scegliere un test statistico
Come scegliere un test statistico Estratto dal Capitolo 37 of Intuitive Biostatistics (ISBN 0-19-508607-4) by Harvey Motulsky. Copyright 1995 by Oxfd University Press Inc. (disponibile in Iinternet) Table
A Brief Introduction to SPSS Factor Analysis
A Brief Introduction to SPSS Factor Analysis SPSS has a procedure that conducts exploratory factor analysis. Before launching into a step by step example of how to use this procedure, it is recommended
Introduction to Statistics and Quantitative Research Methods
Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
Principal Component Analysis
Principal Component Analysis Principle Component Analysis: A statistical technique used to examine the interrelations among a set of variables in order to identify the underlying structure of those variables.
Introduction to Analysis of Variance (ANOVA) Limitations of the t-test
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only
Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com
SPSS-SA Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Training Brochure 2009 TABLE OF CONTENTS 1 SPSS TRAINING COURSES FOCUSING
Statistical tests for SPSS
Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly
EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions
Common factor analysis
Common factor analysis This is what people generally mean when they say "factor analysis" This family of techniques uses an estimate of common variance among the original variables to generate the factor
Correlational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots
Correlational Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlational Research A quantitative methodology used to determine whether, and to what degree, a relationship
business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
Section 3 Part 1. Relationships between two numerical variables
Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.
Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine
2 - Manova 4.3.05 25 Multivariate Analysis of Variance What Multivariate Analysis of Variance is The general purpose of multivariate analysis of variance (MANOVA) is to determine whether multiple levels
Factor Analysis Using SPSS
Factor Analysis Using SPSS The theory of factor analysis was described in your lecture, or read Field (2005) Chapter 15. Example Factor analysis is frequently used to develop questionnaires: after all
Research Methodology: Tools
MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 11: Nonparametric Methods May 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi Bruderer Enzler Contents Slide
Multivariate Analysis of Variance (MANOVA)
Chapter 415 Multivariate Analysis of Variance (MANOVA) Introduction Multivariate analysis of variance (MANOVA) is an extension of common analysis of variance (ANOVA). In ANOVA, differences among various
Binary Logistic Regression
Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including
Non-parametric Tests Using SPSS
Non-parametric Tests Using SPSS Statistical Package for Social Sciences Jinlin Fu January 2016 Contact Medical Research Consultancy Studio Australia http://www.mrcsau.com.au Contents 1 INTRODUCTION...
Data Analysis in Management with SPSS Software
Data Analysis in Management with SPSS Software J.P. Verma Data Analysis in Management with SPSS Software J.P. Verma Research and Advanced Studies Lakshmibai National University of Physical Education Gwalior,
SPSS: AN OVERVIEW. Seema Jaggi and and P.K.Batra I.A.S.R.I., Library Avenue, New Delhi-110 012
SPSS: AN OVERVIEW Seema Jaggi and and P.K.Batra I.A.S.R.I., Library Avenue, New Delhi-110 012 The abbreviation SPSS stands for Statistical Package for the Social Sciences and is a comprehensive system
Multiple Regression Kean University February 12, 2013 0
Multiple Regression Kean University February 12, 2013 0 Content 1. Multiple Linear Regression.2 2. Logistic Regression.8 3. Statistical Definitions. 12 4. Regression Models & SEM..... 17 1 Multiple Linear
Introduction to Principal Components and FactorAnalysis
Introduction to Principal Components and FactorAnalysis Multivariate Analysis often starts out with data involving a substantial number of correlated variables. Principal Component Analysis (PCA) is a
FACTOR ANALYSIS NASC
FACTOR ANALYSIS NASC Factor Analysis A data reduction technique designed to represent a wide range of attributes on a smaller number of dimensions. Aim is to identify groups of variables which are relatively
Sun Li Centre for Academic Computing [email protected]
Sun Li Centre for Academic Computing [email protected] Elementary Data Analysis Group Comparison & One-way ANOVA Non-parametric Tests Correlations General Linear Regression Logistic Models Binary Logistic
