4. There are no dependent variables specified... Instead, the model is: VAR 1. Or, in terms of basic measurement theory, we could model it as:
|
|
|
- Cori Day
- 9 years ago
- Views:
Transcription
1 1 Neuendorf Factor Analysis Assumptions: 1. Metric (interval/ratio) data 2. Linearity (in the relationships among the variables--factors are linear constructions of the set of variables; the critical source of info for the factor analysis is typically the correlation matrix among all variables) 3. Univariate and multivariate normal distributions 4. There are no dependent variables specified... Instead, the model is: VAR 1 VAR 2 F 1 VAR 3 VAR 4 F 2 VAR 5 Or, in terms of basic measurement theory, we could model it as: U 1 VAR 1 F 1 U 2 VAR 2 U 3 VAR 3 U 4 VAR 4 F 2 U 5 VAR 5 Meaning that each variable is composed of the common variance it shares with other variables (F1 and F2) and its own unique variance that is not shared (e.g., U1). The proportion of a variable s variance that is common is called its communality. (This is the same as 1 U).
2 2 Decisions to make: 1. Intent: Exploratory vs. Confirmatory 2. Factor extraction (how factors represent variables): Principal Component Factoring (the most typical): -factors derived on the basis of total variance for each variable (both the variance accounted for by F s and U s (unique variances) above. -uses the "regular" correlation matrix. -more widely used than common factoring. Common Factoring: -factors derived on basis on common variance only (variance accounted for by F s, but not the U s above). -uses a correlation matrix with estimated communalities, not 1.0s, in diagonals. There are several options for common factor extraction--principal axis factoring (most typical), unweighted least squares, generalized least squares, maximum-likelihood, alpha, and image (see an SPSS manual or SPSS help for more info.). 3. Rotation: Rotating the factors leads to greater interpretability of factors; since there is no true DV or criterion, there is no reason not to rotate in factor analysis. Rotation will maximize simple structure where each item hopefully has a high loading on one factor and low loadings on all others. There are two rotation options: Orthogonal Factors -factors will be completely uncorrelated (orthogonal=at right angles to each other). -SPSS provides 3 types--varimax (by far the most typical), quartimax, and equamax (your book calls this equimax). See Hair p. 115 for comparisons. Oblique Factors -factors are allowed to correlate (but don't have to) -SPSS provides two types--direct oblimin (most typical) and promax. 4. How many factors? A. Theory (a priori). B. Latent root criterion--eigenvalues of 1+ (a factor must account for at least the amount of variance associated with one hypothetical variable). C. Scree test--plots eigenvalues sequentially. Look for a "natural break" between the mountain and the scree.
3 3 Statistics: 1. Remember that the interitem correlation matrix is the basis, the "raw material," for the typical factor analysis. Two statistics help assess whether the items are indeed correlated enough to proceed with factor analysis. Be reminded of Hair et al. s and others caution that large samples and a large number of items will contribute to strong and significant statistics here: A. Bartlett's test of sphericity--indicates whether the correlation matrix is significantly different from an identity matrix (a matrix with all 1's on the diagonal, 0's everywhere else). Bartlett s calculation is based on a chi-square transformation of the determinant of the correlation matrix. Statistical significance is good here (note that this is the only statistical significance test in the Factor Analysis output!). It tells us that this set of measures is intercorrelated enough so as to be appropriate for factor analysis. B. KMO (Kaiser-Meyer-Olkin) measure of sampling adequacy (MSA)--assesses whether your sample of items (not people) is adequate by comparing r's with pr's. We look for large values for the KMO (approaching 1.0). Note that Hair et al. call the statistic MSA while SPSS calls it KMO. Although there is no significance test, Hair (p. 104) lists some pretty fun rules of thumb for the stat (i.e.,.80 or above is meritorious ;.70 or above is middling ;.60 or above is mediocre ;.50 or above is miserable ; below.50 is unacceptable ). 2. Coefficients predicting variables from factors--found in the rotated component matrix in SPSS for orthogonal rotation, and in the pattern matrix for oblique rotation. The β s as below: VAR1 = β 1 F1 + β 2 F2 + β 3 F3 VAR2 = β 4 F1 + β 5 F2 + β 6 F3 VAR3 = β 7 F1 + β 8 F2 + β 9 F3 etc. 3. Factor loadings, i.e., correlations between the variables and the factors--in orthogonal rotation, these are the same as the coefficients predicting variables from factors, in oblique they are not, and are contained in the structure matrix. In order for an item to have loaded on a factor, Hair says a.30 coefficient is minimal (others use a.50 cutoff). Hair (p. 117) provides a chart for assessing the statistical significance of each loading, something that is not provided by SPSS. 4. Communality (h 2 ) the total amount of variance a variable shares with all factors (and, therefore, the amount it shares with all other variables in the factor analysis). In an orthogonal rotation, the communality is the sum of all squared loadings for one variable. Rules of thumb are actually few, but Costello and Osborne (2005) do indicate a.40 as a minimum.
4 4 h 2 = how much (%) of the variable's variance is explained by all the factors; 1-h 2 = what is unique to the variable. e.g., β β β 3 from #2 above would be the communality of VAR1, assuming orthogonal rotation. Here, the communality is comparable to R 2 VAR1 F1F2F3. 5. Eigenvalue--the sum of all squared loadings for one factor. Eigen = the amount (not expressed as a %) of the variables' total variance that is accounted for by one factor. e.g., β β β 7 2, etc. from #2 above would be the eigenvalue for F1. 6. Proportion of total variance accounted for by F1 = eigenvalue for F1 k where k=# of variables 7. Proportion of common variance accounted for by F1 = eigenvalue for F1 SUM of eigenvalues 8. Factor score coefficients (betas predicting factors from variables β s as below; these are not the same as loadings or coefficients predicting variables from factors). The factor score coefficients are found in the component score coefficient matrix in SPSS. These values are used by SPSS to create "factor scores"--values on new scales created for each factor. These new scales must be saved in the FACTOR procedure if you want to use them for further analysis. There are three options--we typically use the regression method. SPSS will name the new scales automatically and place them at the end of the data set. F1 = β 1 VAR1z + β 2 VAR2z + β 3 VAR3z + β 4 VAR4z + etc. F2 = β 5 VAR1z + β 6 VAR2z + β 7 VAR3z + β 8 VAR4z + etc. F3 = β 9 VAR1z + β 10 VAR2z + β 11 VAR3z + β 12 VAR4z + etc. 9. Correlations among factors--for oblique rotation only! Found in the component correlation matrix, this indicates how much the various factors (and therefore their scales, if created) relate to one another in linear fashion. References Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 1-9. Accessed from: Kim, J.-O., & Mueller, C. W. (1978). Factor analysis: Statistical methods and practical issues. Newbury Park, CA: Sage Publications.
5 5 WORKSHEET--Making Sense of Factor Loadings For this exercise: -Assume all measures are 0-10 indicators of enjoyment of different TV/film genres. -Assume an orthogonal rotation. -Don't forget that loadings must be squared before adding to get communalities and eigenvalues. -Notice that the loadings are not ordered by size. Such an ordering makes it easier to interpret the matrix. SPSS will do this if you click Sorted by size under Factor Options. Label: Hypothetical Factor Loadings: Communalities Communalities at 3 at 10 FACTOR 1 FACTOR 2 FACTOR 3 Factors: Factors: Q1--News Q2--Westerns Q3--Action Q4--Weepies Q5--Game shows Q6--Soaps Q7--Talk shows Q8--Comedies Q9--Horror Q10--Cop shows ? 1.0 Eigenvalues: sum=? sum=10.0 % of Total Variance: %? %? %? %? % of Common Variance: %? %? %? 100% 2/16
2. Linearity (in relationships among the variables--factors are linear constructions of the set of variables) F 2 X 4 U 4
1 Neuendorf Factor Analysis Assumptions: 1. Metric (interval/ratio) data. Linearity (in relationships among the variables--factors are linear constructions of the set of variables) 3. Univariate and multivariate
Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models
Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis
A Brief Introduction to SPSS Factor Analysis
A Brief Introduction to SPSS Factor Analysis SPSS has a procedure that conducts exploratory factor analysis. Before launching into a step by step example of how to use this procedure, it is recommended
Common factor analysis
Common factor analysis This is what people generally mean when they say "factor analysis" This family of techniques uses an estimate of common variance among the original variables to generate the factor
Exploratory Factor Analysis Brian Habing - University of South Carolina - October 15, 2003
Exploratory Factor Analysis Brian Habing - University of South Carolina - October 15, 2003 FA is not worth the time necessary to understand it and carry it out. -Hills, 1977 Factor analysis should not
Overview of Factor Analysis
Overview of Factor Analysis Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August 1,
How To Run Factor Analysis
Getting Started in Factor Analysis (using Stata 10) (ver. 1.5) Oscar Torres-Reyna Data Consultant [email protected] http://dss.princeton.edu/training/ Factor analysis is used mostly for data reduction
Rachel J. Goldberg, Guideline Research/Atlanta, Inc., Duluth, GA
PROC FACTOR: How to Interpret the Output of a Real-World Example Rachel J. Goldberg, Guideline Research/Atlanta, Inc., Duluth, GA ABSTRACT THE METHOD This paper summarizes a real-world example of a factor
Factor Analysis Example: SAS program (in blue) and output (in black) interleaved with comments (in red)
Factor Analysis Example: SAS program (in blue) and output (in black) interleaved with comments (in red) The following DATA procedure is to read input data. This will create a SAS dataset named CORRMATR
Factor Analysis. Advanced Financial Accounting II Åbo Akademi School of Business
Factor Analysis Advanced Financial Accounting II Åbo Akademi School of Business Factor analysis A statistical method used to describe variability among observed variables in terms of fewer unobserved variables
Factor Analysis Using SPSS
Factor Analysis Using SPSS The theory of factor analysis was described in your lecture, or read Field (2005) Chapter 15. Example Factor analysis is frequently used to develop questionnaires: after all
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis
Data analysis process
Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis
To do a factor analysis, we need to select an extraction method and a rotation method. Hit the Extraction button to specify your extraction method.
Factor Analysis in SPSS To conduct a Factor Analysis, start from the Analyze menu. This procedure is intended to reduce the complexity in a set of data, so we choose Data Reduction from the menu. And the
Practical Considerations for Using Exploratory Factor Analysis in Educational Research
A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to
PRINCIPAL COMPONENT ANALYSIS
1 Chapter 1 PRINCIPAL COMPONENT ANALYSIS Introduction: The Basics of Principal Component Analysis........................... 2 A Variable Reduction Procedure.......................................... 2
FACTOR ANALYSIS NASC
FACTOR ANALYSIS NASC Factor Analysis A data reduction technique designed to represent a wide range of attributes on a smaller number of dimensions. Aim is to identify groups of variables which are relatively
T-test & factor analysis
Parametric tests T-test & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue
Exploratory Factor Analysis and Principal Components. Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016
and Principal Components Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016 Agenda Brief History and Introductory Example Factor Model Factor Equation Estimation of Loadings
STA 4107/5107. Chapter 3
STA 4107/5107 Chapter 3 Factor Analysis 1 Key Terms Please review and learn these terms. 2 What is Factor Analysis? Factor analysis is an interdependence technique (see chapter 1) that primarily uses metric
A Beginner s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis
Tutorials in Quantitative Methods for Psychology 2013, Vol. 9(2), p. 79-94. A Beginner s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis An Gie Yong and Sean Pearce University of Ottawa
An introduction to. Principal Component Analysis & Factor Analysis. Using SPSS 19 and R (psych package) Robin Beaumont [email protected].
An introduction to Principal Component Analysis & Factor Analysis Using SPSS 19 and R (psych package) Robin Beaumont [email protected] Monday, 23 April 2012 Acknowledgment: The original version
5.2 Customers Types for Grocery Shopping Scenario
------------------------------------------------------------------------------------------------------- CHAPTER 5: RESULTS AND ANALYSIS -------------------------------------------------------------------------------------------------------
Statistics in Psychosocial Research Lecture 8 Factor Analysis I. Lecturer: Elizabeth Garrett-Mayer
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
Exploratory Factor Analysis
Exploratory Factor Analysis Definition Exploratory factor analysis (EFA) is a procedure for learning the extent to which k observed variables might measure m abstract variables, wherein m is less than
Topic 10: Factor Analysis
Topic 10: Factor Analysis Introduction Factor analysis is a statistical method used to describe variability among observed variables in terms of a potentially lower number of unobserved variables called
Factor Analysis: Statnotes, from North Carolina State University, Public Administration Program. Factor Analysis
Factor Analysis Overview Factor analysis is used to uncover the latent structure (dimensions) of a set of variables. It reduces attribute space from a larger number of variables to a smaller number of
EXPLORATORY FACTOR ANALYSIS IN MPLUS, R AND SPSS. [email protected]
EXPLORATORY FACTOR ANALYSIS IN MPLUS, R AND SPSS Sigbert Klinke 1,2 Andrija Mihoci 1,3 and Wolfgang Härdle 1,3 1 School of Business and Economics, Humboldt-Universität zu Berlin, Germany 2 Department of
Introduction to Principal Components and FactorAnalysis
Introduction to Principal Components and FactorAnalysis Multivariate Analysis often starts out with data involving a substantial number of correlated variables. Principal Component Analysis (PCA) is a
Factor Rotations in Factor Analyses.
Factor Rotations in Factor Analyses. Hervé Abdi 1 The University of Texas at Dallas Introduction The different methods of factor analysis first extract a set a factors from a data set. These factors are
Questionnaire Evaluation with Factor Analysis and Cronbach s Alpha An Example
Questionnaire Evaluation with Factor Analysis and Cronbach s Alpha An Example - Melanie Hof - 1. Introduction The pleasure writers experience in writing considerably influences their motivation and consequently
What is Rotating in Exploratory Factor Analysis?
A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to
Using Principal Components Analysis in Program Evaluation: Some Practical Considerations
http://evaluation.wmich.edu/jmde/ Articles Using Principal Components Analysis in Program Evaluation: Some Practical Considerations J. Thomas Kellow Assistant Professor of Research and Statistics Mercer
Research Methodology: Tools
MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 02: Item Analysis / Scale Analysis / Factor Analysis February 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi
Psychology 7291, Multivariate Analysis, Spring 2003. SAS PROC FACTOR: Suggestions on Use
: Suggestions on Use Background: Factor analysis requires several arbitrary decisions. The choices you make are the options that you must insert in the following SAS statements: PROC FACTOR METHOD=????
How to Get More Value from Your Survey Data
Technical report How to Get More Value from Your Survey Data Discover four advanced analysis techniques that make survey research more effective Table of contents Introduction..............................................................2
Factor Analysis. Chapter 420. Introduction
Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.
Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis
A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to
A Brief Introduction to Factor Analysis
1. Introduction A Brief Introduction to Factor Analysis Factor analysis attempts to represent a set of observed variables X 1, X 2. X n in terms of a number of 'common' factors plus a factor which is unique
Statistics for Business Decision Making
Statistics for Business Decision Making Faculty of Economics University of Siena 1 / 62 You should be able to: ˆ Summarize and uncover any patterns in a set of multivariate data using the (FM) ˆ Apply
DATA ANALYSIS AND INTERPRETATION OF EMPLOYEES PERSPECTIVES ON HIGH ATTRITION
DATA ANALYSIS AND INTERPRETATION OF EMPLOYEES PERSPECTIVES ON HIGH ATTRITION Analysis is the key element of any research as it is the reliable way to test the hypotheses framed by the investigator. This
Principal Component Analysis
Principal Component Analysis Principle Component Analysis: A statistical technique used to examine the interrelations among a set of variables in order to identify the underlying structure of those variables.
Choosing the Right Type of Rotation in PCA and EFA James Dean Brown (University of Hawai i at Manoa)
Shiken: JALT Testing & Evaluation SIG Newsletter. 13 (3) November 2009 (p. 20-25) Statistics Corner Questions and answers about language testing statistics: Choosing the Right Type of Rotation in PCA and
How to report the percentage of explained common variance in exploratory factor analysis
UNIVERSITAT ROVIRA I VIRGILI How to report the percentage of explained common variance in exploratory factor analysis Tarragona 2013 Please reference this document as: Lorenzo-Seva, U. (2013). How to report
Factor Analysis. Sample StatFolio: factor analysis.sgp
STATGRAPHICS Rev. 1/10/005 Factor Analysis Summary The Factor Analysis procedure is designed to extract m common factors from a set of p quantitative variables X. In many situations, a small number of
The Effectiveness of Ethics Program among Malaysian Companies
2011 2 nd International Conference on Economics, Business and Management IPEDR vol.22 (2011) (2011) IACSIT Press, Singapore The Effectiveness of Ethics Program among Malaysian Companies Rabiatul Alawiyah
FACTOR ANALYSIS. Factor Analysis is similar to PCA in that it is a technique for studying the interrelationships among variables.
FACTOR ANALYSIS Introduction Factor Analysis is similar to PCA in that it is a technique for studying the interrelationships among variables Both methods differ from regression in that they don t have
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.
The Effect of Macroeconomic Factors on Indian Stock Market Performance: A Factor Analysis Approach
IOSR Journal of Economics and Finance (IOSR-JEF) e-issn: 2321-5933, p-issn: 2321-5925. Volume 1, Issue 3 (Sep. Oct. 2013), PP 14-21 The Effect of Macroeconomic Factors on Indian Stock Market Performance:
LIST OF TABLES. 4.3 The frequency distribution of employee s opinion about training functions emphasizes the development of managerial competencies
LIST OF TABLES Table No. Title Page No. 3.1. Scoring pattern of organizational climate scale 60 3.2. Dimension wise distribution of items of HR practices scale 61 3.3. Reliability analysis of HR practices
What Are Principal Components Analysis and Exploratory Factor Analysis?
Statistics Corner Questions and answers about language testing statistics: Principal components analysis and exploratory factor analysis Definitions, differences, and choices James Dean Brown University
Factor Analysis Using SPSS
Psychology 305 p. 1 Factor Analysis Using SPSS Overview For this computer assignment, you will conduct a series of principal factor analyses to examine the factor structure of a new instrument developed
Review Jeopardy. Blue vs. Orange. Review Jeopardy
Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?
THE USING FACTOR ANALYSIS METHOD IN PREDICTION OF BUSINESS FAILURE
THE USING FACTOR ANALYSIS METHOD IN PREDICTION OF BUSINESS FAILURE Mary Violeta Petrescu Ph. D University of Craiova Faculty of Economics and Business Administration Craiova, Romania Abstract: : After
Chapter 7 Factor Analysis SPSS
Chapter 7 Factor Analysis SPSS Factor analysis attempts to identify underlying variables, or factors, that explain the pattern of correlations within a set of observed variables. Factor analysis is often
Factor Analysis. Overview
1 of 18 12/4/2007 2:41 AM Factor Analysis Overview Factor analysis is used to uncover the latent structure (dimensions) of a set of variables. It reduces attribute space from a larger number of variables
9.2 User s Guide SAS/STAT. The FACTOR Procedure. (Book Excerpt) SAS Documentation
SAS/STAT 9.2 User s Guide The FACTOR Procedure (Book Excerpt) SAS Documentation This document is an individual chapter from SAS/STAT 9.2 User s Guide. The correct bibliographic citation for the complete
Dimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.
CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In
Exploratory Factor Analysis
Exploratory Factor Analysis ( 探 索 的 因 子 分 析 ) Yasuyo Sawaki Waseda University JLTA2011 Workshop Momoyama Gakuin University October 28, 2011 1 Today s schedule Part 1: EFA basics Introduction to factor
Exploratory Factor Analysis
Introduction Principal components: explain many variables using few new variables. Not many assumptions attached. Exploratory Factor Analysis Exploratory factor analysis: similar idea, but based on model.
Exploratory Factor Analysis: rotation. Psychology 588: Covariance structure and factor models
Exploratory Factor Analysis: rotation Psychology 588: Covariance structure and factor models Rotational indeterminacy Given an initial (orthogonal) solution (i.e., Φ = I), there exist infinite pairs of
Factors affecting teaching and learning of computer disciplines at. Rajamangala University of Technology
December 2010, Volume 7, No.12 (Serial No.73) US-China Education Review, ISSN 1548-6613, USA Factors affecting teaching and learning of computer disciplines at Rajamangala University of Technology Rungaroon
CHAPTER VI ON PRIORITY SECTOR LENDING
CHAPTER VI IMPACT OF PRIORITY SECTOR LENDING 6.1 PRINCIPAL FACTORS THAT HAVE DIRECT IMPACT ON PRIORITY SECTOR LENDING 6.2 ASSOCIATION BETWEEN THE PROFILE VARIABLES AND IMPACT OF PRIORITY SECTOR CREDIT
SPSS and AMOS. Miss Brenda Lee 2:00p.m. 6:00p.m. 24 th July, 2015 The Open University of Hong Kong
Seminar on Quantitative Data Analysis: SPSS and AMOS Miss Brenda Lee 2:00p.m. 6:00p.m. 24 th July, 2015 The Open University of Hong Kong SBAS (Hong Kong) Ltd. All Rights Reserved. 1 Agenda MANOVA, Repeated
APPRAISAL OF FINANCIAL AND ADMINISTRATIVE FUNCTIONING OF PUNJAB TECHNICAL UNIVERSITY
APPRAISAL OF FINANCIAL AND ADMINISTRATIVE FUNCTIONING OF PUNJAB TECHNICAL UNIVERSITY In the previous chapters the budgets of the university have been analyzed using various techniques to understand the
Multivariate Analysis of Variance (MANOVA)
Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction
DISCRIMINANT FUNCTION ANALYSIS (DA)
DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant
International Journal of Business and Social Science Vol. 3 No. 3; February 2012
50 COMOVEMENTS AND STOCK MARKET INTEGRATION BETWEEN INDIA AND ITS TOP TRADING PARTNERS: A MULTIVARIATE ANALYSIS OF INTERNATIONAL PORTFOLIO DIVERSIFICATION Abstract Alan Harper, Ph.D. College of Business
Moderation. Moderation
Stats - Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation
Multivariate Analysis
Table Of Contents Multivariate Analysis... 1 Overview... 1 Principal Components... 2 Factor Analysis... 5 Cluster Observations... 12 Cluster Variables... 17 Cluster K-Means... 20 Discriminant Analysis...
How To Understand Multivariate Models
Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models
This chapter will demonstrate how to perform multiple linear regression with IBM SPSS
CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the
CHAPTER 4 EXAMPLES: EXPLORATORY FACTOR ANALYSIS
Examples: Exploratory Factor Analysis CHAPTER 4 EXAMPLES: EXPLORATORY FACTOR ANALYSIS Exploratory factor analysis (EFA) is used to determine the number of continuous latent variables that are needed to
Pull and Push Factors of Migration: A Case Study in the Urban Area of Monywa Township, Myanmar
Pull and Push Factors of Migration: A Case Study in the Urban Area of Monywa Township, Myanmar By Kyaing Kyaing Thet Abstract: Migration is a global phenomenon caused not only by economic factors, but
Improving Your Exploratory Factor Analysis for Ordinal Data: A Demonstration Using FACTOR
A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Simple Linear Regression, Scatterplots, and Bivariate Correlation
1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.
Succession planning in Chinese family-owned businesses in Hong Kong: an exploratory study on critical success factors and successor selection criteria
Succession planning in Chinese family-owned businesses in Hong Kong: an exploratory study on critical success factors and successor selection criteria By Ling Ming Chan BEng (University of Newcastle upon
Principal Component and Principal Axis Factoring of Factors Associated with High Population in Urban Areas: A Case Study of Juja and Thika, Kenya
American Journal of Theoretical and Applied Statistics 2015; 4(4): 258-263 Published online June 3, 2015 (http://www.sciencepublishinggroup.com/j/ajtas) doi: 10.11648/j.ajtas.20150404.15 ISSN: 2326-8999
Instructions for SPSS 21
1 Instructions for SPSS 21 1 Introduction... 2 1.1 Opening the SPSS program... 2 1.2 General... 2 2 Data inputting and processing... 2 2.1 Manual input and data processing... 2 2.2 Saving data... 3 2.3
Reliability Analysis
Measures of Reliability Reliability Analysis Reliability: the fact that a scale should consistently reflect the construct it is measuring. One way to think of reliability is that other things being equal,
Univariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
Running head: ONLINE VALUE AND SELF-EFFICACY SCALE
Online Value and Self-Efficacy Scale Running head: ONLINE VALUE AND SELF-EFFICACY SCALE Development and Initial Validation of the Online Learning Value and Self-Efficacy Scale Anthony R. Artino Jr. and
Data Analysis in Mixed Research: A Primer
Data Analysis in Mixed Research: A Primer Anthony J. Onwuegbuzie (Corresponding author) & Julie P. Combs Department of Educational Leadership and Counseling Sam Houston State University, USA Box 2119,
Exploratory Factor Analysis; Concepts and Theory
Exploratory Factor Analysis; Concepts and Theory HAMED TAHERDOOST 1, SHAMSUL SAHIBUDDIN 1, NEDA JALALIYOON 2 1 Advanced Informatics School (AIS) 2 Malaysia-Japan International Institute of Technology (MJIIT)
A Comparison of Variable Selection Techniques for Credit Scoring
1 A Comparison of Variable Selection Techniques for Credit Scoring K. Leung and F. Cheong and C. Cheong School of Business Information Technology, RMIT University, Melbourne, Victoria, Australia E-mail:
Multivariate Statistical Inference and Applications
Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim
Introduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
Factor Analysis - SPSS
Factor Analysis - SPSS First Read Principal Components Analysis. The methods we have employed so far attempt to repackage all of the variance in the p variables into principal components. We may wish to
Part III. Item-Level Analysis
Part III Item-Level Analysis 6241-029-P3-006-2pass-r02.indd 169 1/16/2013 9:14:56 PM 6241-029-P3-006-2pass-r02.indd 170 1/16/2013 9:14:57 PM 6 Exploratory and Confirmatory Factor Analysis Rex Kline 6.1
Factor analysis. Angela Montanari
Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number
Multivariate Analysis (Slides 13)
Multivariate Analysis (Slides 13) The final topic we consider is Factor Analysis. A Factor Analysis is a mathematical approach for attempting to explain the correlation between a large set of variables
Validation of the Core Self-Evaluations Scale research instrument in the conditions of Slovak Republic
Validation of the Core Self-Evaluations Scale research instrument in the conditions of Slovak Republic Lenka Selecká, Jana Holienková Faculty of Arts, Department of psychology University of SS. Cyril and
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
