Propagation: The science and study of radio wave reflection, refraction, diffraction, absorption, polarization, and scattering.
|
|
|
- Ashlie Edwards
- 9 years ago
- Views:
Transcription
1 Propagation: The science and study of radio wave reflection, refraction, diffraction, absorption, polarization, and scattering. Hamvention Reuben Meeks, W8GUC Electronics, R.F. Engineer, Frank J. Beafore WS8B Technical Specialist, ARRL 2011 WS8B
2 Measurement Convention: Meter Centimeter Millimeter Hertz - Hz Kilohertz KHz Megahertz MHz Gigahertz GHz 2011 WS8B
3 Propagation 2011 WS8B
4 Radio Wave Propagation Radio propagation is the behavior of radio waves when they are transmitted, or propagated from one point on the Earth to another, or into various parts of the atmosphere. Like light waves, radio waves are affected by the phenomena of reflection refraction diffraction absorption polarization scattering 2011 WS8B
5 Early History 1850 Fazio & Foucalt Speed of Light Gustav Kirchoff Speed of Electricity 1853 James Maxwell Light = Electricity 1896 Aleksandr Popov Wireless Experiments 1899 Nikola Tesla First Antenna Theory 1901 G. Marconi First Transatlantic Signal
6 Nikola Tesla
7 The Tesla Coil Please don t try this at home.
8 Tesla Coil Plasma Discharge
9 Marconi, Father of Radio
10 Antenna Definition The antenna launches energy from a transmitter into space or pulls it in from a passing wave for a receiver. Without a suitable, properly installed antenna, the best transmitter and receiver are useless. Dr, John Kraus-W8JK, Professor Emeritus, Ohio State University, Columbus, Ohio.
11 The Dipole The dipole is the fundamental antenna. It is found freely in nature. Consisting of 2 equal length poles, the energy oscillates it oscillates (moves back and fourth) in two directions. Natural examples are: A rope or wire moving wave like between two movable anchors. A banjo string, plucked. A piano wire, struck. A water molecule in a microwave oven. Biomass in a magnetic field (MRI).
12 Wave formation Waves are the result of energizing a balanced dipole system. This can be demonstrated by waving a rope, plucking a banjo string or striking a piano key.
13 Radio Waves Radio waves are formed by energizing a dipole (di meaning to cut or dissect and pole is a pole is a pole). The pole or antenna is a specific length relating to the energizing frequency.
14 Transmission and Reception Radio waves are emitted by an oscillating dipole and escape into electromagnetic space much like music from a piano that moves the air near it. The radio receiver detects the radio wave in a manner similar to the human ear detecting a note from a piano.
15 Transmission / Reception
16 Radio Spectrum As we discuss propagation, we will refer to various radio frequencies. These frequencies are generated by oscillators that vary in time. The mathematical occurrence of these frequencies are represented in order on a continuum or what is commonly called a spectrum. A rainbow is a spectrum of light frequencies acting on water molecules after a rain.
17 Electromagnetic Radiation
18 The Electromagnetic Spectrum
19 The Electromagnetic Spectrum* VLF Very Low Frequencies LF Low Frequencies MF Medium Frequencies HF High Frequencies VHF Very High Frequencies UHF Ultra High Frequencies SHF Super High Frequencies EHF Extra High Frequencies 3-30KHz KHz KHz. 3MHz 30 MHz 30 MHz 300 MHz 300 MHz 3 GHz 3 GHz 30 GHz 30 GHz 300 GHz *IEEE, ANSI, and NTIA
20 Propagation Radio waves flow from the transmitter s oscillating antenna to the receiver's oscillating antenna but not always directly Because radio waves travel in a Variety of ways to the receiver, a knowledge of propagation is very important in getting the most enjoyment of amateur radio.
21 Propagation: How Signals Travel When dealing with radio signals, Transmission Reception takes 3 forms: Line of Sight Ground Wave Sky-Wave
22 Line of Sight Propagation The simplest form of propagation is line of site. All frequencies will function in this form. Distance between the transmitter and receiver is dependent on the frequency / wavelength of the signal. Line of site propagation is very useful at VHF and UHF Frequencies.
23 Ground Wave Propagation This form of propagation fits most frequencies but the distance between the transmitter and receiver will vary with geography and composition of ground. A good example of very different grounds is the difference between the desert and the ocean.
24 Sky Wave Propagation This form of propagation is influenced by many chemical and physical phenomena. Sky wave propagation results in communications covering our entire globe.
25 Sky Wave Propagation NASA
26 Comparison of Various Propagation Modes
27 Sky-Wave Propagation Otherwise known as skip is primarily due to the ionization of the earths upper atmosphere. This part of the atmosphere is known as: ionization + atmosphere = Ionosphere.
28 The Ionosphere - How is it Formed? High energy radiation (ultraviolet), from our sun (solar radiation) strikes atoms of various gasses and vapors in the earth s upper atmosphere. Electrons are knocked off the outer orbits of the atoms creating an ion. The process is called ionization. Because this event takes place in the upper atmosphere, we call the layer the ionosphere.
29 Solar Activity Solar activity has the most effect on sky-wave propagation. Solar activity is a function of sunspot occurrence. With increased activity, long-distance communication in the HF and VHF range is enhanced.
30 Ionosphere Regions The part of the ionosphere that is primarily responsible for sky-wave exists in 3 to 4 layers depending on the time of day. These layers exist at differing altitudes. D Region / 30 to 60 miles E Region / 60 to 70 miles F1 Region / 70 t0 140 miles F2 Region / 140 to 200 miles
31 Propagation at Selected Layers D Region: Closest to the earth and least ionized and is responsible for short hop HF communication. E Region: Daylight absorption of MF and HF. Can be useful for single hop HF out to 1200 miles. VHF skip can exist with sporadic E (more later). F Region: Most responsible for DX. In the daytime, this layer splits into two parts: F1 and F2. After sunset, this layer combines into one. The F2 Region is primarily responsible for long hops or skip to 2500 miles. F2 reaches its maximum height at noon during the summer.
32 Ionosphere Variation Day Night Because of variation in the temperature of the earth s surface, the distances between the ionospheric layers will change and combine. Seasonal The hot temperatures of the summer season will energize the atmosphere and warm-up the layers creating static and pushing the layers to higher altitudes. Geographical The location of the land mass and the height above sea level will greatly effect propagation both positively and negatively. Cyclic Because of the effects of the sunspot cycle, propagation will vary every 11 years WS8B
33 The Sun s Core An Infinite Source of Energy He -> H -> He NASA
34 Solar Flux Because of the tremendous amount of energy produced by the sun, the sun emits radio waves on all frequencies. The radio wave emission is called Solar Flux. The solar flux is measured at specific frequencies and reported as the Solar-Flux Index.
35 Ionosphere Disturbances Sunspot Cycle Solar Flare s SID s Sudden Ionosphere Disturbances Ionosphere Storms Polar Blackout
36 Solar Flare A solar flare is a burst of energy emitted from the sun s surface going out into space thousands of miles. A solar flare can emit intense UV radiation hitting the earth within 8 minutes after the event. Particles from the flare arrive in the earth s upper atmosphere from an hour to about 2 days later.
37 Solar Flare / Eclipse of the Sun Solar Flare NASA
38 Photo of a Solar Flare NASA
39 Measurement of a Solar Flare NASA
40 Solar Activity and Earth
41 Sunspots 2011 WS8B
42 Sunspots Occurrence Sunspot maxima occurs on an average of every 11 years. Even though data has been recorded on sunspot activity for over 250 years, the cause for the phenomena is not yet known.
43 Observations Over The Years
44 Long Term Observation
45 Sunspot Average History NASA
46 History of Sunspots NASA
47 Cycle 23 - NOW NASA
48
49 Relative Sunspot Number A measure of sunspot activity, computed from the formula: R = k(10g + f), where R is the relative sunspot number, f the number of individual spots, g the number of groups of spots, and k a factor that varies with the observer (his or her personal equation), the seeing, and the observatory (location and instrumentation). Also known as sunspot number; sunspot relative number; Wolf number; Wolf-Wolfer number; Zurich number. Read more:
50 Sudden Ionosphere Disturbance (SID) A SID is a blackout of HF sky wave communications that occurs after a solar flair. A large amount of UV radiation leaves the sun at the speed of light and arrives 8 minutes later. The D-Layer rapidly becomes a radio wave absorber. Depending on the attack angle, a SID could last from a few minutes to a few hours.
51 Geomagnetic Disturbance A dramatic change in the earth s magnetic field over a short period of time results in a geomagnetic disturbance. These usually occur in areas greater than 45 degrees latitude.
52 Ionosphere Storms NASA
53 Propagation in the HF Bands Without ionization of the atmosphere due to the sun s energy, HF propagation would be limited to line of site.
54 Propagation on the VHF Bands VHF propagation is principally line of site but much longer paths are possible with e-layer phenomena. Ionization of the atmosphere due to re-entry of meteors will also create a condition for VHF long distance propagation. One new method of long distance VHF communication results from bouncing VHF signals off high altitude commercial airliners.
55 Propagation on the UHF Bands UHF propagation is basically line of site. Some long range propagation is possible with E-Layer phenomena. UHF is used mainly for local communication. Sometimes UHF can be part of a wide area repeater system allowing for interstate communication.
56 MUF Maximum Usable Frequency Maximum Usable Frequency (MUF) is defined as the upper limit of available frequencies for a given atmospheric situation. MUF can be approximately measured by monitoring bacon stations at or near the frequency in question. In the U.S., 4 beacons are available from the National Bureau of Standards. Three are also available from the Canadian Government. Many private beacons are available (see internet).
57 Government Beacon Frequencies Available: 3.330Mhz - CHU 4.670MHz - CHU 5 MHz NBS (WWVH) 7.850MHz - CHU 10MHz NBS 15MHz NBS 20MHz NBS
58 The Scatter Modes Signal Scatter Main Skip Wave T R Earth s Surface
59 Characteristics of Scattered Signals Too Far for Ground Wave Too Near for Sky Wave A Wavering Sound Due to Multiple Arrivals of the Signal The Sound Is Distorted Due to Multiple Path Signals Usually, Received Signals Are Weak
60 Aurora Propagation (Northern Lights)
61 Aurora Propagation A beautiful display of ionized clouds in the northern hemisphere called the Aurora Borealis is also propagation enhancing. The Aurora is formed by ionized gasses in the upper atmosphere being concentrated by the earth s magnetic poles. This mode supports great propagation on 50 and 144 MHz.
62 Sporadic E Sporadic E is the ionization of the E layer of the ionosphere. It occurs most predominately during June and July in the North American Hemisphere. It concentrates in the frequency range of 50 MHz but is responsible for improved propagation on 28MHz and 144MHz.
63 Sporadic E (Cont.) The cause of sporadic E is not completely known, but the most popular theory relates to wind shear at 100km altitude. When this occurs, E reflections are almost mirror-like and can result on spectacular DX on QRP especially on VHF and UHF. Monitoring distant NOAA weather stations is a good way to measure it s occurrence.
64 Troposphere Bending and Ducting The troposphere is the part of the atmosphere that is closest to the earth. VHF / UHF radio waves are known to travel beyond the horizon while following the troposphere. The troposphere can be radio enhanced with thermal inversions forming ducts in which VHF / UHF waves pass through moving signals up to 2500 miles.
65 Path Loss Trough The Troposphere The path loss increases with higher frequencies. Low VHF = Lowest Loss Medium VHF = Medium Loss UHF = Highest Loss
66 Effects Of The Weather The Seasons The Clouds Lightning Rain Snow Fog
67 The Seasons Summer, Fall, Winter and Spring have an effect on propagation. This is emphasized with the length of daylight (amount of ionizing sunlight). Also, the hot air of the summer and the cold air of winter changes the air density as well as the heights of the ionosphere regions (D, E, F1 and F2).
68 The Clouds Obviously, clouds can be massive. They contain large amounts of water and can either be your friend of foe w/r to radio propagation. In some cases the cloud blocks signals from reaching destination. In other cases, cloud formations rub while going in opposite directions causing ionization between them creating a reflecting zone.
69 Lightning Lightning is a byproduct of differentiated charges between objects cloud to cloud, cloud to ground, cloud to conducting objects. Lightning can cause significant electrical noise thus determining signal effeteness.
70 Rain Rain, being predominately made of water is also a dipole molecule. If you get enough rain within the radio wave path, it will greatly reduce the signal. On the other hand, rain being a dipole can be used as a reflector thus enhancing the signal.
71 Snow Snow provides interesting propagation phenomena. Because of it s water make-up, snow also exhibits some of the same characteristics of rain and fog. Depending on temperature, snow can be very dry and under the correct conditions, create a tremendous amount of static electricity.
72 Fog Fog is water vapor. It is usually formed close to the ground due to differentiated atmospheric temperatures. Fog properties are much like clouds, however nearby fog can be very debilitating in the UHF/VHF frequency range
73 Summary Radio communication has 4 basic building blocks The transmitter, The receiver the antenna and the medium in which the radio wave travels. Understanding these 4 building blocks is important in achieving communication beyond line of site. The causes and effects of radio propagation continues to remain a mystery. Understanding the make-up of the phenomena of propagation will greatly enhance the excitement of Radio Communication.
74 Questions and Dialog Open for questions Hearing none will provoke a quiz!!! Not passing, will cause you to drop down one license level!!!! 2011 WS8B
75 Thank You de:w8guc and WS8B
1. Introduction. FER-Zagreb, Satellite communication systems 2011/12
1. Introduction Topics History Characteristics of satellite communications Frequencies Application 1 History Arthur C. Clark suggested in 1945. Earth coverage with 3 geostationary satellites. On 4th of
INTRODUCTION TO SOLAR WEATHER & HF PROPAGATION. Lewis Thompson W5IFQ September 27, 2011
INTRODUCTION TO SOLAR WEATHER & HF PROPAGATION Lewis Thompson W5IFQ September 27, 2011 PRESENTATION Ionospheric propagation NVIS Long-Range Frequency Selection (Critical Frequency & MUF) Propagation modeling
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
ANTENNA CONSTRUCTION AND PROPAGATION OF RADIO WAVES
MCI 2515H MARINE CORPS INSTITUTE ANTENNA CONSTRUCTION AND PROPAGATION OF RADIO WAVES MARINE BARRACKS WASHINGTON, DC UNITED STATES MARINE CORPS MARINE CORPS INSTITUTE 912 POOR STREET S. E. WASHINGTON NAVY
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
CHAPTER 4. Electromagnetic Spectrum
ELEC4504 Avionics Systems 9 CHAPTER 4. Electromagnetic Spectrum 4.1. Electromagnetic (EM) Waves In free space (or the atmosphere) the electric field is perpendicular to the magnetic field and both are
Regional Emergency Communications. John Walters W8CX Alpena RACES
Regional Emergency Communications John Walters W8CX Alpena RACES Regional Communications Needs 400 mile radius No skip zone; no dead spots No interference with or from broadcasters Reliable day/night coverage
The Earth's Atmosphere. Layers of the Earth's Atmosphere
The Earth's Atmosphere The atmosphere surrounds Earth and protects us by blocking out dangerous rays from the sun. The atmosphere is a mixture of gases that becomes thinner until it gradually reaches space.
8.1 Radio Emission from Solar System objects
8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
Ionosphere Properties and Behaviors - Part 2 By Marcel H. De Canck, ON5AU
Ionosphere Properties and Behaviors - Part 2 By Marcel H. De Canck, ON5AU I n the previous issue I explained that gyrofrequency depends on the earth s magnetic field and mentioned that this magnetic field
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
Characteristics of the. thermosphere
Characteristics of the Atmosphere. If you were lost in the desert, you could survive for a few days without food and water. But you wouldn't last more than five minutes without the ' Objectives Describe
Name Period 4 th Six Weeks Notes 2015 Weather
Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the
R. Singh B. Veenadhari S. Alex Indian Institute of Geomagnetism, Navi Mumbai - 410218
Very Low Frequency (VLF) studies of ionospheric-magnetospheric electromagnetic phenomena in Indian low latitude region using AWESOME receivers R. Singh B. Veenadhari S. Alex Indian Institute of Geomagnetism,
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
USING HF. HF transceivers can provide an entire world of communications options, and challenges.
USING HF Original idea from Dan Manningham HF transceivers can provide an entire world of communications options, and challenges. High frequency (HF) radio is perhaps the oldest form of airborne radio
Understanding HF propagation
Understanding HF propagation Jari Perkiömäki, OH6BG 12 July 2012 Sappee, Pälkäne, Finland (translated and revised English presentation) HF conditions and contests in a nutshell 1. Learn the basics! The
- 1 - Jennifer McClure. To: [email protected]. From: Jennifer McClure ([email protected])
To: [email protected] Jennifer McClure From: Jennifer McClure ([email protected]) 1 st year Physics (F300), Department of Physics, University of Liverpool. - 1 - The Northern Lights;
for Communication Systems Protection EMI CD-ROM INCLUDED
Krešimir Malarić EMI Protection for Communication Systems CD-ROM INCLUDED Contents Preface xiii CHAPTER 1 Communications Systems 1 1.1 Components of Communications Systems 1 1.2 Transmitter Systems 2 1.2.1
About Me" List of Lectures" In This Course" Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems" " Dr. Cecilia Mascolo" "
About Me Reader in Mobile Systems NetOS Research Group Research on Mobile, Social and Sensor Systems More specifically, Human Mobility and Social Network modelling Opportunistic Mobile Networks Mobile
Figure 2 Statistical Patterns of PMSE
Introduction PMSE and Propagation at 50 MHz Carl Luetzelschwab K9LA Are Polar Mesosphere Summer Echoes a factor in 6-Meter Propagation? Their occurrence pattern seems to fit the occurrence pattern of 6-Meter
ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,
ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, density, and composition of the atmosphere constitutes atmospheric structure. These quantities also vary with season and location
Waves Sound and Light
Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are
Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company
Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types of energy: kinetic energy
COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION
COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow
SATELLITE COMMUNICATION
SATELLITE COMMUNICATION By Gaurish Kumar Tripathi. 1.0 INTRODUCTION: The use of satellite in communication system is very much a fact of everyday in life. This is evidence by the many homes, which are
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Physics P1 Physics Unit Physics P1 Friday 12 June 2015 General
sources in our environment i.e. Natural and man-made. The sun, earth and ionosphere are the natural source.
Electromagnetic Radiation (EMR) consist of waves of electric and magnetic energy moving together at the speed of light and sometimes is referred as electromagnetic field (EMF) They are basically two forms
STUDY GUIDE: Earth Sun Moon
The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all
8.5 Comparing Canadian Climates (Lab)
These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139
Yerkes Summer Institute 2002
Before we begin our investigations into radio waves you should review the following material on your trip up to Yerkes. For some of you this will be a refresher, but others may want to spend more time
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
Technician Licensing Class
Technician Licensing Class Antennas Presented by Amateur Radio Technician Class Element 2 Course Presentation ELEMENT 2 SUB-ELEMENTS (Groupings) About Ham Radio Call Signs Control Mind the Rules Tech Frequencies
1. INTRODUCTION. There are different frequency bans according to the range of frequencies shown: 1.1 Electromagnetic Spectrum
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013 1 Wireless Charging of Mobile Phone using Microwaves! Apurva Patel 3 rd Year B.Tech Computer Science Student VIT
California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping
California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,
Radio Communications
Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 Harris Corporation 2005 All rights reserved Library of Congress Catalog
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Sporadic E A Mystery Solved?
Sporadic E A Mystery Solved? In Part 1 of this QST exclusive, one of the world s leading ionospheric scientists explains the physics of sporadic E and discusses unresolved problems in understanding its
AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.
Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which
Energy. Mechanical Energy
Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance
Semester 2. Final Exam Review
Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration
Corso di Fisica Te T cnica Ambientale Solar Radiation
Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He
Seasonal Temperature Variations
Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors
Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)
L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental
U.S. DEPARTMENT OF COMMERCE
Space Weather Space Weather Storms from the Sun Storms from the Sun U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service U.S. Department of Commerce National
EASA Safety Information Bulletin
EASA Safety Information Bulletin SIB No.: 2012-09 Issued: 23 May 2012 Subject: Effects of Space Weather on Aviation Ref. Publication: 1. EU OPS 1.390 Cosmic Radiation; 2. SIB 2012-10 Single Event Effects
Principle of Thermal Imaging
Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging
Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013
Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: [email protected]
FURTHER READING: As a preview for further reading, the following reference has been provided from the pages of the book below:
FURTHER READING: As a preview for further reading, the following reference has been provided from the pages of the book below: Title: Cellular/PCS Management Author: Paul Beddel Publisher: McGraw-Hill
6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.
Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that
After a wave passes through a medium, how does the position of that medium compare to its original position?
Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles
CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior
Mobile Communications Chapter 2: Wireless Transmission
Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/
FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES
FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring
ITRAINONLINE MMTK BASIC RADIO PHYSICS HANDOUT
ITRAINONLINE MMTK BASIC RADIO PHYSICS HANDOUT Developed by: Sebastian Buettrich, wire.less.dk Edited by: Alberto Escudero Pascual, IT +46 Table of Contents 1. About this document...1 1.1 Copyright information...2
Mobile use, radio signals and health
Mobile use, radio signals and health Mobile use, radio signals and health How does the mobile network work? Since the 1970s, the use of various types of radio transmitters has risen dramatically, to the
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50)
mi (km) above sea level Atmospheric Layers Exosphere 250 (400) Thermosphere Ionosphere 50 (80) Mesosphere Ozone Layer 30 (50) 7 (12) Stratosphere Troposphere Atmospheric Layers Earth s atmosphere is held
The Earth s Atmosphere
THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
For further information, and additional background on the American Meteorological Society s Education Program, please contact:
Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents
AN INTRODUCTION TO TELEMETRY PART 1: TELEMETRY BASICS
AN INTRODUCTION TO TELEMETRY PART 1: TELEMETRY BASICS Telemetry is defined as the sensing and measuring of information at some remote location and then transmitting that information to a central or host
Just a Dipole. Gary Wescom N0GW July 16, 2007
Just a Dipole Gary Wescom N0GW July 16, 2007 Often we will hear people describing their antennas as just a dipole. After all, a coax cable fed, half wavelength dipole is one of the simplest antennas to
Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.
Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy
Astronomical applications of the over-the-horizon radar NOSTRADAMUS
Astronomical applications of the over-the-horizon radar NOSTRADAMUS J-F. Degurse 1,2, J-Ph. Molinié 1, V. Rannou 1,S. Marcos 2 1 ONERA, Département Electromagnétisme et Radar 2 L2S Supéléc, CNRS UMR 8506,
Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs
Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented
SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview
SPACE WEATHER SUPPORT FOR COMMUNICATIONS Overview Ionospheric variability (space weather) significantly impacts ground and space-based communications. In essence, the electrically charged particles of
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
SOLAR ENERGY How much strikes the earth? How much can my building get? When is it too much?
SOLAR ENERGY How much strikes the earth? How much can my building get? When is it too much? The sun: friend of foe? Drawing by Le Corbusier ENGS 44 Sustainable Design Benoit Cushman-Roisin 14 April 2015
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992
European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO
RECOMMENDATION ITU-R F.1113. (Question ITU-R 157/9) b) that systems using this mode of propagation are already in service for burst data transmission,
Rec. ITU-R F.1113 1 RECOMMENDATION ITU-R F.1113 RADIO SYSTEMS EMPLOYING METEOR-BURST PROPAGATION (Question ITU-R 157/9) (1994) Rec. ITU-R F.1113 The ITU Radiocommunication Assembly, considering a) that
D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.
PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,
Amplification of the Radiation from Two Collocated Cellular System Antennas by the Ground Wave of an AM Broadcast Station
Amplification of the Radiation from Two Collocated Cellular System Antennas by the Ground Wave of an AM Broadcast Station Dr. Bill P. Curry EMSciTek Consulting Co., W101 McCarron Road Glen Ellyn, IL 60137,
RECOMMENDATION ITU-R P.1546-1. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz
Rec. ITU-R P.546- RECOMMENDATION ITU-R P.546- Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3 000 MHz (200-2003) The ITU Radiocommunication Assembly, considering
ADS Chapter 564 Security Communications
ADS Chapter 564 Security Communications Document Quality Check Date: 10/02/2012 Partial Revision Date: 12/30/2011 Responsible Office: SEC/CTIS File Name: 564_100212 12/30/2011 Partial Revision Functional
KHF 1050. Pilot s Guide. HF Communications System. (with PS440 Control Display Unit)
N Pilot s Guide KHF 1050 HF Communications System (with PS440 Control Display Unit) WARNING The enclosed technical data is eligible for export under License Designation NLR and is to be used solely by
Basics of Radio Wave Propagation
Basics of Radio Wave Propagation Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul/ Propagation Modes Ground-wave propagation o Follows contour of the earth o Can Propagate considerable distances
Science Standard 4 Earth in Space Grade Level Expectations
Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal
MAKING SENSE OF ENERGY Electromagnetic Waves
Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group
IFI5481: RF Circuits, Theory and Design
IFI5481: RF Circuits, Theory and Design Lecturer: Prof. Tor A. Fjeldly, UiO og NTNU/UNIK [[email protected]] Assistant: Malihe Zarre Dooghabadi [[email protected]] Syllabus: Lectured material and examples,
Noon Sun Angle = 90 Zenith Angle
Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd
Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?
Old Science 30 Physics Practice Test A on Fields and EMR Test Solutions on the Portal Site Use the following image to answer the next question 1. Which of the following rows identifies the electrical charge
Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.
Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able
What Causes Climate? Use Target Reading Skills
Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions
Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam
Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of
WELCOME to Aurorae In the Solar System. J.E. Klemaszewski
WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose
the icy, dancing skies of the north
Aurora Borealis the icy, dancing skies of the north 35 What are the aurora borealis? People generally know the aurora borealis by their common name, the Northern Lights. The northern lights are natural
Technician Licensing Class. Lesson 1. presented by the Arlington Radio Public Service Club Arlington County, Virginia
Technician Licensing Class Lesson 1 presented by the Arlington Radio Public Service Club Arlington County, Virginia 1 FCC Rules Sub element T1 2 Why Amateur Radio? The basis & purpose of the amateur service
physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves
Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide
Antenna Height and Communications Effectiveness
Antenna Height and Communications Effectiveness Second Edition A Guide for City Planners and Amateur Radio Operators By R. Dean Straw, N6BV, and Gerald L. Hall, K1TD Senior Assistant Technical Editor and
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES
SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere
