Dual Methods for Total Variation-Based Image Restoration
|
|
|
- Blaze Dalton
- 9 years ago
- Views:
Transcription
1 Dual Methods for Total Variation-Based Image Restoration Jamylle Carter Institute for Mathematics and its Applications University of Minnesota, Twin Cities Ph.D. (Mathematics), UCLA, 2001 Advisor: Tony F. Chan National Association of Mathematicians Session of Presentations by Recent Doctoral Recipients in the Mathematical Sciences 8 January
2 Outline 1. Introduction to image processing 2. Total variation (TV) regularization (a) Primal (b) Dual 3. Solving dual TV (a) Barrier relaxation method 4. Summary, future work, and acknowledgements 2
3 Digital Images Digital Image An image f(x, y) discretized in both spatial coordinates and in brightness Digital Image = Matrix row and column indices = point in image matrix element value = gray level at that point pixel = element of digital array or picture element 3
4 Digital Image Processing Digital Image Processing Set of techniques for the manipulation, correction, and enhancement of digital images Methods Fourier/wavelet transforms Stochastic/statistical methods Partial differential equations (PDEs) and differential/geometric models Systematic treatment of geometric features of images (shape, contour, curvature) Wealth of techniques for PDEs and computational fluid dynamics 4
5 Examples of Digital Image Processing Smoothing Removing bad data Sharpening Highlighting edges (discontinuities) Restoration Determination of unknown original image from given noisy image Ill-conditioned inverse problem No unique solution Regularization techniques impose desirable properties on the solution 5
6 Outline 1. Introduction to image processing 2. Total variation (TV) regularization (a) Primal (b) Dual 3. Solving dual TV (a) Barrier relaxation method 4. Summary, future work, and acknowledgements 6
7 Digital Image Restoration Wanted: De-noised image u with edges Given Observed image z User-chosen weight α Need Regularity functional R(u) Function space S(Ω) Tikhonov regularization min u S(Ω) αr(u) u z 2 } {{ } error 7
8 Total Variation (TV) Regularization min αr(u) + 1 u z 2 u S(Ω) 2 Total Variation [Rudin-Osher-Fatemi 92] R(u) = u = Ω u dx dy where ( u x ) 2 + ( u y ) 2 S(Ω) = W 1,1 (Ω), first derivative in L 1 Features u need not be differentiable Discontinuities allowed Derivatives considered in the weak sense 8
9 Euler-Lagrange Equation 1st-order necessary condition for the minimizer u min u Ω α u (u z)2 dx dy Theory α ( u u ) + u z = 0 Degenerate when u = 0 Practice α u u 2 + u z = 0 + β small β > 0 9
10 Previous Work α u u 2 + u z = 0 + β Rudin-Osher-Fatemi 1992 Time marching to steady state with gradient descent. Improvement in Marquina-Osher Chan-Chan-Zhou 1995 Continuation procedure on β. Vogel-Oman 1996 Fixed point iteration. 10
11 Dependence on β α u u 2 + u z = 0 (1) + β β large Smeared edges. β small PDE nearly degenerate. No β if we rewrite (1) in terms of new variable... 11
12 T V (u) = Introduce Dual Variable w T V (u) = Ω u dx dy max ( u w) dx dy u Ω w 1 Ω max w 1 u( w) dx dy u smooth non-smooth ( ) w1 w =, w w i C0 (Ω), and w 1 2 (Giusti 1984, Chan-Golub-Mulet 1995) w = u u not unique Interpretation u smooth and u 0 otherwise 12
13 Deriving Dual Formulation min u Ω α u (u z)2 dx dy Weak definition of Total Variation = min u Ω α max w 1 u( w) (u z)2 dx dy Interchange max and min = max min w 1 u αu( w) + 1 Ω 2 (u z)2 dx dy } {{ } Ψ(u) Quadratic function of u Ψ(u) = 0 u = z + α( w) Write u in terms of w max w 1 Ω α (z + α( w)) ( w) } {{ } u (z + α( w) } {{ } u z) 2 dx dy 13
14 Dual Total Variation Regularization 3α2 max αz( w) + w 1 Ω 2 ( w)2 dx dy Advantages Quadratic objective function in w No need for β u = z + α( w) Disadvantages Constrained optimization problem One constraint per pixel 14
15 Outline 1. Introduction to image processing 2. Total variation (TV) regularization (a) Primal (b) Dual 3. Solving dual TV (a) Barrier relaxation method 4. Summary, future work, and acknowledgements 15
16 Dual Total Variation Algorithms Dissertation of C Primal-Dual Interior Point (Developed by Mulet.) Relaxation (Coordinate Descent) Methods: Easy to code Dual Hybrid Barrier: Constrained unconstrained Suggested by Vandenberghe. 16
17 Discrete Dual Total Variation Regularization Discrete image has N = n n pixels Continuous 3α2 max αz( w) + w 1 Ω 2 ( w)2 dx dy w : Ω R 2 Discrete max w i 1 i=1,...,n w i = ( w x i w y i αz T Aw + 3α2 2 Aw 2 Aw represents w ) R 2 w = w 1. w N R 2N 17
18 Barrier Method Detailed max w i 1 i=1,...,n αz T Aw + 3α2 2 Aw 2 General Constrained Unconstrained min g i (w)>0 i=1,...,n f(w) where min w B(w, µ) B(w, µ) = f(w) µ N i=1 log g i (w) 18
19 Barrier Method Constrained problem sequence of unconstrained problems Barrier Function B(w, µ) = f(w) µ N log g i (w) } i=1 {{ } infinite penalty for violating feasibility as µ 0 Barrier Method: Solves sequence of min w B(w, µ k) for µ k 0 Use Relaxation Method to solve each for fixed µ k. min w B(w, µ k) 19
20 Relaxation Method min w B(w, µ k) Implementation 1. Fix all components of w except for the ith component. 2. Minimize B(w, µ k ) with respect to w i R 2 : min B(w w i, µ k ) + terms independent of i i Newton s method with backtracking line search 3. Update w i (Gauss-Seidel implementation converges for convex unconstrained problems) 4. Repeat procedure for i = 1,..., N 5. Iterate until convergence 20
21 Outline 1. Introduction to image processing 2. Total variation (TV) regularization (a) Primal (b) Dual 3. Solving dual TV (a) Barrier relaxation method 4. Summary, future work, and acknowledgements 21
22 Summary Dual Total Variation problem solved No smoothing parameter required Future Work Deeper understanding of w for non-smooth u More realistic images Barrier relaxation algorithm Tighter control of stopping criteria Multigrid implementation 22
23 Collaborators Tony F. Chan (UCLA) Professor, Department of Mathematics Dean, Division of Physical Sciences, College of Letters and Science Pep Mulet (University of València, Spain) Professor, Department of Applied Mathematics Lieven Vandenberghe (UCLA) Associate Professor, Department of Electrical Engineering 23
24 Thanks National Association of Mathematicians William Massey Institute for Mathematics and its Applications Audience 24
Nonlinear Optimization: Algorithms 3: Interior-point methods
Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris [email protected] Nonlinear optimization c 2006 Jean-Philippe Vert,
Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen
(für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained
Numerical Methods For Image Restoration
Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:
Variational approach to restore point-like and curve-like singularities in imaging
Variational approach to restore point-like and curve-like singularities in imaging Daniele Graziani joint work with Gilles Aubert and Laure Blanc-Féraud Roma 12/06/2012 Daniele Graziani (Roma) 12/06/2012
Lecture 2: The SVM classifier
Lecture 2: The SVM classifier C19 Machine Learning Hilary 2015 A. Zisserman Review of linear classifiers Linear separability Perceptron Support Vector Machine (SVM) classifier Wide margin Cost function
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.
Summer course on Convex Optimization Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.Minnesota Interior-Point Methods: the rebirth of an old idea Suppose that f is
Big Data - Lecture 1 Optimization reminders
Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics
4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
GenOpt (R) Generic Optimization Program User Manual Version 3.0.0β1
(R) User Manual Environmental Energy Technologies Division Berkeley, CA 94720 http://simulationresearch.lbl.gov Michael Wetter [email protected] February 20, 2009 Notice: This work was supported by the U.S.
Towards real-time image processing with Hierarchical Hybrid Grids
Towards real-time image processing with Hierarchical Hybrid Grids International Doctorate Program - Summer School Björn Gmeiner Joint work with: Harald Köstler, Ulrich Rüde August, 2011 Contents The HHG
Applications to Data Smoothing and Image Processing I
Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is
10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method
578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Constrained curve and surface fitting
Constrained curve and surface fitting Simon Flöry FSP-Meeting Strobl (June 20, 2006), [email protected], Vienna University of Technology Overview Introduction Motivation, Overview, Problem
CONSTRAINED NONLINEAR PROGRAMMING
149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach
Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
Interior Point Methods and Linear Programming
Interior Point Methods and Linear Programming Robert Robere University of Toronto December 13, 2012 Abstract The linear programming problem is usually solved through the use of one of two algorithms: either
Airport Planning and Design. Excel Solver
Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725
Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T
Optimization - Elements of Calculus - Basics of constrained and unconstrained optimization
27. OKTOBER 2010 Optimization - Elements of Calculus - Basics of constrained and unconstrained optimization @ Optimization the general problem Optimization minimize, subject to Ω = (,, ), optimization
Proximal mapping via network optimization
L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.
An Overview Of Software For Convex Optimization Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 [email protected] In fact, the great watershed in optimization isn t between linearity
Nonlinear Algebraic Equations Example
Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities
A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION
1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of
1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method
The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method Robert M. Freund February, 004 004 Massachusetts Institute of Technology. 1 1 The Algorithm The problem
the points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
10. Proximal point method
L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
Optimization Modeling for Mining Engineers
Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2
Two-Stage Stochastic Linear Programs
Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Nonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
Largest Fixed-Aspect, Axis-Aligned Rectangle
Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1
9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
Parameter Estimation for Bingham Models
Dr. Volker Schulz, Dmitriy Logashenko Parameter Estimation for Bingham Models supported by BMBF Parameter Estimation for Bingham Models Industrial application of ceramic pastes Material laws for Bingham
International Doctoral School Algorithmic Decision Theory: MCDA and MOO
International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire
IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2
IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3
Convex Programming Tools for Disjunctive Programs
Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible
Derivative Free Optimization
Department of Mathematics Derivative Free Optimization M.J.D. Powell LiTH-MAT-R--2014/02--SE Department of Mathematics Linköping University S-581 83 Linköping, Sweden. Three lectures 1 on Derivative Free
Discrete Optimization
Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using
t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014
LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING ----Changsheng Liu 10-30-2014 Agenda Semi Supervised Learning Topics in Semi Supervised Learning Label Propagation Local and global consistency Graph
Neuro-Dynamic Programming An Overview
1 Neuro-Dynamic Programming An Overview Dimitri Bertsekas Dept. of Electrical Engineering and Computer Science M.I.T. September 2006 2 BELLMAN AND THE DUAL CURSES Dynamic Programming (DP) is very broadly
Optimization Theory for Large Systems
Optimization Theory for Large Systems LEON S. LASDON CASE WESTERN RESERVE UNIVERSITY THE MACMILLAN COMPANY COLLIER-MACMILLAN LIMITED, LONDON Contents 1. Linear and Nonlinear Programming 1 1.1 Unconstrained
Solving polynomial least squares problems via semidefinite programming relaxations
Solving polynomial least squares problems via semidefinite programming relaxations Sunyoung Kim and Masakazu Kojima August 2007, revised in November, 2007 Abstract. A polynomial optimization problem whose
Solving Linear Programs
Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,
Level Set Framework, Signed Distance Function, and Various Tools
Level Set Framework Geometry and Calculus Tools Level Set Framework,, and Various Tools Spencer Department of Mathematics Brigham Young University Image Processing Seminar (Week 3), 2010 Level Set Framework
Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions
Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in
EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing
NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing Alex Cloninger Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu
Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach
MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical
FINITE ELEMENT : MATRIX FORMULATION. Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 7633
FINITE ELEMENT : MATRIX FORMULATION Georges Cailletaud Ecole des Mines de Paris, Centre des Matériaux UMR CNRS 76 FINITE ELEMENT : MATRIX FORMULATION Discrete vs continuous Element type Polynomial approximation
In this section, we will consider techniques for solving problems of this type.
Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving
Introduction to Process Optimization
Chapter 1 Introduction to Process Optimization Most things can be improved, so engineers and scientists optimize. While designing systems and products requires a deep understanding of influences that achieve
Linear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008
A tutorial on: Iterative methods for Sparse Matrix Problems Yousef Saad University of Minnesota Computer Science and Engineering CRM Montreal - April 30, 2008 Outline Part 1 Sparse matrices and sparsity
BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION
BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION Ş. İlker Birbil Sabancı University Ali Taylan Cemgil 1, Hazal Koptagel 1, Figen Öztoprak 2, Umut Şimşekli
Lecture 11: 0-1 Quadratic Program and Lower Bounds
Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite
An optimal transportation problem with import/export taxes on the boundary
An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint
GENERALIZED INTEGER PROGRAMMING
Professor S. S. CHADHA, PhD University of Wisconsin, Eau Claire, USA E-mail: [email protected] Professor Veena CHADHA University of Wisconsin, Eau Claire, USA E-mail: [email protected] GENERALIZED INTEGER
Date: April 12, 2001. Contents
2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........
Duality in Linear Programming
Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS
POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS N. ROBIDOUX Abstract. We show that, given a histogram with n bins possibly non-contiguous or consisting
Several Views of Support Vector Machines
Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
Support Vector Machines
Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric
Optimal shift scheduling with a global service level constraint
Optimal shift scheduling with a global service level constraint Ger Koole & Erik van der Sluis Vrije Universiteit Division of Mathematics and Computer Science De Boelelaan 1081a, 1081 HV Amsterdam The
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right
Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/
Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters
Principles of demand management Airline yield management Determining the booking limits. » A simple problem» Stochastic gradients for general problems
Demand Management Principles of demand management Airline yield management Determining the booking limits» A simple problem» Stochastic gradients for general problems Principles of demand management Issues:»
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,
24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no
2.2 Creaseness operator
2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared
Mathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
FEM Software Automation, with a case study on the Stokes Equations
FEM Automation, with a case study on the Stokes Equations FEM Andy R Terrel Advisors: L R Scott and R C Kirby Numerical from Department of Computer Science University of Chicago March 1, 2006 Masters Presentation
Lecture 1: Systems of Linear Equations
MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables
W009 Application of VTI Waveform Inversion with Regularization and Preconditioning to Real 3D Data
W009 Application of VTI Waveform Inversion with Regularization and Preconditioning to Real 3D Data C. Wang* (ION Geophysical), D. Yingst (ION Geophysical), R. Bloor (ION Geophysical) & J. Leveille (ION
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model
CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant
Black-Scholes Option Pricing Model
Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,
Stochastic Inventory Control
Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the
Bayesian Image Super-Resolution
Bayesian Image Super-Resolution Michael E. Tipping and Christopher M. Bishop Microsoft Research, Cambridge, U.K..................................................................... Published as: Bayesian
Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR
Solutions Of Some Non-Linear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision
An Introduction to Applied Mathematics: An Iterative Process
An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling
Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance
Advanced Lecture on Mathematical Science and Information Science I Optimization in Finance Reha H. Tütüncü Visiting Associate Professor Dept. of Mathematical and Computing Sciences Tokyo Institute of Technology
Computational Optical Imaging - Optique Numerique. -- Deconvolution --
Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
