Lecture 11: 0-1 Quadratic Program and Lower Bounds

Size: px
Start display at page:

Download "Lecture 11: 0-1 Quadratic Program and Lower Bounds"

Transcription

1 Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite relaxation Variable fixation / 25

2 Problem formulation Standard form with - variables: (-QP) min f (x) = x {,} n 2 x T Qx + c T x where Q is an n n symmetric matrix and c R n. Homogenous form: Binary variables: (-QP h ) (BQP) min x T Qx. x {,} n min x T Qx + c T x. x {,} n Transformation: x i = 2 (y i + ). Homogenous form with binary variables: (BQP h ) min x T Qx, x {,} n (BQP) ( (BQP h ) with ) Q := 2 ct, x := (±, x c Q T ) {, } n+. 2 / 25

3 Max-Cut problem Consider a graph G = (E, V ) with vertex set V = {,..., n} and edge set E = {ij i < j n}. For every edge ij E, there is an associated weight w ij. Cut: For a given set S V, a cut δ(s) is the set of all edges with one endpoint in S and the other in V \ S, and the weight of cut δ(s) is ij δ(s) w ij. Max-Cut: find a cut δ(s) with maximum weight. Binary quadratic problem: (Max-Cut) max 2 i<j n s.t. x {, } n. w ij ( x i x j ) x {, } n S = {i V x i = } and V \ S = {i V x i = }. 3 / 25

4 Linearization Method - Quadratic problem: (P) n min Q(x) = c i x i + x {,} n i= i<j n q ij x i x j. For x i, x j {, }, y ij = x i x j iff y ij = max{x i + x j, }, y ij {, }, or y ij = min{x i, x j }, y ij {, }. 4 / 25

5 (P) is equivalent to the following - linear integer program: n min c i x i + q ij y ij + q ij y ij x,y i= (i,j) I + (i,j) I s.t. y ij x i, y ij x j, (i, j) I (q ij < ) y ij x i + x j, (i, j) I + (q ij ), x i {, }, i =,..., n, y ij {, }, i < j n. A polynomially solvable case: q ij : n c i x i + q ij y ij min x,y i= i<j n s.t. y ij x i, i < j n y ij x j, i < j n x i, x j, y ij {, }, i < j n. The constraint matrix is totally unimodular! Can we use transformation: z i = x i for q ij >? 5 / 25

6 Continuous relaxation Consider the continuous relaxation of (P): ( P) n min Q(x) = c i x i + x [,] n i= i<j n q ij x i x j. Then, at least one of the optimal solutions of ( P) is located at an extreme point of [, ] n. Therefore v(p) = v( P). Unfortunately, the objective function of ( P) is nonconvex and nonconcave. Define n Q p (x) = c i x i + x T Qx px T x + pe T x. i= Q p (x) = Q(x) for x {, } n. For large p, Q p (x) is a concave function. Thus, (P) is equivalent to the concave minimization problem: (P c ) min x [,] n Q p(x) 6 / 25

7 Branch and Bound Framework Computing lower bound; Branching on x i = or x i = ; Fixing variable by certain optimality condition. 7 / 25

8 Basic lower bounding methods Simple lower bounds Continuous relaxation LP relaxation Lagrangian relaxation & SDP relaxation 8 / 25

9 Simple bounds Lower bound. Let Q(x) = n c i x i + 2 x T Qx = i= n c i x i + 2 x T Qx. i= An obvious lower bound of Q(x) over {, } n is: LB s = 2 n n min(q ij, ) + min(c i + 2 q ii, ). i= j i i= Lower bound 2. An improved simple lower bound is derived by noting that: since x, if Qx a, then 2 x T Qx 2 at x. Let Q i denote the ith row of Q. Then a i = min Q i x = min(q ij, ). x {,} n j i 9 / 25

10 So = min x {,} n 2 x T Qx + c T x min x {,} n( 2 a + c)t x n min{c i + 2 q ii + min(q ij, ), } 2 i= = LB 2 s. j i It is easy to show that LB 2 s is better than LB s, i.e., LB 2 s LB s. / 25

11 Continuous relaxation Since Q(x) = 2 x T (Q + diag(u))x + (c 2 u)t x takes the same value on {, } n as Q(x), it is natural to compute a lower bound via solving the continuous relaxation: ( P) β(u) = min x [,] n 2 x T (Q + diag(u))x + (c 2 u)t x. Some observations: If ui s are large enough, then Q = Q + diag(u) will be diagonally dominant (thus positive definite). u = λ min e is an obvious choice to make Q positive semidefinite (but not necessarily the best one). The optimal solution to ( P) tends to ( 2, 2,..., 2 )T as u i s are increased. / 25

12 Consider a small example of (P) where ( ) ( 3 Q =, c = 3 ). For this example, we have x = (, ) T with Q(x ) =. The two simple bounds for this problem are: LB s = 3 and LB 2 s =. The eigenvalues of Q is ( 2, 4). 2 / 25

13 Figure: The figure of Q(x) over [, ] 2, which is nonconvex 3 / 25

14 Figure: u = λ min e, x u = (.864, ) T, β(u) = / 25

15 Figure: u = 2e, x u = (.577,.5538) T, β(u) = / 25

16 Figure: u = e, x u = (.53,.5) T, β(u) = / 25

17 Another way of choosing u is to find a u such that β(u ) = max{β(u) (Q diag(u)), u R n }. The above problem is equivalent to a semidefinite quadratic program which can be solved efficiently (polynomially). 7 / 25

18 LP relaxation The continuous relaxation of the - linearized problem is a linear program (y ij = x i x j ): min x,y i<j n q ij y ij + n (c i + 2 q ii)x i i= s.t. y ij x i, y ij x j, i < j n, q ij <, x i + x j y ij, i < j n, q ij >, x i, i =,..., n, y ij, i < j n. 8 / 25

19 SDP relaxation Consider Q(x) = 2 x T Qx + c T. The Lagrangian dual is: v(d) = max λ R n d(λ) = max λ R n x R n{ 2 x T [Q + 2diag(λ)]x + c T x e T λ} = max τ (λ,τ) R n+ s.t. 2 x T [Q + 2diag(λ)]x + c T x e T λ τ x R n. 9 / 25

20 2 x T [Q + 2diag(λ)]x + c T x e T λ τ, x R n ( (x T Q + 2diag(λ) c, t) c T 2τ 2e T λ (t, x) R n+, ) ( x t ) ( Q + 2diag(λ) c c T 2τ 2e T λ ), 2 / 25

21 Variable fixation Let x denote the optimal solution of (P). Let l i = c i + 2 q ii + j i min(, q ij ), u i = c i + 2 q ii + j i max(, q ij ). (i) If l i > then x i = ; (ii) If u i <, then x i =. 2 / 25

22 Fixing variable by outerbox Equivalent perturbed problem: (P µ ) min x {,} n f µ(x) = 2 x T (Q + µi )x + (c 2 µe)t x, where µ, I is the n n identity matrix and e = (,..., ) T. The shape of contour changes when µ changes. The properties of (P µ ), e.g., the conditional number, change when µ changes. 22 / 25

23 (,) (,) (,) (,) x 2 µ= µ=5 µ=3 2 µ= x (µ) 3 4 µ= x 23 / 25

24 Ellipsoid contour: Let x {, } n. E µ = {x f µ (x) = f (x ). Let the minimum box that contains ellipsoid E µ be B = [a, b], where a = x s, b = x + s. Then Let x be an optimal solution to (P). Then (i) If b i < for some i, then x i = ; (ii) If a i > for some i, then x i =. 24 / 25

25 .5 (,) (,).5 (,) (,).5 x (µ) Eµ(ṽ) Bµ(ṽ) / 25

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

An Introduction on SemiDefinite Program

An Introduction on SemiDefinite Program An Introduction on SemiDefinite Program from the viewpoint of computation Hayato Waki Institute of Mathematics for Industry, Kyushu University 2015-10-08 Combinatorial Optimization at Work, Berlin, 2015

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.

An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt. An Overview Of Software For Convex Optimization Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu In fact, the great watershed in optimization isn t between linearity

More information

Support Vector Machines Explained

Support Vector Machines Explained March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

On SDP- and CP-relaxations and on connections between SDP-, CP and SIP

On SDP- and CP-relaxations and on connections between SDP-, CP and SIP On SDP- and CP-relaations and on connections between SDP-, CP and SIP Georg Still and Faizan Ahmed University of Twente p 1/12 1. IP and SDP-, CP-relaations Integer program: IP) : min T Q s.t. a T j =

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

Solving polynomial least squares problems via semidefinite programming relaxations

Solving polynomial least squares problems via semidefinite programming relaxations Solving polynomial least squares problems via semidefinite programming relaxations Sunyoung Kim and Masakazu Kojima August 2007, revised in November, 2007 Abstract. A polynomial optimization problem whose

More information

Two-Stage Stochastic Linear Programs

Two-Stage Stochastic Linear Programs Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic

More information

MAP-Inference for Highly-Connected Graphs with DC-Programming

MAP-Inference for Highly-Connected Graphs with DC-Programming MAP-Inference for Highly-Connected Graphs with DC-Programming Jörg Kappes and Christoph Schnörr Image and Pattern Analysis Group, Heidelberg Collaboratory for Image Processing, University of Heidelberg,

More information

Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems

Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: ashish.tiwari@sri.com Ashish Tiwari

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Definition 11.1. Given a graph G on n vertices, we define the following quantities: Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

More information

Lecture Topic: Low-Rank Approximations

Lecture Topic: Low-Rank Approximations Lecture Topic: Low-Rank Approximations Low-Rank Approximations We have seen principal component analysis. The extraction of the first principle eigenvalue could be seen as an approximation of the original

More information

A QCQP Approach to Triangulation. Chris Aholt, Sameer Agarwal, and Rekha Thomas University of Washington 2 Google, Inc.

A QCQP Approach to Triangulation. Chris Aholt, Sameer Agarwal, and Rekha Thomas University of Washington 2 Google, Inc. A QCQP Approach to Triangulation 1 Chris Aholt, Sameer Agarwal, and Rekha Thomas 1 University of Washington 2 Google, Inc. 2 1 The Triangulation Problem X Given: -n camera matrices P i R 3 4 -n noisy observations

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Massive Data Classification via Unconstrained Support Vector Machines

Massive Data Classification via Unconstrained Support Vector Machines Massive Data Classification via Unconstrained Support Vector Machines Olvi L. Mangasarian and Michael E. Thompson Computer Sciences Department University of Wisconsin 1210 West Dayton Street Madison, WI

More information

Derivative Free Optimization

Derivative Free Optimization Department of Mathematics Derivative Free Optimization M.J.D. Powell LiTH-MAT-R--2014/02--SE Department of Mathematics Linköping University S-581 83 Linköping, Sweden. Three lectures 1 on Derivative Free

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

Branch and Cut for TSP

Branch and Cut for TSP Branch and Cut for TSP jla,jc@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark 1 Branch-and-Cut for TSP Branch-and-Cut is a general technique applicable e.g. to solve symmetric

More information

Randomization Approaches for Network Revenue Management with Customer Choice Behavior

Randomization Approaches for Network Revenue Management with Customer Choice Behavior Randomization Approaches for Network Revenue Management with Customer Choice Behavior Sumit Kunnumkal Indian School of Business, Gachibowli, Hyderabad, 500032, India sumit kunnumkal@isb.edu March 9, 2011

More information

8.1 Min Degree Spanning Tree

8.1 Min Degree Spanning Tree CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7

(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7 (67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition

More information

A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems

A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems Sunyoung Kim, Masakazu Kojima and Kim-Chuan Toh October 2013 Abstract. We propose

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, and John N. Tsitsiklis Abstract We show that unless P=NP, there exists no

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Split Nonthreshold Laplacian Integral Graphs

Split Nonthreshold Laplacian Integral Graphs Split Nonthreshold Laplacian Integral Graphs Stephen Kirkland University of Regina, Canada kirkland@math.uregina.ca Maria Aguieiras Alvarez de Freitas Federal University of Rio de Janeiro, Brazil maguieiras@im.ufrj.br

More information

Load-Balanced Virtual Backbone Construction for Wireless Sensor Networks

Load-Balanced Virtual Backbone Construction for Wireless Sensor Networks Load-Balanced Virtual Backbone Construction for Wireless Sensor Networks Jing (Selena) He, Shouling Ji, Yi Pan, Zhipeng Cai Department of Computer Science, Georgia State University, Atlanta, GA, USA, {jhe9,

More information

On Minimal Valid Inequalities for Mixed Integer Conic Programs

On Minimal Valid Inequalities for Mixed Integer Conic Programs On Minimal Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç Karzan June 27, 2013 Abstract We study mixed integer conic sets involving a general regular (closed, convex, full dimensional,

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Gossip Algorithms. Devavrat Shah MIT

Gossip Algorithms. Devavrat Shah MIT Gossip Algorithms Devavrat Shah MIT Motivation Ad-hoc networks Not deliberately designed with an infrastructure Some examples Sensor networks formed by randomly deployed sensors in a geographic area for

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

A Metaheuristic Optimization Algorithm for Binary Quadratic Problems

A Metaheuristic Optimization Algorithm for Binary Quadratic Problems OSE SEMINAR 22 A Metaheuristic Optimization Algorithm for Binary Quadratic Problems Otto Nissfolk CENTER OF EXCELLENCE IN OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY ÅBO, NOVEMBER 29 th

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook Dantzig-Wolfe bound and Dantzig-Wolfe cookbook thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Compressing Forwarding Tables for Datacenter Scalability

Compressing Forwarding Tables for Datacenter Scalability TECHNICAL REPORT TR12-03, TECHNION, ISRAEL 1 Compressing Forwarding Tables for Datacenter Scalability Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal Mizrahi, Yoram Revah

More information

Maximum Margin Clustering

Maximum Margin Clustering Maximum Margin Clustering Linli Xu James Neufeld Bryce Larson Dale Schuurmans University of Waterloo University of Alberta Abstract We propose a new method for clustering based on finding maximum margin

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance Advanced Lecture on Mathematical Science and Information Science I Optimization in Finance Reha H. Tütüncü Visiting Associate Professor Dept. of Mathematical and Computing Sciences Tokyo Institute of Technology

More information

Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK dbernick@soe.ucsc.edu 1. Overview Typical Linear Programming problems Standard form and converting

More information

Some representability and duality results for convex mixed-integer programs.

Some representability and duality results for convex mixed-integer programs. Some representability and duality results for convex mixed-integer programs. Santanu S. Dey Joint work with Diego Morán and Juan Pablo Vielma December 17, 2012. Introduction About Motivation Mixed integer

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

CONSTRAINED NONLINEAR PROGRAMMING

CONSTRAINED NONLINEAR PROGRAMMING 149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach

More information

Conic optimization: examples and software

Conic optimization: examples and software Conic optimization: examples and software Etienne de Klerk Tilburg University, The Netherlands Etienne de Klerk (Tilburg University) Conic optimization: examples and software 1 / 16 Outline Conic optimization

More information

Facility Location: Discrete Models and Local Search Methods

Facility Location: Discrete Models and Local Search Methods Facility Location: Discrete Models and Local Search Methods Yury KOCHETOV Sobolev Institute of Mathematics, Novosibirsk, Russia Abstract. Discrete location theory is one of the most dynamic areas of operations

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

NP-Hardness Results Related to PPAD

NP-Hardness Results Related to PPAD NP-Hardness Results Related to PPAD Chuangyin Dang Dept. of Manufacturing Engineering & Engineering Management City University of Hong Kong Kowloon, Hong Kong SAR, China E-Mail: mecdang@cityu.edu.hk Yinyu

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

On the Unique Games Conjecture

On the Unique Games Conjecture On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

How the European day-ahead electricity market works

How the European day-ahead electricity market works How the European day-ahead electricity market works ELEC0018-1 - Marché de l'énergie - Pr. D. Ernst! Bertrand Cornélusse, Ph.D.! bertrand.cornelusse@ulg.ac.be! October 2014! 1 Starting question How is

More information

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan Economics 326: Duality and the Slutsky Decomposition Ethan Kaplan September 19, 2011 Outline 1. Convexity and Declining MRS 2. Duality and Hicksian Demand 3. Slutsky Decomposition 4. Net and Gross Substitutes

More information

Cyber-Security Analysis of State Estimators in Power Systems

Cyber-Security Analysis of State Estimators in Power Systems Cyber-Security Analysis of State Estimators in Electric Power Systems André Teixeira 1, Saurabh Amin 2, Henrik Sandberg 1, Karl H. Johansson 1, and Shankar Sastry 2 ACCESS Linnaeus Centre, KTH-Royal Institute

More information

Optimization Methods in Finance

Optimization Methods in Finance Optimization Methods in Finance Gerard Cornuejols Reha Tütüncü Carnegie Mellon University, Pittsburgh, PA 15213 USA January 2006 2 Foreword Optimization models play an increasingly important role in financial

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

On the effect of forwarding table size on SDN network utilization

On the effect of forwarding table size on SDN network utilization IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

More information

Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

Warshall s Algorithm: Transitive Closure

Warshall s Algorithm: Transitive Closure CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

Minimizing the Number of Machines in a Unit-Time Scheduling Problem

Minimizing the Number of Machines in a Unit-Time Scheduling Problem Minimizing the Number of Machines in a Unit-Time Scheduling Problem Svetlana A. Kravchenko 1 United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus kravch@newman.bas-net.by Frank

More information

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR

Solutions Of Some Non-Linear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR Solutions Of Some Non-Linear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U. Summer course on Convex Optimization Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.Minnesota Interior-Point Methods: the rebirth of an old idea Suppose that f is

More information

Scheduling Parallel Jobs with Linear Speedup

Scheduling Parallel Jobs with Linear Speedup Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev,m.uetz}@ke.unimaas.nl

More information

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

More information

Het inplannen van besteld ambulancevervoer (Engelse titel: Scheduling elected ambulance transportation)

Het inplannen van besteld ambulancevervoer (Engelse titel: Scheduling elected ambulance transportation) Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Het inplannen van besteld ambulancevervoer (Engelse titel: Scheduling elected ambulance

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information