Sparse Fluid Simulation in DirectX. Alex Dunn Dev. Tech. NVIDIA
|
|
|
- Dorthy Lynch
- 9 years ago
- Views:
Transcription
1 Sparse Fluid Simulation in DirectX Alex Dunn Dev. Tech. NVIDIA
2 Agenda We want more fluid in games Eulerian (grid based) fluid. Sparse Eulerian Fluid. Feature Level 11.3 Enhancements! (Not a talk on fluid dynamics)
3 Why Do We Need Fluid in Games? Replace particle kinematics! more realistic == better immersion Game mechanics? occlusion smoke grenades interaction Dispersion air ventilation systems poison, smoke Endless opportunities!
4 Eulerian Simulation #1 My (simple) DX11.0 eulerian fluid simulation: Inject 2x Velocity Advect Pressure 2x Pressure Vorticity Evolve 1x Vorticity
5 Eulerian Simulation #2 Inject Advect Pressure Vorticity Evolve Add fluid to simulation Move data at, XYZ (XYZ+Velocity) Calculate localized pressure Calculates localized rotational flow Tick Simulation
6 **(some imagination required)**
7
8 Too Many Volumes Spoil the Fluid isn t box shaped. clipping wastage Simulated separately. authoring GPU state volume-to-volume interaction Tricky to render.
9
10 Memory (Mb) Problem! N-order problem 64^3 = ~0.25m cells 128^3 = ~2m cells 256^3 = ~16m cells Applies to: computational complexity memory requirements Texture3D - 4x16F Dimensions (X = Y = Z) And that s just 1 texture
11 Bricks Split simulation space into groups of cells (each known as a brick). Simulate each brick independently.
12 Brick Map Need to track which bricks contain fluid Texture3D<uint> 1 voxel per brick 0 Unoccupied 1 Occupied Could also use packed binary grids [Gruen15], but this requires atomics
13 Tracking Bricks Initialise with emitter Expansion (unoccupied occupied) if { V x y z > D brick } expand in that axis Reduction (occupied unoccupied) inverse of Expansion handled automatically
14 Sparse Simulation Clear Tiles Inject Reset all tiles to 0 (unoccupied) in brick map. Advect Pressure Vorticity Evolve* Fill List Read value from brick map. Append brick coordinate to list if occupied. Texture3D<uint> g_brickmapro; AppendStructredBuffer<uint3> g_listrw; if(g_brickmapro[idx]!= 0) { g_listrw.append(idx); } *Includes expansion
15 Uncompressed Storage Allocate everything; forget about unoccupied cells Pros: simulation is coherent in memory. works in DX11.0. Cons: no reduction in memory usage.
16 Compressed Storage Indirection Table Similar to, List<Brick> Pros: good memory consumption. works in DX11.0. Physical Memory Cons: allocation strategies. indirect lookup. software translation filtering particularly costly
17 1 Brick = (4) 3 = 64
18 1 Brick = (1+4+1) 3 = 216 New problem; 6n 2 +12n + 8 problem. Can we do better?
19 Enter; Feature Level 11.3 Volume Tiled Resources (VTR)! Extends 2D functionality in FL11.2 Must check HW support: (DX11.3!= FL11.3) ID3D11Device3* pdevice3 = nullptr; pdevice->queryinterface(&pdevice3); D3D11_FEATURE_DATA_D3D11_OPTIONS2 support; pdevice3->checkfeaturesupport(d3d11_feature_d3d11_options2, &support, sizeof(support)); m_usetiledresources = support.tiledresourcestier == D3D11_TILED_RESOURCES_TIER_3;
20 Tiled Resources #1 Pros: only mapped memory is allocated in VRAM hardware translation logically a volume texture all samplers supported 1 Tile = 64KB (= 1 Brick) fast loads
21 Tiled Resources #2 1 Tile = 64KB (= 1 Brick) BPP Tile Dimensions 8 64x32x x32x x32x x16x x16x16 Gotcha: Tile mappings must be updated from CPU
22 Latency Resistant Simulation #1 Naïve Approach: clamp velocity to V max CPU Read-back: occupied bricks. 2 frames of latency! extrapolate probable tiles. N; Data Ready N+1; Data Ready N+2; Data Ready CPU: GPU: Frame N Frame N+1 Frame N+2 Frame N+3 Frame N Frame N+1 Frame N+2 N; Tiles Mapped
23 Latency Resistant Simulation #2 Tight Approach: CPU Read-back: occupied bricks. max{ V } within brick. 2 frames of latency! extrapolate probable tiles. N; Data Ready N+1; Data Ready N+2; Data Ready CPU: GPU: Frame N Frame N+1 Frame N+2 Frame N+3 Frame N Frame N+1 Frame N+2 N; Tiles Mapped
24 Latency Resistant Simulation #3 Yes CPU Readback Ready? No Readback Brick List Prediction Engine Emitter Bricks CPU GPU Sparse Eulerian Simulation UpdateTile Mappings
25 Demo
26 Sim. Time (ms) Performance # Full Grid Sparse Grid Grid Resolution NOTE: Numbers captured on a GeForce GTX980
27 Memory (MB) Performance # , Full Grid Sparse Grid Grid Resolution NOTE: Numbers captured on a GeForce GTX980
28 Scaling Speed ratio (1 Brick) = Time{Sparse} Time{Full} ~75% across grid resolutions.
29 Summary Fluid simulation in games is justified. Fluid is not box shaped! One volume is better than many small. Un/Compressed storage a viable fallback. VTRs great for fluid simulation. Other latency resistant algorithms with tiled resouces?
30 Questions? Alex Dunn - [email protected] Thanks for attending.
The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA
The Evolution of Computer Graphics Tony Tamasi SVP, Content & Technology, NVIDIA Graphics Make great images intricate shapes complex optical effects seamless motion Make them fast invent clever techniques
GPU Architecture. Michael Doggett ATI
GPU Architecture Michael Doggett ATI GPU Architecture RADEON X1800/X1900 Microsoft s XBOX360 Xenos GPU GPU research areas ATI - Driving the Visual Experience Everywhere Products from cell phones to super
Interactive Level-Set Deformation On the GPU
Interactive Level-Set Deformation On the GPU Institute for Data Analysis and Visualization University of California, Davis Problem Statement Goal Interactive system for deformable surface manipulation
Interactive Level-Set Segmentation on the GPU
Interactive Level-Set Segmentation on the GPU Problem Statement Goal Interactive system for deformable surface manipulation Level-sets Challenges Deformation is slow Deformation is hard to control Solution
Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui
Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching
CLOUD GAMING WITH NVIDIA GRID TECHNOLOGIES Franck DIARD, Ph.D., SW Chief Software Architect GDC 2014
CLOUD GAMING WITH NVIDIA GRID TECHNOLOGIES Franck DIARD, Ph.D., SW Chief Software Architect GDC 2014 Introduction Cloud ification < 2013 2014+ Music, Movies, Books Games GPU Flops GPUs vs. Consoles 10,000
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
NVIDIA GeForce GTX 580 GPU Datasheet
NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines
Flame On: Real-Time Fire Simulation for Video Games. Simon Green, NVIDIA Christopher Horvath, Pixar
Flame On: Real-Time Fire Simulation for Video Games Simon Green, NVIDIA Christopher Horvath, Pixar Introduction This talk is about achieving realistic looking simulations for games / visual effects Not
Real-time Visual Tracker by Stream Processing
Real-time Visual Tracker by Stream Processing Simultaneous and Fast 3D Tracking of Multiple Faces in Video Sequences by Using a Particle Filter Oscar Mateo Lozano & Kuzahiro Otsuka presented by Piotr Rudol
Optimizing AAA Games for Mobile Platforms
Optimizing AAA Games for Mobile Platforms Niklas Smedberg Senior Engine Programmer, Epic Games Who Am I A.k.a. Smedis Epic Games, Unreal Engine 15 years in the industry 30 years of programming C64 demo
Recent Advances and Future Trends in Graphics Hardware. Michael Doggett Architect November 23, 2005
Recent Advances and Future Trends in Graphics Hardware Michael Doggett Architect November 23, 2005 Overview XBOX360 GPU : Xenos Rendering performance GPU architecture Unified shader Memory Export Texture/Vertex
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
Advanced Rendering for Engineering & Styling
Advanced Rendering for Engineering & Styling Prof. B.Brüderlin Brüderlin,, M Heyer 3Dinteractive GmbH & TU-Ilmenau, Germany SGI VizDays 2005, Rüsselsheim Demands in Engineering & Styling Engineering: :
Cloud Gaming & Application Delivery with NVIDIA GRID Technologies. Franck DIARD, Ph.D. GRID Architect, NVIDIA
Cloud Gaming & Application Delivery with NVIDIA GRID Technologies Franck DIARD, Ph.D. GRID Architect, NVIDIA What is GRID? Using efficient GPUS in efficient servers What is Streaming? Transporting pixels
Dynamic Resolution Rendering
Dynamic Resolution Rendering Doug Binks Introduction The resolution selection screen has been one of the defining aspects of PC gaming since the birth of games. In this whitepaper and the accompanying
Introduction Computer stuff Pixels Line Drawing. Video Game World 2D 3D Puzzle Characters Camera Time steps
Introduction Computer stuff Pixels Line Drawing Video Game World 2D 3D Puzzle Characters Camera Time steps Geometry Polygons Linear Algebra NURBS, Subdivision surfaces, etc Movement Collisions Fast Distances
ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop. Emily Apsey Performance Engineer
ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop Emily Apsey Performance Engineer Presentation Overview What it takes to successfully virtualize ArcGIS Pro in Citrix XenApp and XenDesktop - Shareable
Mark Bennett. Search and the Virtual Machine
Mark Bennett Search and the Virtual Machine Agenda Intro / Business Drivers What to do with Search + Virtual What Makes Search Fast (or Slow!) Virtual Platforms Test Results Trends / Wrap Up / Q & A Business
Data Parallel Computing on Graphics Hardware. Ian Buck Stanford University
Data Parallel Computing on Graphics Hardware Ian Buck Stanford University Brook General purpose Streaming language DARPA Polymorphous Computing Architectures Stanford - Smart Memories UT Austin - TRIPS
Parallel Computing: Strategies and Implications. Dori Exterman CTO IncrediBuild.
Parallel Computing: Strategies and Implications Dori Exterman CTO IncrediBuild. In this session we will discuss Multi-threaded vs. Multi-Process Choosing between Multi-Core or Multi- Threaded development
Optimizing Unity Games for Mobile Platforms. Angelo Theodorou Software Engineer Unite 2013, 28 th -30 th August
Optimizing Unity Games for Mobile Platforms Angelo Theodorou Software Engineer Unite 2013, 28 th -30 th August Agenda Introduction The author and ARM Preliminary knowledge Unity Pro, OpenGL ES 3.0 Identify
REMOTE HIGH FIDELITY VISUALIZATION. May 2015 Jeremy Main, Sr. Solution Architect GRID [email protected]
REMOTE HIGH FIDELITY VISUALIZATION May 2015 Jeremy Main, Sr. Solution Architect GRID [email protected] THE VISUAL COMPUTING COMPANY 2 GAMING DESIGN ENTERPRISE VIRTUALIZATION HPC & CLOUD SERVICE PROVIDERS
A Prototype For Eye-Gaze Corrected
A Prototype For Eye-Gaze Corrected Video Chat on Graphics Hardware Maarten Dumont, Steven Maesen, Sammy Rogmans and Philippe Bekaert Introduction Traditional webcam video chat: No eye contact. No extensive
Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software
GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas
Shader Model 3.0. Ashu Rege. NVIDIA Developer Technology Group
Shader Model 3.0 Ashu Rege NVIDIA Developer Technology Group Talk Outline Quick Intro GeForce 6 Series (NV4X family) New Vertex Shader Features Vertex Texture Fetch Longer Programs and Dynamic Flow Control
Performance Testing in Virtualized Environments. Emily Apsey Product Engineer
Performance Testing in Virtualized Environments Emily Apsey Product Engineer Introduction Product Engineer on the Performance Engineering Team Overview of team - Specialty in Virtualization - Citrix, VMWare,
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
Silverlight for Windows Embedded Graphics and Rendering Pipeline 1
Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline Windows Embedded Compact 7 Technical Article Writers: David Franklin,
HistoPyramid stream compaction and expansion
HistoPyramid stream compaction and expansion Christopher Dyken1 * and Gernot Ziegler2 Advanced Computer Graphics / Vision Seminar TU Graz 23/10-2007 1 2 University of Oslo Max-Planck-Institut fu r Informatik,
Examples. Pac-Man, Frogger, Tempest, Joust,
Examples Arcade Games Missile il Command, Space Invaders, Breakout, Centipede, Pac-Man, Frogger, Tempest, Joust, Important Traits: Easy-to-learn simple controls Move objects around the screen Single-screen
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
Introduction to GPU Architecture
Introduction to GPU Architecture Ofer Rosenberg, PMTS SW, OpenCL Dev. Team AMD Based on From Shader Code to a Teraflop: How GPU Shader Cores Work, By Kayvon Fatahalian, Stanford University Content 1. Three
HIGH-PERFORMANCE GPU VIDEO ENCODING ABHIJIT PATAIT SR. MANAGER, NVIDIA
HIGH-PERFORMANCE GPU VIDEO ENCODING ABHIJIT PATAIT SR. MANAGER, NVIDIA AGENDA GPU Video Encoding Overview NVIDIA Video Encoding Capabilities Kepler, Maxwell Gen 1, Maxwell Gen 2 Software API Performance
Optimization for DirectX9 Graphics. Ashu Rege
Optimization for DirectX9 Graphics Ashu Rege Last Year: Batch, Batch, Batch Moral of the story: Small batches BAD What is a batch Every DrawIndexedPrimitive call is a batch All render, texture, shader,...
Tested product: Auslogics BoostSpeed
Software Tested Tested product: Auslogics BoostSpeed www.softwaretested.com CONTENTS 1 Contents Background... 3 Purpose of the Tests... 5 Testing Environment... 6 Test Results... 10 Windows Startup Time...
INTRODUCTION TO RENDERING TECHNIQUES
INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature
Overview Motivation and applications Challenges. Dynamic Volume Computation and Visualization on the GPU. GPU feature requests Conclusions
Module 4: Beyond Static Scalar Fields Dynamic Volume Computation and Visualization on the GPU Visualization and Computer Graphics Group University of California, Davis Overview Motivation and applications
Multi-GPU Load Balancing for Simulation and Rendering
Multi- Load Balancing for Simulation and Rendering Yong Cao Computer Science Department, Virginia Tech, USA In-situ ualization and ual Analytics Instant visualization and interaction of computing tasks
Hardware in the Loop (HIL) Testing VU 2.0, 182.117, WS 2008/09
Testen von Embedded Systems Hardware in the Loop (HIL) Testing VU 2.0, 182.117, WS 2008/09 Raimund dkirner Testing Embedded Software Testing the whole system including the physical environment is not possible
animation animation shape specification as a function of time
animation animation shape specification as a function of time animation representation many ways to represent changes with time intent artistic motion physically-plausible motion efficiency control typically
Data Sheet. Desktop ESPRIMO. General
Data Sheet Graphic Cards for FUJITSU Desktop ESPRIMO FUJITSU Desktop ESPRIMO are used for common office applications. To fulfill the demands of demanding applications, ESPRIMO Desktops can be ordered with
Pedraforca: ARM + GPU prototype
www.bsc.es Pedraforca: ARM + GPU prototype Filippo Mantovani Workshop on exascale and PRACE prototypes Barcelona, 20 May 2014 Overview Goals: Test the performance, scalability, and energy efficiency of
3D Computer Games History and Technology
3D Computer Games History and Technology VRVis Research Center http://www.vrvis.at Lecture Outline Overview of the last 10-15 15 years A look at seminal 3D computer games Most important techniques employed
Game Development in Android Disgruntled Rats LLC. Sean Godinez Brian Morgan Michael Boldischar
Game Development in Android Disgruntled Rats LLC Sean Godinez Brian Morgan Michael Boldischar Overview Introduction Android Tools Game Development OpenGL ES Marketing Summary Questions Introduction Disgruntled
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA
OpenCL Optimization San Jose 10/2/2009 Peng Wang, NVIDIA Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary Overall Optimization
Image Processing & Video Algorithms with CUDA
Image Processing & Video Algorithms with CUDA Eric Young & Frank Jargstorff 8 NVIDIA Corporation. introduction Image processing is a natural fit for data parallel processing Pixels can be mapped directly
Texture Cache Approximation on GPUs
Texture Cache Approximation on GPUs Mark Sutherland Joshua San Miguel Natalie Enright Jerger {suther68,enright}@ece.utoronto.ca, [email protected] 1 Our Contribution GPU Core Cache Cache
Medical Image Processing on the GPU. Past, Present and Future. Anders Eklund, PhD Virginia Tech Carilion Research Institute [email protected].
Medical Image Processing on the GPU Past, Present and Future Anders Eklund, PhD Virginia Tech Carilion Research Institute [email protected] Outline Motivation why do we need GPUs? Past - how was GPU programming
Application. EDIUS and Intel s Sandy Bridge Technology
Application Note How to Turbo charge your workflow with Intel s Sandy Bridge processors and chipsets Alex Kataoka, Product Manager, Editing, Servers & Storage (ESS) August 2011 Would you like to cut the
Fundamentals of Computer Science (FCPS) CTY Course Syllabus
Fundamentals of Computer Science (FCPS) CTY Course Syllabus Brief Schedule Week 1 Introduction and definition Logic and Gates Hardware Systems Binary number and math Machine/Assembly Language Week 2 Operating
GEFORCE 3D VISION QUICK START GUIDE
GEFORCE 3D VISION QUICK START GUIDE 01 minimum system requirements Thank you for choosing NVIDIA GeForce 3D Vision, the most immersive gaming experience for the PC. Before you begin, please review the
Fast Implementations of AES on Various Platforms
Fast Implementations of AES on Various Platforms Joppe W. Bos 1 Dag Arne Osvik 1 Deian Stefan 2 1 EPFL IC IIF LACAL, Station 14, CH-1015 Lausanne, Switzerland {joppe.bos, dagarne.osvik}@epfl.ch 2 Dept.
Caching Mechanisms for Mobile and IOT Devices
Caching Mechanisms for Mobile and IOT Devices Masafumi Takahashi Toshiba Corporation JEDEC Mobile & IOT Technology Forum Copyright 2016 Toshiba Corporation Background. Unified concept. Outline The first
1. INTRODUCTION Graphics 2
1. INTRODUCTION Graphics 2 06-02408 Level 3 10 credits in Semester 2 Professor Aleš Leonardis Slides by Professor Ela Claridge What is computer graphics? The art of 3D graphics is the art of fooling the
GPU Point List Generation through Histogram Pyramids
VMV 26, GPU Programming GPU Point List Generation through Histogram Pyramids Gernot Ziegler, Art Tevs, Christian Theobalt, Hans-Peter Seidel Agenda Overall task Problems Solution principle Algorithm: Discriminator
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning
Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information
Advanced Visual Effects with Direct3D
Advanced Visual Effects with Direct3D Presenters: Mike Burrows, Sim Dietrich, David Gosselin, Kev Gee, Jeff Grills, Shawn Hargreaves, Richard Huddy, Gary McTaggart, Jason Mitchell, Ashutosh Rege and Matthias
Touchstone -A Fresh Approach to Multimedia for the PC
Touchstone -A Fresh Approach to Multimedia for the PC Emmett Kilgariff Martin Randall Silicon Engineering, Inc Presentation Outline Touchstone Background Chipset Overview Sprite Chip Tiler Chip Compressed
Graphic Processing Units: a possible answer to High Performance Computing?
4th ABINIT Developer Workshop RESIDENCE L ESCANDILLE AUTRANS HPC & Graphic Processing Units: a possible answer to High Performance Computing? Luigi Genovese ESRF - Grenoble 26 March 2009 http://inac.cea.fr/l_sim/
Table of Contents. P a g e 2
Solution Guide Balancing Graphics Performance, User Density & Concurrency with NVIDIA GRID Virtual GPU Technology (vgpu ) for Autodesk AutoCAD Power Users V1.0 P a g e 2 Table of Contents The GRID vgpu
In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller
In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency
Choosing Between Electromechanical and Fluid Power Linear Actuators in Industrial Systems Design
Choosing Between Electromechanical and Fluid Power Linear Actuators in Industrial Systems Design James Marek, Business Unit Director, Thomson Systems Thomson Industries, Inc. 540-633-3549 www.thomsonlinear.com
Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1
Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?
Several tips on how to choose a suitable computer
Several tips on how to choose a suitable computer This document provides more specific information on how to choose a computer that will be suitable for scanning and postprocessing of your data with Artec
AN804: Gaming Performance Analysis 4GB vs 2GB Gareth Ogden, Corsair Memory Inc.
AN804: Gaming Performance Analysis 4GB vs 2GB Gareth Ogden, Corsair Memory Inc. Introduction Adding memory is one of the best and most cost effective methods of improving your PC s performance. This application
Outline. srgb DX9, DX10, XBox 360. Tone Mapping. Motion Blur
Outline srgb DX9, DX10, XBox 360 Tone Mapping Motion Blur srgb Outline srgb & gamma review Alpha Blending: DX9 vs. DX10 & XBox 360 srgb curve: PC vs. XBox 360 srgb Review Terminology: Color textures are
NVIDIA GeForce Experience
NVIDIA GeForce Experience DU-05620-001_v02 October 9, 2012 User Guide TABLE OF CONTENTS 1 NVIDIA GeForce Experience User Guide... 1 About GeForce Experience... 1 Installing and Setting Up GeForce Experience...
Logitech ConferenceCam CC3000e. Best Practices for use with Software Clients. UC for Real People
Logitech ConferenceCam CC3000e Best Practices for use with Software Clients UC for Real People Product Functionality Check 1 Skype 2 Cisco Jabber 3 Cisco WebEx 4 Microsoft Lync 5 Google Hangouts 6 Simple
GPU Accelerated Monte Carlo Simulations and Time Series Analysis
GPU Accelerated Monte Carlo Simulations and Time Series Analysis Institute of Physics, Johannes Gutenberg-University of Mainz Center for Polymer Studies, Department of Physics, Boston University Artemis
L20: GPU Architecture and Models
L20: GPU Architecture and Models scribe(s): Abdul Khalifa 20.1 Overview GPUs (Graphics Processing Units) are large parallel structure of processing cores capable of rendering graphics efficiently on displays.
Computers in Film Making
Computers in Film Making Snow White (1937) Computers in Film Making Slide 1 Snow White - Disney s Folly Moral: Original Budget $250,000 Production Cost $1,488,422 Frames 127,000 Production time 3.5 years
Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors
Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Joe Davis, Sandeep Patel, and Michela Taufer University of Delaware Outline Introduction Introduction to GPU programming Why MD
How To Run A Factory I/O On A Microsoft Gpu 2.5 (Sdk) On A Computer Or Microsoft Powerbook 2.3 (Powerpoint) On An Android Computer Or Macbook 2 (Powerstation) On
User Guide November 19, 2014 Contents 3 Welcome 3 What Is FACTORY I/O 3 How Does It Work 4 I/O Drivers: Connecting To External Technologies 5 System Requirements 6 Run Mode And Edit Mode 7 Controls 8 Cameras
Brainlab Node TM Technical Specifications
Brainlab Node TM Technical Specifications BRAINLAB NODE TM HP ProLiant DL360p Gen 8 CPU: Chipset: RAM: HDD: RAID: Graphics: LAN: HW Monitoring: Height: Width: Length: Weight: Operating System: 2x Intel
Fluid Dynamics and the Navier-Stokes Equation
Fluid Dynamics and the Navier-Stokes Equation CMSC498A: Spring 12 Semester By: Steven Dobek 5/17/2012 Introduction I began this project through a desire to simulate smoke and fire through the use of programming
GPU Renderfarm with Integrated Asset Management & Production System (AMPS)
GPU Renderfarm with Integrated Asset Management & Production System (AMPS) Tackling two main challenges in CG movie production Presenter: Dr. Chen Quan Multi-plAtform Game Innovation Centre (MAGIC), Nanyang
Real-Time Realistic Rendering. Michael Doggett Docent Department of Computer Science Lund university
Real-Time Realistic Rendering Michael Doggett Docent Department of Computer Science Lund university 30-5-2011 Visually realistic goal force[d] us to completely rethink the entire rendering process. Cook
Introduction to GPU hardware and to CUDA
Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware
Volume Visualization Tools for Geant4 Simulation
Volume Visualization Tools for Geant4 Simulation Ayumu Saitoh, Japan Science and Technology Agency Akinori Kimura, Ashikaga Institute of Technology Satoshi Tanaka, Ritsumeikan University Background and
Speeding Up Cloud/Server Applications Using Flash Memory
Speeding Up Cloud/Server Applications Using Flash Memory Sudipta Sengupta Microsoft Research, Redmond, WA, USA Contains work that is joint with B. Debnath (Univ. of Minnesota) and J. Li (Microsoft Research,
Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Modern GPU
GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series. By: Binesh Tuladhar Clay Smith
GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series By: Binesh Tuladhar Clay Smith Overview History of GPU s GPU Definition Classical Graphics Pipeline Geforce 6 Series Architecture Vertex
Practical Volume Rendering in mobile devices
Practical Volume Rendering in mobile devices Pere Pau Vázquez Alcocer 1 and Marcos Balsa Rodríguez 2 1 UPC, MOVING Graphics group, Spain www: http://moving.upc.edu/ e-mail: [email protected] 2 CRS4, Visual
E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices
E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,
Data Sheet Graphic Cards for Fujitsu ESPRIMO PCs
Data Sheet Graphic Cards for Fujitsu ESPRIMO PCs Fujitsu ESPRIMO PCs are used for common office applications. To fulfill the demands of demanding applications, Fujitsu ESPRIMO PCs can be ordered with either
Fast Software AES Encryption
Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2010 Fast Software AES Encryption Osvik, Dag Arne Proceedings FSE'10 Proceedings of the 17th
Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf. Flow Visualization. Image-Based Methods (integration-based)
Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf Flow Visualization Image-Based Methods (integration-based) Spot Noise (Jarke van Wijk, Siggraph 1991) Flow Visualization:
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la
NVIDIA VIDEO ENCODER 5.0
NVIDIA VIDEO ENCODER 5.0 NVENC_DA-06209-001_v06 November 2014 Application Note NVENC - NVIDIA Hardware Video Encoder 5.0 NVENC_DA-06209-001_v06 i DOCUMENT CHANGE HISTORY NVENC_DA-06209-001_v06 Version
Power Benefits Using Intel Quick Sync Video H.264 Codec With Sorenson Squeeze
Power Benefits Using Intel Quick Sync Video H.264 Codec With Sorenson Squeeze Whitepaper December 2012 Anita Banerjee Contents Introduction... 3 Sorenson Squeeze... 4 Intel QSV H.264... 5 Power Performance...
Writing Applications for the GPU Using the RapidMind Development Platform
Writing Applications for the GPU Using the RapidMind Development Platform Contents Introduction... 1 Graphics Processing Units... 1 RapidMind Development Platform... 2 Writing RapidMind Enabled Applications...
Getting Started Guide
Getting Started Guide Introduction... 3 What is Pastel Partner (BIC)?... 3 System Requirements... 4 Getting Started Guide... 6 Standard Reports Available... 6 Accessing the Pastel Partner (BIC) Reports...
Real-Time BC6H Compression on GPU. Krzysztof Narkowicz Lead Engine Programmer Flying Wild Hog
Real-Time BC6H Compression on GPU Krzysztof Narkowicz Lead Engine Programmer Flying Wild Hog Introduction BC6H is lossy block based compression designed for FP16 HDR textures Hardware supported since DX11
Modern Graphics Engine Design. Sim Dietrich NVIDIA Corporation [email protected]
Modern Graphics Engine Design Sim Dietrich NVIDIA Corporation [email protected] Overview Modern Engine Features Modern Engine Challenges Scene Management Culling & Batching Geometry Management Collision
