E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices
|
|
|
- Melvyn Melton
- 10 years ago
- Views:
Transcription
1 E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing Research CY Lin, 2015 Columbia University
2 Outline GPU Architecture Execution Model Examples in tuning configurations of grid and thread Resource Allocation Examples in examining the affect of configuration setting in grid and thread Memory Architecture Concurrent Processing cublas Library for Neural Network 2
3 GPU Architecture GPU Architecture built by several streaming multiprocessors (SMs) In each SM: CUDA cores Shared Memory/L1 Cache Kepler Architecture, K20X Register File Load/Store Units Special Function Units Warp Scheduler In each device: L2 Cache 3
4 Execution Model - Warp Concept NVIDIA GPU groups 32 threads into a warp, and then execute warps sequentially. Number of concurrent warps are based on the number of warp scheduler. (Kepler has 4 warp scheduler) All threads are arranged one-dimensionally. Relationship between logical view and hardware view Inefficient way to allocate a thread block 4
5 Execution Model - Warp Divergence GPU has light-weight control module, complicated control flow might hurt the performance of GPU. In the same warp, e.g., if you allocate 16 threads to do A; and 16 threads to do B. A and B will be executed serially. Example: simpledivergence.cu Test with optimization and without optimization 5
6 Execution Model - Warp Divergence compilation turn off the optimization nvcc -g -G -o simpledivergence simpledivergence.cu execute through nvprof to extract profiling information nvprof --metrics branch_efficiency --events branch,divergent_branch./ simpledivergence 6
7 Resource Allocation A warp is consisted of Program counters Registers Shared memory If a thread use lots of resource, fewer threads will be allocated in one SM 7
8 Occupancy Toolkit, CUDA Occupancy Calculator: in /usr/local/cuda/tools/cuda_occupancy_calculator.xls It could assist in measuring the occupancy of your configuration 8
9 Occupancy, Memory Load Efficiency, Memory Load Throughput View number of registers, set the constraints on number of registers per thread nvcc -g -G -arch=sm_30 --ptxas-options=-v --maxrregcount=31 -o summatrix summatrix.cu Check occupancy, memory load efficiency, memory load throughput to explore the suitable configuration of size of thread block nvprof --metrics gld_throughput,gld_efficiency,achieved_occupancy./summatrix dimx dimy do example on summatrix.cu with dim of thread block {4,4}, {4,8}, {8,4}, {8,8}, {16,16}, {32,32} {16,16} is the fast one. 9
10 Profiling Results 10
11 Memory Type 1. Register per SM, An automatic variable in kernel function, low latency, high bandwidth 2. Local memory Variable in a kernel but can not be fitted in register Cached in per SM L1 cache and per device L2 cache 3. Shared memory ( shared ) per SM, faster than local and global memory, share among thread block Use for inter-thread communication, 64KB, shared with L1 cache 4. Constant memory ( constant ) per device, read-only memory 5. Texture memory persm, read-only cache, optimized for 2D spatial locality 6. Global memory 11
12 Memory Type 12
13 Concurrent Processing Concurrent handle data transfer + computation For NVIDIA GT 650M (laptop GPU), there is one copy engine. For NVIDIA Tesla K40 (high-end GPU), there are two copy engines computation + computation if your CUDA core is enough. Check example, summatrixongpustream.cu and summatrixongpunostream.cu The latency in data transfer could be hidden during computing To handle two tasks, which both are matrix multiplications. Copy two inputs to GPU, copy one output from GPU 13
14 Concurrent Processing No concurrent processing Concurrent processing (concurrent computation) 14 Concurrent processing (transfer + computation)
15 cublas Library for Neural Network In neural network, the most important operation is inner-product a=f(x T w+b) x is a matrix that records the input which is fed to neural network w is a matrix that records the weights of network connection b is a matrix that records the bias of network connection f is an activation function that used to activate the neuron a is output w x GPU is more suitable for such intensive operations. Example, x T w+b cublas (GPU) vs. OpenBLAS (CPU) GPU computation includes data transfer between host and device. 15
16 Reference Check all metrics and events for nvprof, it will also explain the meaning of options nvprof --query-metrics nvprof --query-events Professional CUDA C Programming Programming.productCd ,descCd-DOWNLOAD.html source code are available on the above website GTC On-Demand: Developer Zone: NVIDIA Parallel Programming Blog: NVIDIA Developer Zone Forums: 16
17 Metal Programming Model It integrates the support for both graphics and compute operations. Three command encoder: Graphics Rendering: Render Command Encoder Data-Parallel Compute Processing: Compute Command Encoder Transfer Data between Resource: Blitting Command Encoder Multi-threading in encoding command is supported Typical flow in compute command encoder Prepare data Put your function into pipeline Command encoder Put command into command buffer Commit it to command queue Execute the command Get result back 17
18 Metal Programming, Kernel Function Compute command Two parameters, threadspergroup and numthreadgroups, determines number of threads. equivalent to grid and thread block in CUDA. They are all 3-D variable. The total of all threadgroup memory allocations must not exceed 16 KB. Kernel function: sigmoid function 18
19 Example 19
20 Example 20
21 Example: devicequery Understand the hardware constraint via devicequery (in example code of CUDA toolkit) 21
22 Homework #3 (due May 22) Choose 2 of the algorithms you use in your final project. Convert them into a GPU version. Show your code, and performance measurement comparing to your non-gpu version. The more innovative/complex your algorithms are, the higher score you will get on your Homework #3. 22
Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1
Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?
Guided Performance Analysis with the NVIDIA Visual Profiler
Guided Performance Analysis with the NVIDIA Visual Profiler Identifying Performance Opportunities NVIDIA Nsight Eclipse Edition (nsight) NVIDIA Visual Profiler (nvvp) nvprof command-line profiler Guided
GPU Parallel Computing Architecture and CUDA Programming Model
GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
Optimizing Application Performance with CUDA Profiling Tools
Optimizing Application Performance with CUDA Profiling Tools Why Profile? Application Code GPU Compute-Intensive Functions Rest of Sequential CPU Code CPU 100 s of cores 10,000 s of threads Great memory
GPU Performance Analysis and Optimisation
GPU Performance Analysis and Optimisation Thomas Bradley, NVIDIA Corporation Outline What limits performance? Analysing performance: GPU profiling Exposing sufficient parallelism Optimising for Kepler
CUDA Optimization with NVIDIA Tools. Julien Demouth, NVIDIA
CUDA Optimization with NVIDIA Tools Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nvidia Tools 2 What Does the Application
HPC with Multicore and GPUs
HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware
OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA
OpenCL Optimization San Jose 10/2/2009 Peng Wang, NVIDIA Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary Overall Optimization
NVIDIA Tools For Profiling And Monitoring. David Goodwin
NVIDIA Tools For Profiling And Monitoring David Goodwin Outline CUDA Profiling and Monitoring Libraries Tools Technologies Directions CScADS Summer 2012 Workshop on Performance Tools for Extreme Scale
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist
NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get
Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61
F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Modern GPU
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1
Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion
CUDA SKILLS. Yu-Hang Tang. June 23-26, 2015 CSRC, Beijing
CUDA SKILLS Yu-Hang Tang June 23-26, 2015 CSRC, Beijing day1.pdf at /home/ytang/slides Referece solutions coming soon Online CUDA API documentation http://docs.nvidia.com/cuda/index.html Yu-Hang Tang @
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
Introduction to GPU hardware and to CUDA
Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware
Texture Cache Approximation on GPUs
Texture Cache Approximation on GPUs Mark Sutherland Joshua San Miguel Natalie Enright Jerger {suther68,enright}@ece.utoronto.ca, [email protected] 1 Our Contribution GPU Core Cache Cache
ultra fast SOM using CUDA
ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
GPU File System Encryption Kartik Kulkarni and Eugene Linkov
GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through
CUDA Basics. Murphy Stein New York University
CUDA Basics Murphy Stein New York University Overview Device Architecture CUDA Programming Model Matrix Transpose in CUDA Further Reading What is CUDA? CUDA stands for: Compute Unified Device Architecture
GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy
NVIDIA CUDA GETTING STARTED GUIDE FOR MICROSOFT WINDOWS
NVIDIA CUDA GETTING STARTED GUIDE FOR MICROSOFT WINDOWS DU-05349-001_v6.0 February 2014 Installation and Verification on TABLE OF CONTENTS Chapter 1. Introduction...1 1.1. System Requirements... 1 1.2.
NVIDIA CUDA GETTING STARTED GUIDE FOR MAC OS X
NVIDIA CUDA GETTING STARTED GUIDE FOR MAC OS X DU-05348-001_v5.5 July 2013 Installation and Verification on Mac OS X TABLE OF CONTENTS Chapter 1. Introduction...1 1.1. System Requirements... 1 1.2. About
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
Lecture 1: an introduction to CUDA
Lecture 1: an introduction to CUDA Mike Giles [email protected] Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Overview hardware view software view CUDA programming
GPU Computing - CUDA
GPU Computing - CUDA A short overview of hardware and programing model Pierre Kestener 1 1 CEA Saclay, DSM, Maison de la Simulation Saclay, June 12, 2012 Atelier AO and GPU 1 / 37 Content Historical perspective
GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 4 - Optimizations Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 3 Control flow Coalescing Latency hiding
GPU Tools Sandra Wienke
Sandra Wienke Center for Computing and Communication, RWTH Aachen University MATSE HPC Battle 2012/13 Rechen- und Kommunikationszentrum (RZ) Agenda IDE Eclipse Debugging (CUDA) TotalView Profiling (CUDA
Stream Processing on GPUs Using Distributed Multimedia Middleware
Stream Processing on GPUs Using Distributed Multimedia Middleware Michael Repplinger 1,2, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken, Germany 2 German Research
1. If we need to use each thread to calculate one output element of a vector addition, what would
Quiz questions Lecture 2: 1. If we need to use each thread to calculate one output element of a vector addition, what would be the expression for mapping the thread/block indices to data index: (A) i=threadidx.x
Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model
Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA Part 1: Hardware design and programming model Amin Safi Faculty of Mathematics, TU dortmund January 22, 2016 Table of Contents Set
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.
Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide
OpenCL Programming for the CUDA Architecture. Version 2.3
OpenCL Programming for the CUDA Architecture Version 2.3 8/31/2009 In general, there are multiple ways of implementing a given algorithm in OpenCL and these multiple implementations can have vastly different
NVIDIA CUDA GETTING STARTED GUIDE FOR MAC OS X
NVIDIA CUDA GETTING STARTED GUIDE FOR MAC OS X DU-05348-001_v6.5 August 2014 Installation and Verification on Mac OS X TABLE OF CONTENTS Chapter 1. Introduction...1 1.1. System Requirements... 1 1.2. About
GPGPU Computing. Yong Cao
GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power
Parallel Computing: Strategies and Implications. Dori Exterman CTO IncrediBuild.
Parallel Computing: Strategies and Implications Dori Exterman CTO IncrediBuild. In this session we will discuss Multi-threaded vs. Multi-Process Choosing between Multi-Core or Multi- Threaded development
CUDA Debugging. GPGPU Workshop, August 2012. Sandra Wienke Center for Computing and Communication, RWTH Aachen University
CUDA Debugging GPGPU Workshop, August 2012 Sandra Wienke Center for Computing and Communication, RWTH Aachen University Nikolay Piskun, Chris Gottbrath Rogue Wave Software Rechen- und Kommunikationszentrum
GPU Architectures. A CPU Perspective. Data Parallelism: What is it, and how to exploit it? Workload characteristics
GPU Architectures A CPU Perspective Derek Hower AMD Research 5/21/2013 Goals Data Parallelism: What is it, and how to exploit it? Workload characteristics Execution Models / GPU Architectures MIMD (SPMD),
Computer Graphics Hardware An Overview
Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and
Towards Fast SQL Query Processing in DB2 BLU Using GPUs A Technology Demonstration. Sina Meraji [email protected]
Towards Fast SQL Query Processing in DB2 BLU Using GPUs A Technology Demonstration Sina Meraji [email protected] Please Note IBM s statements regarding its plans, directions, and intent are subject to
ANDROID DEVELOPER TOOLS TRAINING GTC 2014. Sébastien Dominé, NVIDIA
ANDROID DEVELOPER TOOLS TRAINING GTC 2014 Sébastien Dominé, NVIDIA AGENDA NVIDIA Developer Tools Introduction Multi-core CPU tools Graphics Developer Tools Compute Developer Tools NVIDIA Developer Tools
Parallel Firewalls on General-Purpose Graphics Processing Units
Parallel Firewalls on General-Purpose Graphics Processing Units Manoj Singh Gaur and Vijay Laxmi Kamal Chandra Reddy, Ankit Tharwani, Ch.Vamshi Krishna, Lakshminarayanan.V Department of Computer Engineering
Fast Implementations of AES on Various Platforms
Fast Implementations of AES on Various Platforms Joppe W. Bos 1 Dag Arne Osvik 1 Deian Stefan 2 1 EPFL IC IIF LACAL, Station 14, CH-1015 Lausanne, Switzerland {joppe.bos, dagarne.osvik}@epfl.ch 2 Dept.
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
The Fastest, Most Efficient HPC Architecture Ever Built
Whitepaper NVIDIA s Next Generation TM CUDA Compute Architecture: TM Kepler GK110 The Fastest, Most Efficient HPC Architecture Ever Built V1.0 Table of Contents Kepler GK110 The Next Generation GPU Computing
Intrusion Detection Architecture Utilizing Graphics Processors
Acta Informatica Pragensia 1(1), 2012, 50 59, DOI: 10.18267/j.aip.5 Section: Online: aip.vse.cz Peer-reviewed papers Intrusion Detection Architecture Utilizing Graphics Processors Liberios Vokorokos 1,
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
Introduction to GPU Architecture
Introduction to GPU Architecture Ofer Rosenberg, PMTS SW, OpenCL Dev. Team AMD Based on From Shader Code to a Teraflop: How GPU Shader Cores Work, By Kayvon Fatahalian, Stanford University Content 1. Three
~ Greetings from WSU CAPPLab ~
~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)
GPGPU for Real-Time Data Analytics: Introduction. Nanyang Technological University, Singapore 2
GPGPU for Real-Time Data Analytics: Introduction Bingsheng He 1, Huynh Phung Huynh 2, Rick Siow Mong Goh 2 1 Nanyang Technological University, Singapore 2 A*STAR Institute of High Performance Computing,
NVIDIA CUDA INSTALLATION GUIDE FOR MICROSOFT WINDOWS
NVIDIA CUDA INSTALLATION GUIDE FOR MICROSOFT WINDOWS DU-05349-001_v7.5 September 2015 Installation and Verification on Windows TABLE OF CONTENTS Chapter 1. Introduction...1 1.1. System Requirements...
CUDA Tools for Debugging and Profiling. Jiri Kraus (NVIDIA)
Mitglied der Helmholtz-Gemeinschaft CUDA Tools for Debugging and Profiling Jiri Kraus (NVIDIA) GPU Programming@Jülich Supercomputing Centre Jülich 7-9 April 2014 What you will learn How to use cuda-memcheck
Learn CUDA in an Afternoon: Hands-on Practical Exercises
Learn CUDA in an Afternoon: Hands-on Practical Exercises Alan Gray and James Perry, EPCC, The University of Edinburgh Introduction This document forms the hands-on practical component of the Learn CUDA
GPU for Scientific Computing. -Ali Saleh
1 GPU for Scientific Computing -Ali Saleh Contents Introduction What is GPU GPU for Scientific Computing K-Means Clustering K-nearest Neighbours When to use GPU and when not Commercial Programming GPU
APPLICATIONS OF LINUX-BASED QT-CUDA PARALLEL ARCHITECTURE
APPLICATIONS OF LINUX-BASED QT-CUDA PARALLEL ARCHITECTURE Tuyou Peng 1, Jun Peng 2 1 Electronics and information Technology Department Jiangmen Polytechnic, Jiangmen, Guangdong, China, [email protected]
IBM CELL CELL INTRODUCTION. Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 IBM CELL. Politecnico di Milano Como Campus
Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 CELL INTRODUCTION 2 1 CELL SYNERGY Cell is not a collection of different processors, but a synergistic whole Operation paradigms,
ACCELERATING SELECT WHERE AND SELECT JOIN QUERIES ON A GPU
Computer Science 14 (2) 2013 http://dx.doi.org/10.7494/csci.2013.14.2.243 Marcin Pietroń Pawe l Russek Kazimierz Wiatr ACCELERATING SELECT WHERE AND SELECT JOIN QUERIES ON A GPU Abstract This paper presents
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Amanda O Connor, Bryan Justice, and A. Thomas Harris IN52A. Big Data in the Geosciences:
Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries
Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries Shin Morishima 1 and Hiroki Matsutani 1,2,3 1Keio University, 3 14 1 Hiyoshi, Kohoku ku, Yokohama, Japan 2National Institute
Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter
Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter Daniel Weingaertner Informatics Department Federal University of Paraná - Brazil Hochschule Regensburg 02.05.2011 Daniel
Parallel Computing for Data Science
Parallel Computing for Data Science With Examples in R, C++ and CUDA Norman Matloff University of California, Davis USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint
TEGRA X1 DEVELOPER TOOLS SEBASTIEN DOMINE, SR. DIRECTOR SW ENGINEERING
TEGRA X1 DEVELOPER TOOLS SEBASTIEN DOMINE, SR. DIRECTOR SW ENGINEERING NVIDIA DEVELOPER TOOLS BUILD. DEBUG. PROFILE. C/C++ IDE INTEGRATION STANDALONE TOOLS HARDWARE SUPPORT CPU AND GPU DEBUGGING & PROFILING
GeoImaging Accelerator Pansharp Test Results
GeoImaging Accelerator Pansharp Test Results Executive Summary After demonstrating the exceptional performance improvement in the orthorectification module (approximately fourteen-fold see GXL Ortho Performance
Introduction to GPGPU. Tiziano Diamanti [email protected]
[email protected] Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate
NVIDIA GeForce GTX 580 GPU Datasheet
NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines
CUDA Programming. Week 4. Shared memory and register
CUDA Programming Week 4. Shared memory and register Outline Shared memory and bank confliction Memory padding Register allocation Example of matrix-matrix multiplication Homework SHARED MEMORY AND BANK
HIGH PERFORMANCE VIDEO ENCODING WITH NVIDIA GPUS
April 4-7, 2016 Silicon Valley HIGH PERFORMANCE VIDEO ENCODING WITH NVIDIA GPUS Abhijit Patait Eric Young April 4 th, 2016 NVIDIA GPU Video Technologies Video Hardware Capabilities AGENDA Video Software
MIDeA: A Multi-Parallel Intrusion Detection Architecture
MIDeA: A Multi-Parallel Intrusion Detection Architecture Giorgos Vasiliadis, FORTH-ICS, Greece Michalis Polychronakis, Columbia U., USA Sotiris Ioannidis, FORTH-ICS, Greece CCS 2011, 19 October 2011 Network
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance
MapReduce on GPUs. Amit Sabne, Ahmad Mujahid Mohammed Razip, Kun Xu
1 MapReduce on GPUs Amit Sabne, Ahmad Mujahid Mohammed Razip, Kun Xu 2 MapReduce MAP Shuffle Reduce 3 Hadoop Open-source MapReduce framework from Apache, written in Java Used by Yahoo!, Facebook, Ebay,
Embedded Systems: map to FPGA, GPU, CPU?
Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven [email protected] Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware
Automatic CUDA Code Synthesis Framework for Multicore CPU and GPU architectures
Automatic CUDA Code Synthesis Framework for Multicore CPU and GPU architectures 1 Hanwoong Jung, and 2 Youngmin Yi, 1 Soonhoi Ha 1 School of EECS, Seoul National University, Seoul, Korea {jhw7884, sha}@iris.snu.ac.kr
Clustering Billions of Data Points Using GPUs
Clustering Billions of Data Points Using GPUs Ren Wu [email protected] Bin Zhang [email protected] Meichun Hsu [email protected] ABSTRACT In this paper, we report our research on using GPUs to accelerate
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Amanda O Connor, Bryan Justice, and A. Thomas Harris IN52A. Big Data in the Geosciences:
GPU-based Decompression for Medical Imaging Applications
GPU-based Decompression for Medical Imaging Applications Al Wegener, CTO Samplify Systems 160 Saratoga Ave. Suite 150 Santa Clara, CA 95051 [email protected] (888) LESS-BITS +1 (408) 249-1500 1 Outline
ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop. Emily Apsey Performance Engineer
ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop Emily Apsey Performance Engineer Presentation Overview What it takes to successfully virtualize ArcGIS Pro in Citrix XenApp and XenDesktop - Shareable
Fast Software AES Encryption
Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2010 Fast Software AES Encryption Osvik, Dag Arne Proceedings FSE'10 Proceedings of the 17th
The GPU Accelerated Data Center. Marc Hamilton, August 27, 2015
The GPU Accelerated Data Center Marc Hamilton, August 27, 2015 THE GPU-ACCELERATED DATA CENTER HPC DEEP LEARNING PC VIRTUALIZATION CLOUD GAMING RENDERING 2 Product design FROM ADVANCED RENDERING TO VIRTUAL
Advanced Rendering for Engineering & Styling
Advanced Rendering for Engineering & Styling Prof. B.Brüderlin Brüderlin,, M Heyer 3Dinteractive GmbH & TU-Ilmenau, Germany SGI VizDays 2005, Rüsselsheim Demands in Engineering & Styling Engineering: :
GPU-BASED TUNING OF QUANTUM-INSPIRED GENETIC ALGORITHM FOR A COMBINATORIAL OPTIMIZATION PROBLEM
GPU-BASED TUNING OF QUANTUM-INSPIRED GENETIC ALGORITHM FOR A COMBINATORIAL OPTIMIZATION PROBLEM Robert Nowotniak, Jacek Kucharski Computer Engineering Department The Faculty of Electrical, Electronic,
Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA
Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Technology, Computer Engineering by Amol
Eloquence Training What s new in Eloquence B.08.00
Eloquence Training What s new in Eloquence B.08.00 2010 Marxmeier Software AG Rev:100727 Overview Released December 2008 Supported until November 2013 Supports 32-bit and 64-bit platforms HP-UX Itanium
RevoScaleR Speed and Scalability
EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution
Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing. October 29th, 2015
E6893 Big Data Analytics Lecture 8: Spark Streams and Graph Computing (I) Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist, Graph Computing
Parallel Replication for MySQL in 5 Minutes or Less
Parallel Replication for MySQL in 5 Minutes or Less Featuring Tungsten Replicator Robert Hodges, CEO, Continuent About Continuent / Continuent is the leading provider of data replication and clustering
