3-9 EPR and Bell s theorem. EPR Bohm s version. S x S y S z V H 45

Size: px
Start display at page:

Download "3-9 EPR and Bell s theorem. EPR Bohm s version. S x S y S z V H 45"

Transcription

1 1 3-9 EPR and Bell s theorem EPR Bohm s version S x S y S z n P(n) n n P(0) 0 0 V H 45 P(45) D S D P(0) H V

2 2 ( ) Neumann EPR n P(n) EPR PP(n) n EPR ( ) But even at this stage there is essentially the question of an influence on the very conditions which define the possible types of predictions regarding the future behavior of the system. Bohr, N., Can Quantum Mechanical Description of Physical Reality be Considered Complete?, Physical Review, 48,

3 Bell EPR 2 n n n 2n n n 4 3 The change in the wave function by a measurement is not just local but instantaneously pervades the whole space, which seems to contradict the assertion of relativity theory. This paradox led Einstein and Schrö dinger, among others, to reject quantum theory as a complete theory. As long as one is dealing with only one observable at a time, there is essentially no difference between classical and quantum probability. However, there appears differences when one consider questions involving more than two observables at the same time, such as joint distributions or conditional probabilities. Interference effects arise and they make the quantum probabilities quite different from the classical ones. Lemma 1 For any events Q, R, and S, P(Q/R) + P(R/S) P(Q/S). ( P(Q/R) means the probability of the event that Q occurs but R does not.) (proof) Easy. Corollary 2 For n 2 events Q 1, Q 2,...,Q n, we have the inequality P(Q j /Q j+1 ) P(Q 1 /Q n ). ( Here is from j = 1 to j = n -1.) (proof) Induction on n. Proposition 3 For any events Q, R, and S, D(R, S) = P(R S) - P(R S) satisfies: (1) D(R, R) = 0; (2) D(R, S) = D(S, R) (symmetry); (3) D(Q, S) D(Q, R) + D(R, S) (the triangle inequality). ( In topology a function D satisfying above three conditions is called a distance function or metric. Proposition 3 has been known to mathematicians since 1920s, but its relevance to quantum theory was first appreciated by John Bell in 1964.)

4 4 (proof) (1) and (2) are routine. (3) is proved by using Lemma 1. It is helpful to think the polarization of light when confused by the paradoxes of quantum measurements. The filter only transmits light polarized at the appropriate angle, the measurement has affected what is measured. When we treat two filters case and three filters case, we have to be careful applying the probability calculation in such cases. There is a dangerous probabilistic trap. two filters case Malus law: a proportion cos 2 of the light transmitted by the first filter will also pass through a second filter polarized at an angle to the first. When is /2, no light can pass through both filters. three filters case The insertion of a third filter must result in even more photons being stopped. But we can have the result: P(Q/R) + P(R/S) - P(Q/S) < 0. The event S does not have the same meaning in P(Q/S) as it does in P(R/S). In the case of four filters, P(Q/R) + P(R/S) + P(S/T) - P(Q/T) < 0. (*) Locality assumption of EPR: The transmission of photon B by a filter r B really does depend only on the photon and the filter and not on anything else which has happened to A. Event R B is well-defined in the sense of locality. Proposition 4 Let Q A and S A be the events that a photon A is transmitted by the polaroid filters q A or s A, respectively, and similarly R B and T B the events that photon B is transmitted by filters r B or t B. Then for some filter angles the quantum mechanical probabilities satisfy P(Q A /R B ) + P(R B /S A ) + P(S A /T B ) < P(Q A /T B ). (proof) By (*). From Corollary 2 and Proposition 4 we have a contradiction. Bell was the first to realize that quantum mechanics gives predictions which are inconsistent with the inequalities for classical probability derived in Lemma 1. The experiments about this were done by Freedman and Clauser, and Aspect. ( ) Quantum nonlocality Generally, physical systems have global properties which continue to evolve globally even as the system becomes spatially separated - when the parts of the system are measured then they will manifest correlations which embody the previous global state. Might these correlations be the result of local processes, perhaps involving other, unknown or hidden facts about nature? No. (This is precisely what John Bell proved, in 1964.) The history of nonlocality Einstein, Podolsky and Rosen first focused attention on correlated, spatially extended quantum systems in 1935, though in their argument they assumed locality in order to find fault with quantum theory. 25 years later Bell s result showed that EPR s assumption was mistaken. In 1989, Greenberger, Horne and Zeilinger sharpened Bell s results further by considering correlated states with 3 or more entangled particles. There is a relation between the kind of entangled states considered in these proofs and the phenomenon of quantum computation. The full extent of nonlocality as a physical fact is not well understood - for example, does a superfluid exhibit nonlocality? Generally, almost any collapse of a wavefunction appears to be nonlocal: is this an artifact of our description?

5 5 Since the 1964 analysis of John Bell (Bell s theorem) it is widely recognized that in some sense the nonlocality is real - quantum mechanics is a much different theory than one could assemble with local parts. In the words of Henry Stapp (1977), The present formulation asserts that a theory entails a nonlocal connection if there is no conceivable way for the results in each region to be independent of the choice made in the other region. Quantum theory has such a nonlocal connection: That is what Bell actually discovered. One could turn the question around by viewing the quantum description as completely global, and ask what is the root of the apparent, provisional locality. What is at the root of nonlocality? That the guiding wave, in the general case, propagates not in ordinary three-space but in multidimensionalconfiguration space is the origin of the notorious nonlocality of quantum mechanics... John Bell, Speakable and unspeakable in quantum mechanics Einstein, Podolsky and Rosen I. In a 1935 Physical Review article entitled Can Quantum Mechanical Description of Physical Reality be Considered Complete? Albert Einstein, Boris Podolsky and Nathan Rosen opened what is now a 60 year old discussion of correlated multi-particle quantum systems. EPR discussed such systems as a way of critiquing what they called the completeness of the quantum description. In 1964 John Bell used David Bohm s version of EPR s argument to ironically rule against them: EPR s assumption of locality is found to be false, releasing quantum theory from any claim of incompleteness or inconsistency. The status of nonlocality in quantum mechanics is still being debated. II. EPR was attempting to embarrass some non-realist suppositions of quantum mechanics. They suggested considering two-particle systems which are correlated but become arbitrarily separated... EPR s starting point and central idea is that we can measure some aspect of one of the pair and subsequently predict outcomes of measuring corresponding aspects of the second one. EPR said that since this property of the second particle was predictable after the first measurement, it was therefore real. The counterfactual idea: But for that matter, EPR argued, we might just as well instead measure some other, perhaps contradictory (complimentary) property of the first particle, and in this case we would know some corresponding other fact about the second particle in the pair: this 'other' property of the second particle would be real. The assumption of locality: We at first go nowhere near the second particle (which might be at the other end of the galaxy by this time): we are only measuring the first particle to start with - EPR said that surely we could not alter "the real situation" of the second, distant particle, by measuring the first... EPR said, since a. we could make either measurement of the first particle, and b. since (by locality) this cannot itself influence the second particle, c. therefore the second particle must have pre-prepared real values for both (all) possible properties corresponding to measurements on the first particle. Yet in the case of complementary variables quantum theory denies that both properties can be simultaneously present. EPR concluded that since there were "real" properties of the world not even definable in quantum theory, quantum theory is incomplete. III. This conclusion of EPR s is based on an assumption of locality, and their recommendation favored the use of local underlying variables to complete quantum theory. The line of argument initiated by EPR was formally updated in 1964 when John Bell showed that the assumption of locality made by Einstein, Podolsky and Rosen was itself actually in contradiction with facts predicted by quantum mechanics. Bell summed it up this way in 1964, The paradox of Einstein, Podolsky, and Rosen was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables. These additional variables were to restore to the theory causality and locality... That idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. Bell s theorem I. In 1964 John showed that the world according to quantum mechanics really is nonlocal. The universe is nonlocal at the level of individual events (even though the locally observable aggregates of the universe

6 6 predicted by quantum mechanics do not bear any traceable nonlocal signature). Bell inverted the EPR argument since EPR had used locality as an assumption - Bell s theorem converted EPR s local-realist position into a paradigm of what is not true. Bell s ingenious proof focused on EPResque 2-particle systems: pairs which are perfectly correlated along any given measurement axis - recall that EPR had taken this correlation as implying underlying variables, but Bell problematized this conclusion by examining some other similar correlations of the pairs: for example when measured along respective axes with a relative rotation though some angle... With a relative angle between them the correlation between the two measurements is no longer perfect but varies as the cosine of the angle. Bell explored the type of underlying variable models (with built in locality) which EPR had suggested, and showed that the entire class of such models could in this case not give the same cosine varying correlation as quantum theory predicted. In 1991 GHZ sharpened Bell s result by considering systems of three or more particles and deriving an outright contradiction among EPR s assumptions. II. Because of issues associated with relativity, such as the relativity of simultaneity, nonlocality is problematic - some people prefer to avoid this conclusion and so try to interpret violations of the Bell inequality as implying something else... Quantum theory looks nonlocal (e.g. I measure here and collapse everywhere) and Bell s theorem seems to resolve the question in the affirmative. In the language of wavefunction collapse, Bell-GHZ showed that wavefunctions collapse at a distance as surely as they do locally. The Kochen-Specker Theorem The Kochen-Specker (KS) theorem demonstrates that it is, in general, impossible to ascribe to an individual quantum system a definite value for each of a set of observables not all of which necessarily commute. Of course elementary quantum metaphysics insists that we cannot assign definite values to noncommuting observables; the point of the KS theorem is to extract this directly from the quantum-mechanical formalism, rather than merely appealing to precepts enunciated by the founders... The GHZ nonlocality proof Beyond Bell s Theorem... (I.) In 1991, GHZ fundamentally updated Bell's result, essentially by investigating Bell-like relationships in correlated systems of more than two particles. What they showed surpassed Bell's result by eliminating the statistical nature of the proof. They show a situation involving three particles where after measuring two of the three, the third becomes an actual test contrasting between locality and the quantum picture: a local theory predicts one value is inevitable for the third particle, while quantum mechanics absolutely predicts a different value. (So, we only have to run the experiment once.) This is really equivalent to older proofs about the modeling of the quantum state by underlying variables, as was pointed out by David Mermin - Kochen and Specher required over a hundred particles in their original proof, while GHZ have it down to three. Mermin's Exponential Bell-inequality Beyond Bell s Theorem... (II.) Mermin, N. David, Extreme Quantum Entanglement in a Superposition of Macroscopically Distinct States, Physical Review Letters, V65, 15 (1990) A Bell inequality is derived for a state of n spin-1/2 particles which superposes two macroscopically distinct states. Quantum mechanics violates this inequality by an amount that grows exponentially with n. The Bell-inequality is a measure of the difference in correlation structure of the classical and quantum descriptions. The first examples (Bell, 1964) involved only two-particle systems - even in this case the richness of the correlation in the quantum de scription exceeded that of any scenarios in the classical, localized

7 description. Mermin has shown that this measure of the difference between the systems grown expentially with the number of particle in the entangled state. 7

A Modest View of Bell s Theorem. Steve Boughn, Princeton University and Haverford College

A Modest View of Bell s Theorem. Steve Boughn, Princeton University and Haverford College A Modest View of Bell s Theorem Steve Boughn, Princeton University and Haverford College Talk given at the 2016 Princeton-TAMU Symposium on Quantum Noise Effects in Thermodynamics, Biology and Information

More information

Superposition & the paradoxes of quantum mechanics

Superposition & the paradoxes of quantum mechanics Superposition & the paradoxes of quantum mechanics phil 20229 Jeff Speaks February 5, 2008 1 Some examples of quantum weirdness........................... 1 1.1 Color and hardness..................................

More information

DO WE REALLY UNDERSTAND QUANTUM MECHANICS?

DO WE REALLY UNDERSTAND QUANTUM MECHANICS? DO WE REALLY UNDERSTAND QUANTUM MECHANICS? COMPRENONS-NOUS VRAIMENT LA MECANIQUE QUANTIQUE? VARIOUS INTERPRETATIONS OF QUANTUM MECHANICS IHES, 29 janvier 2015 Franck Laloë, LKB, ENS Paris 1 INTRODUCTION

More information

Generally Covariant Quantum Mechanics

Generally Covariant Quantum Mechanics Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late

More information

Is quantum mechanics compatible with a deterministic universe? Two interpretations of quantum probabilities *

Is quantum mechanics compatible with a deterministic universe? Two interpretations of quantum probabilities * Is quantum mechanics compatible with a deterministic universe? Two interpretations of quantum probabilities * László E. Szabó Center for Philosophy of Science University of Pittsburgh and Institute for

More information

There is a physics joke about the stages of learning quantum mechanics:

There is a physics joke about the stages of learning quantum mechanics: Preface The only way to learn physics is to do physics. However, almost all physics textbooks leave a huge gap between the level of the problems that they solve as examples, and the level of the problems

More information

A Probabilistic Quantum Key Transfer Protocol

A Probabilistic Quantum Key Transfer Protocol A Probabilistic Quantum Key Transfer Protocol Abhishek Parakh Nebraska University Center for Information Assurance University of Nebraska at Omaha Omaha, NE 6818 Email: aparakh@unomaha.edu August 9, 01

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Javier Enciso encisomo@in.tum.de Joint Advanced Student School 009 Technische Universität München April, 009 Abstract In this paper, a gentle introduction to Quantum Computing

More information

On the Nature of Measurement in Quantum Mechanics. Abstract. Text

On the Nature of Measurement in Quantum Mechanics. Abstract. Text of Measurement in Quantum Mechanics DOUGLAS M. SNYDER LOS ANGELES, CALIFORNIA Abstract A number of issues related to measurement show that self-consistency is lacking in quantum mechanics as this theory

More information

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system. Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

"in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it

in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta. h is the Planck constant he called it 1 2 "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it the quantum of action 3 Newton believed in the corpuscular

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

One natural response would be to cite evidence of past mornings, and give something like the following argument:

One natural response would be to cite evidence of past mornings, and give something like the following argument: Hume on induction Suppose you were asked to give your reasons for believing that the sun will come up tomorrow, in the form of an argument for the claim that the sun will come up tomorrow. One natural

More information

arxiv:quant-ph/0404128v1 22 Apr 2004

arxiv:quant-ph/0404128v1 22 Apr 2004 How to teach Quantum Mechanics arxiv:quant-ph/0404128v1 22 Apr 2004 Oliver Passon Fachbereich Physik, University of Wuppertal Postfach 100 127, 42097 Wuppertal, Germany E-mail: Oliver.Passon@cern.ch In

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

Topic #6: Hypothesis. Usage

Topic #6: Hypothesis. Usage Topic #6: Hypothesis A hypothesis is a suggested explanation of a phenomenon or reasoned proposal suggesting a possible correlation between multiple phenomena. The term derives from the ancient Greek,

More information

TIME, SYMMETRY OF. Although everyday experience leads us to believe that time "flows" in one direction, the

TIME, SYMMETRY OF. Although everyday experience leads us to believe that time flows in one direction, the TIME, SYMMETRY OF Although everyday experience leads us to believe that time "flows" in one direction, the equations of both classical and modern physics work equally well in either time direction. Since

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

Problem of the Month: Perfect Pair

Problem of the Month: Perfect Pair Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

More information

Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability

Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability Itamar Pitowsky Department of Philosophy, the Hebrew University, Mount Scopus, Jerusalem 91905, Israel. itamarp@vms.huji.ac.il

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

Time and Causation in Gödel s Universe.

Time and Causation in Gödel s Universe. Time and Causation in Gödel s Universe. John L. Bell In 1949 the great logician Kurt Gödel constructed the first mathematical models of the universe in which travel into the past is, in theory at least,

More information

For example, estimate the population of the United States as 3 times 10⁸ and the

For example, estimate the population of the United States as 3 times 10⁸ and the CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

More information

What does Quantum Mechanics tell us about the universe?

What does Quantum Mechanics tell us about the universe? Fedora GNU/Linux; L A TEX 2ǫ; xfig What does Quantum Mechanics tell us about the universe? Mark Alford Washington University Saint Louis, USA More properly: What do experiments tell us about the universe?

More information

Quantum steering, entanglement and Bell nonlocality.

Quantum steering, entanglement and Bell nonlocality. Quantum steering, entanglement and Bell nonlocality. Frederick Denis Vas October 16, 2014 Supervised by Professor Terence Rudolph Submitted in partial fulfilment of the requirements for the degree of Master

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena

Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena Masanori Sato Honda Electronics Co., Ltd., 20 Oyamazuka, Oiwa-cho, Toyohashi, Aichi 441-3193, Japan Abstract

More information

Tilings of the sphere with right triangles III: the asymptotically obtuse families

Tilings of the sphere with right triangles III: the asymptotically obtuse families Tilings of the sphere with right triangles III: the asymptotically obtuse families Robert J. MacG. Dawson Department of Mathematics and Computing Science Saint Mary s University Halifax, Nova Scotia, Canada

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

More information

Cosmological Arguments for the Existence of God S. Clarke

Cosmological Arguments for the Existence of God S. Clarke Cosmological Arguments for the Existence of God S. Clarke [Modified Fall 2009] 1. Large class of arguments. Sometimes they get very complex, as in Clarke s argument, but the basic idea is simple. Lets

More information

Response to Critiques of Mortgage Discrimination and FHA Loan Performance

Response to Critiques of Mortgage Discrimination and FHA Loan Performance A Response to Comments Response to Critiques of Mortgage Discrimination and FHA Loan Performance James A. Berkovec Glenn B. Canner Stuart A. Gabriel Timothy H. Hannan Abstract This response discusses the

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

More information

Handout #1: Mathematical Reasoning

Handout #1: Mathematical Reasoning Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

More information

Remodelling the Big Bang

Remodelling the Big Bang Remodelling the Big Bang Dewey B. Larson Unquestionably, the most significant development that has taken place in cosmology in recent years is the replacement of the original Big Bang theory by a totally

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

TRIGONOMETRY Compound & Double angle formulae

TRIGONOMETRY Compound & Double angle formulae TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

More information

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

More information

Victor Shoup Avi Rubin. fshoup,rubing@bellcore.com. Abstract

Victor Shoup Avi Rubin. fshoup,rubing@bellcore.com. Abstract Session Key Distribution Using Smart Cards Victor Shoup Avi Rubin Bellcore, 445 South St., Morristown, NJ 07960 fshoup,rubing@bellcore.com Abstract In this paper, we investigate a method by which smart

More information

MI314 History of Mathematics: Episodes in Non-Euclidean Geometry

MI314 History of Mathematics: Episodes in Non-Euclidean Geometry MI314 History of Mathematics: Episodes in Non-Euclidean Geometry Giovanni Saccheri, Euclides ab omni naevo vindicatus In 1733, Saccheri published Euclides ab omni naevo vindicatus (Euclid vindicated om

More information

The program also provides supplemental modules on topics in geometry and probability and statistics.

The program also provides supplemental modules on topics in geometry and probability and statistics. Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

More information

CAUSALITY AND NONLOCALITY AS AXIOMS FOR QUANTUM MECHANICS

CAUSALITY AND NONLOCALITY AS AXIOMS FOR QUANTUM MECHANICS TAUP 2452-97 CAUSALITY AND NONLOCALITY AS AXIOMS FOR QUANTUM MECHANICS Sandu Popescu Isaac Newton Institute, 20 Clarkson Road, Cambridge, U.K. CB3 0EH Daniel Rohrlich School of Physics and Astronomy, Tel

More information

A SIMPLE PROOF OF FERMAT'S LAST THEOREM BY

A SIMPLE PROOF OF FERMAT'S LAST THEOREM BY Page 5984. A SIMPLE PROOF OF FERMAT'S LAST THEOREM BY J. C. EDWARDS Abstract. The proof of Fermat's Last Theorem offered here is relatively simple and well within Fermat's own expertise. Therefore, it

More information

Plato gives another argument for this claiming, relating to the nature of knowledge, which we will return to in the next section.

Plato gives another argument for this claiming, relating to the nature of knowledge, which we will return to in the next section. Michael Lacewing Plato s theor y of Forms FROM SENSE EXPERIENCE TO THE FORMS In Book V (476f.) of The Republic, Plato argues that all objects we experience through our senses are particular things. We

More information

A Few Basics of Probability

A Few Basics of Probability A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

More information

BOX. The density operator or density matrix for the ensemble or mixture of states with probabilities is given by

BOX. The density operator or density matrix for the ensemble or mixture of states with probabilities is given by 2.4 Density operator/matrix Ensemble of pure states gives a mixed state BOX The density operator or density matrix for the ensemble or mixture of states with probabilities is given by Note: Once mixed,

More information

MTH6120 Further Topics in Mathematical Finance Lesson 2

MTH6120 Further Topics in Mathematical Finance Lesson 2 MTH6120 Further Topics in Mathematical Finance Lesson 2 Contents 1.2.3 Non-constant interest rates....................... 15 1.3 Arbitrage and Black-Scholes Theory....................... 16 1.3.1 Informal

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Time-Space Models in Science and Art. Paolo Manzelli pmanzelli@gmail.com ; www.egocreanet.it ; www.wbabin.net; www.edscuola.it/lre.

Time-Space Models in Science and Art. Paolo Manzelli pmanzelli@gmail.com ; www.egocreanet.it ; www.wbabin.net; www.edscuola.it/lre. Time-Space Models in Science and Art. Paolo Manzelli pmanzelli@gmail.com ; www.egocreanet.it ; www.wbabin.net; www.edscuola.it/lre.html In the Classical Mechanics model of space- time, the role of time

More information

This puzzle is based on the following anecdote concerning a Hungarian sociologist and his observations of circles of friends among children.

This puzzle is based on the following anecdote concerning a Hungarian sociologist and his observations of circles of friends among children. 0.1 Friend Trends This puzzle is based on the following anecdote concerning a Hungarian sociologist and his observations of circles of friends among children. In the 1950s, a Hungarian sociologist S. Szalai

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item 2) (MAT 360) Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

More information

Unamended Quantum Mechanics Rigorously Implies Awareness Is Not Based in the Physical Brain

Unamended Quantum Mechanics Rigorously Implies Awareness Is Not Based in the Physical Brain Unamended Quantum Mechanics Rigorously Implies Awareness Is Not Based in the Physical Brain Casey Blood, PhD Professor Emeritus of Physics, Rutgers University www.quantummechanicsandreality.com CaseyBlood@gmail.com

More information

1/9. Locke 1: Critique of Innate Ideas

1/9. Locke 1: Critique of Innate Ideas 1/9 Locke 1: Critique of Innate Ideas This week we are going to begin looking at a new area by turning our attention to the work of John Locke, who is probably the most famous English philosopher of all

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

Chapter 21: The Discounted Utility Model

Chapter 21: The Discounted Utility Model Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

Measurement with Ratios

Measurement with Ratios Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

Turing Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005

Turing Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005 Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

DRAFT. Further mathematics. GCE AS and A level subject content

DRAFT. Further mathematics. GCE AS and A level subject content Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Trigonometric Functions and Equations

Trigonometric Functions and Equations Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

Example 1. Consider the following two portfolios: 2. Buy one c(s(t), 20, τ, r) and sell one c(s(t), 10, τ, r).

Example 1. Consider the following two portfolios: 2. Buy one c(s(t), 20, τ, r) and sell one c(s(t), 10, τ, r). Chapter 4 Put-Call Parity 1 Bull and Bear Financial analysts use words such as bull and bear to describe the trend in stock markets. Generally speaking, a bull market is characterized by rising prices.

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Tiers, Preference Similarity, and the Limits on Stable Partners

Tiers, Preference Similarity, and the Limits on Stable Partners Tiers, Preference Similarity, and the Limits on Stable Partners KANDORI, Michihiro, KOJIMA, Fuhito, and YASUDA, Yosuke February 7, 2010 Preliminary and incomplete. Do not circulate. Abstract We consider

More information

A New Interpretation of Information Rate

A New Interpretation of Information Rate A New Interpretation of Information Rate reproduced with permission of AT&T By J. L. Kelly, jr. (Manuscript received March 2, 956) If the input symbols to a communication channel represent the outcomes

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,

More information

GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!

GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014! GCDs and Relatively Prime Numbers! CSCI 2824, Fall 2014!!! Challenge Problem 2 (Mastermind) due Fri. 9/26 Find a fourth guess whose scoring will allow you to determine the secret code (repetitions are

More information

The two theories that revolutionized

The two theories that revolutionized The Strong Free Will Theorem John H. Conway and Simon Kochen The two theories that revolutionized physics in the twentieth century, relativity and quantum mechanics, are full of predictions that defy common

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

ON EXTERNAL OBJECTS By Immanuel Kant From Critique of Pure Reason (1781)

ON EXTERNAL OBJECTS By Immanuel Kant From Critique of Pure Reason (1781) ON EXTERNAL OBJECTS By Immanuel Kant From Critique of Pure Reason (1781) General Observations on The Transcendental Aesthetic To avoid all misapprehension, it is necessary to explain, as clearly as possible,

More information

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11} Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information