Binomial Random Variables. Binomial Distribution. Examples of Binomial Random Variables. Binomial Random Variables
|
|
|
- Piers Wood
- 9 years ago
- Views:
Transcription
1 Binomial Random Variables Binomial Distribution Dr. Tom Ilvento FREC 8 In many cases the resonses to an exeriment are dichotomous Yes/No Alive/Dead Suort/Don t Suort Binomial Random Variables When our focus is conducting an exeriment n times indeendently and observing the number x of times that one of the two outcomes occurs This x is a Binomial Random Variable We can exloit this by using known formulas for a robability distribution Examles of Binomial Random Variables, eole are olled in a telehone survey and asked if they suort George W. Bush The resonses are Yes () or No () The roortion saying yes is designated as (-) is the roortion saying No Binomial Random Variable Yes it is a binomial random variable Conduct an exeriment, times and observe the number x of times that Yes occurs Characteristics of a Binomial Random Variable The exeriment consists of n identical trials There are only two outcomes on each trial. Outcomes can be denoted as S for Success F for Failure
2 Characteristics of a Binomial Random Variable (cont.) The robability of S (success) remains the same from trial to trail Denoted as the roortion The robability of F (failure) Denoted as =(-) The trials are indeendent of each other The binomial random variable x is the number of Successes in n trials Also refer to Conditions Reuired for a Binomial Exeriment on P6 of book. Examle : Marketing examle Marketing survey of randomly chosen consumers Record their references for a new and an old diet soda ask them to choose their reference Let x be number of who choose the new brand This is a binomial random variable Conduct an exeriment times and observe the number x of times that Yes occurs Fitness Examle Heart Association says only % of adults over can ass the fitness test Suose eole over are selected at random Let x be the number who ass the minimum reuirements Find the robability distribution for x Conduct an exeriment times and observe the number x of times that ass occurs How to solve the fitness roblem the way we used with discrete random variables. List the events. List the samle oints that refer to that event. Calculate the robabilities =. and = (. -.) =.9 Event x Samle Points FFFF (.9)(.9)(.9)(.9) =.66 I multily through on the robabilities because Each trial is indeendent of the others Solve for Each Event Event x SFFF FSFF Pass Fail FFSF FFFS SSFF SFSF Pass Fail SFFS FSSF FSFS FFSS SSSF SFSS Pass Fail SSFS FSSS Pass FFFF Notation SSSS (.9)(.9)(.9)(.9) =.66 [(.)(.9) ] =.96 6[(.) (.9) ] =.86 [(.) (.9)] =.6 (.)(.)(.)(.) =. Fitness Examle When x = P =.66 Distribiution of X When x = One Pass P = When x = Two ass P =.86.. When x= Three. ass P =.6. When x= Four ass P =..
3 Fitness Examle Find the robability that none of the adults ass the test P(x=) =.66 Find the robability that of adults ass the test P(x=) =.6 When we have many trials the formulas get comlicated We can also use the binomial robability distribution formula Using factorial notation = n(n-)(n-) (n-(n-))! = xxxx =! =,!=,!=x=, The formula for any x in n trials is: n! Binomial Distribution Formula (P8) n! aka = n x x n x Most calculators will do all or art of this become familiar before trying it out Note: it uses the Combinatorial Rule as the first art of the formula What defines a binomial robability distribution? = of a success on a single trial = (-) robability of failure n= number of trials x = number of successes in n trials n! For x= in the fitness examle! ) = (.)!( )! (.9) = (.)(.9) ( )() = (.9) =.6 6 n! This matches the number we generated the other way Fitness Examle Table Event x SSFF SFSF Pass Fail SFFS FSSF FSFS FFSS SSSF SFSS Pass Fail SSFS FSSS Pass Notation FFFF SFFF FSFF Pass Fail FFSF FFFS SSSS
4 For x= in fitness examle! ) = (.)!( )! (.9) = (.)(.8) ( )( ) = (.8) =.86 n! This matches the number we generated the other way Fitness Examle Table Event x SFFF FSFF Pass Fail FFSF FFFS SSFF SFSF Pass Fail SFFS FSSF FSFS FFSS SSSF SFSS Pass Fail SSFS FSSS Pass Notation FFFF SSSS Mean of a Binomial Random Variable Since a binomial is only a dichotomy, the formulas for the mean and the standard deviation will simlify From := xa To := n (P) Variance and Standard Deviation of a Binomial Random Variable From F = (x-:) To F = n (P) The standard deviation is then σ = n Mean and Standard Deviation for Fitness Examle Heart Association says only % of adults over can ass the fitness test Thus the roortion assing was estimated at., and n for the roblem was eole := n = (.) =. F = n = (.)(.9) =.6 F =.6 Fitness Examle Table for mean and variance Event x Notation FFFF SFFF FSFF Pass Fail FFSF FFFS SSFF SFSF Pass Fail SFFS FSSF FSFS FFSS SSSF SFSS Pass Fail SSFS FSSS Pass SSSS
5 I could have solved for the mean using the formula for discrete random variables To solve for the mean I would have: n E( = xi x i ) = µ i= E( = ()(.66) + ()(.96) + ()(.86) + ()(.6) + ()(.) E( =. Binomial aroach E( = n = (.) =. I could have solved for the Variance using the formula for discrete random variables To solve for the variance I would have: E n [( x µ ) ] = ( xi µ ) x i ) = σ i= E(x-:) = ( -.) (.66) + (-.) (.96) + (-.) (.86) + (-.) (.6) + (-.) (.) E(x-:) =.6 Binomial aroach E( = n = (.)(.9) =.6 Nitrous Oxide Examle Suose we were recording the number of dentists that use nitrous oxide (laughing gas) in their ractice We know that 6% of dentists use the gas. =.6 and =. Let X = number of dentists in a random samle of five dentists use use laughing gas. n = Nitrous Oxide Examle We said the robability that a dentist uses nitrous oxide is.6 How would you assign robabilities to the values x could take when we randomly select five dentists? X Solve for Each Event Event x FFFFF SFFFF FSFFF FFSFF FFFSF Pass Fail FFFFS Pass Fail There Notation SSFFF SFSFF SFFSF SFFFS FSSFF FSFSF FSFFS FFSSF FFSFS FFFSS Is (.)(.)(.)(.)(.) =. [(.6)(.)(.)(.)(.)] x =.768 [(.6)(.6)(.)(.)(.)] x =. More!! X P(X) Nitrous Oxide Examle So what other way can we get to the robabilities? n!
6 Nitrous Oxide Examle Solve for x=)! ) = (.6) (.)!( )! () = (.6)(.6) = 6() n!.6 X).... Distribution of the Discrete Variable X Distribution of X Number of Dentists E(X) = F =.998 F =.9 X).... Distribution of the Discrete Variable X Distribution of X Number of Dentists E(X) = F =.998 F =.9 E(X) = n=(.6) = F = n = (.6)(.) =. F =.9 Examle: Seedling Survival An agronomist knows from ast exerience that 8% of a citrus variety seedling will survive being translanted. If we take a random samle of 6 seedlings from current stock, what is the robability that exactly seedlings will survive? Examle: Seedling Survival For the roblem we can calculate =.8 =. : = n = 6(.8) =.8 F = n = 6(.8)(.) =.96 F =.98 Examle: Seedling Survival that exactly survive is 6! 6 ) = (.8) (.)!(6 )! 6 = (.6)(.6) ( )( ) 7 = (.) =.6 8 6
7 Examle: Seedling Survival Solve for Each Event that exactly survive is 6! 6 ) = (.8) (.)!(6 )! 6 = (.)(.8) ( )( ) 7 = (.) =.8 6 Event x = All fail x = One ass x = Two ass x = Three ass x = Four ass x = Five ass x = 6 Six ass Look at the Cumulative Probabilities Event x = All fail x = One ass x = Two ass x = Three ass x = Four ass x = Five ass x = 6 Six ass Cumulative Citrus Examle Mean = 6(.8) =.8 Std Dev =.98 It Makes Sense! Our exectation is that most seedlings will survive (i.e..8 of 6) Look at the cumulative robability.... Distribiution for Citrus Examle 6 Move to the Binomial Table Binomial Table n=6 We can also use a table to hel Aendix B, Table B (Page 7) contains cumulative robabilities for n=, 6, 7, 8, 9,,,, and Each table lists values of across the to P =.,.,.,.,.,,.9,.99 k = # of successes k P
8 Binomial Table NOTE: The table is cumulative binomial robabilities, cumulative u to an including the value for k This means to find exact robabilities you might have to subtract two table values Binomial Probabilities Using the Table for Citrus Examle We said the robability that survive is.6 From the Table Cumulative u to is. Subtract the robabilities for u to (.99) =.6 You have to be careful using the Table! Binomial Formula using Excel In Excel, the formula for the Binomial Distribution function is: BINOMDIST(X,N,P,cumulative) X is the number of successes N is the number of indeendent trials P is the robability of success on each trial Cumulative is an argument Entering TRUE gives a cumulative robability u to and including X successes Entering FALSE gives the exact robability of X successes in N trials Binomial Formula using Excel For our examle of citrus lants BINOMDIST(,6,.8,TRUE) cumulative robability u to and including successes.696 BINOMDIST(,6,.8,FALSE) the exact robability of X successes in N trials =.6 Look at the Citrus Seedling Table Event x = All fail x = One ass x = Two ass x = Three ass x = Four ass x = Five ass x = 6 Six ass Cumulative Excel Binomial Distribution File =.8 =. X X) Cum X) n = Mean Variance Std Dev #NUM! #NUM! 8 #NUM! #NUM! 9 #NUM! #NUM! #NUM! #NUM! Formula Cum = FALSE.6 X successes = Formula Cum= TRUE.696 8
9 The Rare Event Aroach What if we had 6 seedlings selected randomly and all of them died? Given =.8, this would be a very rare event P(x=) =. Was this just by chance???? Examle Problem A study in the American Journal of Public Health found that 8% of female Jaanese students from heavy-smoking families showed signs of nasal allergies Consider a random samle of female Jaanese students exosed daily to heavy smoking What is the robability that fewer than of the students will have nasal allergies? Answer to Problem What is the robability that more than of the students will have nasal allergies? Let s revisit the sychic roblem Let s view this as a discrete random variable a binomial random variable Remember that a crystal is randomly laced under one of ten boxes and the sychic is asked to guess where it is. This exeriment is reeated seven times, and x is the number of correct decisions in seven tries. Thus it is a Binomial random variable. If the sychic is guessing, what is the value of, the robability of a correct decision on each trial? =. X the robability of a success is. Can you fill in the rest of the table? 9
10 To solve Use the table on age 7 n = 7 =. k = the values of our discrete random variable For x=) For k =, the robability is.8 which is the cumulative robability u and including To find the exact x=), subtract the value for k= from the value k = x=) = =.7 To solve Use the formula 7! ) = (.) (.9)!(7 )! 7 = (.) =.7 7 Solve for all Solve for Exected Value and Variance X 6 7 X Exected value = mean = n = 7*. =.7 Variance = n = 7*(.)*(.9) =.6 Standard Deviation = (.6). =.79 Can you solve for the mean and standard deviation of this binomial random variable? Poisson Distribution Alies to situations where we describe the number of events occurring in a secific time eriod or in a secific area x λ e = x! λ Where 8 = : e = natural logarithm =.78
Binomial Random Variables
Binomial Random Variables Dr Tom Ilvento Department of Food and Resource Economics Overview A special case of a Discrete Random Variable is the Binomial This happens when the result of the eperiment is
DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.
3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately
The Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
6.2. Discrete Probability Distributions
6.2. Discrete Probability Distributions Discrete Uniform distribution (diskreetti tasajakauma) A random variable X follows the dicrete uniform distribution on the interval [a, a+1,..., b], if it may attain
Binomial Probability Distribution
Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are
Section 5 Part 2. Probability Distributions for Discrete Random Variables
Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability
2. Discrete random variables
2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be
Normal Distribution as an Approximation to the Binomial Distribution
Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable
Monitoring Frequency of Change By Li Qin
Monitoring Frequency of Change By Li Qin Abstract Control charts are widely used in rocess monitoring roblems. This aer gives a brief review of control charts for monitoring a roortion and some initial
You flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks
6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about one-dimensional random walks. In
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover
Stat 134 Fall 2011: Gambler s ruin
Stat 134 Fall 2011: Gambler s ruin Michael Lugo Setember 12, 2011 In class today I talked about the roblem of gambler s ruin but there wasn t enough time to do it roerly. I fear I may have confused some
Frequentist vs. Bayesian Statistics
Bayes Theorem Frequentist vs. Bayesian Statistics Common situation in science: We have some data and we want to know the true hysical law describing it. We want to come u with a model that fits the data.
AP STATISTICS 2010 SCORING GUIDELINES
2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability
The Lognormal Distribution Engr 323 Geppert page 1of 6 The Lognormal Distribution
Engr 33 Geert age 1of 6 The Lognormal Distribution In general, the most imortant roerty of the lognormal rocess is that it reresents a roduct of indeendent random variables. (Class Handout on Lognormal
WHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
A MOST PROBABLE POINT-BASED METHOD FOR RELIABILITY ANALYSIS, SENSITIVITY ANALYSIS AND DESIGN OPTIMIZATION
9 th ASCE Secialty Conference on Probabilistic Mechanics and Structural Reliability PMC2004 Abstract A MOST PROBABLE POINT-BASED METHOD FOR RELIABILITY ANALYSIS, SENSITIVITY ANALYSIS AND DESIGN OPTIMIZATION
Chapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
Probability Distributions
Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.
Risk and Return. Sample chapter. e r t u i o p a s d f CHAPTER CONTENTS LEARNING OBJECTIVES. Chapter 7
Chater 7 Risk and Return LEARNING OBJECTIVES After studying this chater you should be able to: e r t u i o a s d f understand how return and risk are defined and measured understand the concet of risk
Chapter 5. Random variables
Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like
Math 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
The Cubic Formula. The quadratic formula tells us the roots of a quadratic polynomial, a polynomial of the form ax 2 + bx + c. The roots (if b 2 b+
The Cubic Formula The quadratic formula tells us the roots of a quadratic olynomial, a olynomial of the form ax + bx + c. The roots (if b b+ 4ac 0) are b 4ac a and b b 4ac a. The cubic formula tells us
Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2
Chapter 4. Probability Distributions
Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 5.1 Homework Answers 5.7 In the proofreading setting if Exercise 5.3, what is the smallest number of misses m with P(X m)
An Introduction to Risk Parity Hossein Kazemi
An Introduction to Risk Parity Hossein Kazemi In the aftermath of the financial crisis, investors and asset allocators have started the usual ritual of rethinking the way they aroached asset allocation
Chapter 5 - Practice Problems 1
Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level
Normal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
Lecture 5 : The Poisson Distribution
Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
Some special discrete probability distributions
University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that
Applied Reliability ------------------------------------------------------------------------------------------------------------ Applied Reliability
Applied Reliability Techniques for Reliability Analysis with Applied Reliability Tools (ART) (an EXCEL Add-In) and JMP Software AM216 Class 6 Notes Santa Clara University Copyright David C. Trindade, Ph.
ST 371 (IV): Discrete Random Variables
ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible
C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.
Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
Binomial random variables
Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance
MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard
Chapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
Sample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
Unit 4 The Bernoulli and Binomial Distributions
PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population
Joint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
Lecture 10: Depicting Sampling Distributions of a Sample Proportion
Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a
Week 3&4: Z tables and the Sampling Distribution of X
Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal
THE BINOMIAL DISTRIBUTION & PROBABILITY
REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution
Pr(X = x) = f(x) = λe λx
Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error
Random variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
A Multivariate Statistical Analysis of Stock Trends. Abstract
A Multivariate Statistical Analysis of Stock Trends Aril Kerby Alma College Alma, MI James Lawrence Miami University Oxford, OH Abstract Is there a method to redict the stock market? What factors determine
Section 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
Chapter 5: Normal Probability Distributions - Solutions
Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that
Normal and Binomial. Distributions
Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,
Review for Test 2. Chapters 4, 5 and 6
Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.
The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution
Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing
4. Discrete Probability Distributions
4. Discrete Probabilit Distributions 4.. Random Variables and Their Probabilit Distributions Most of the exeriments we encounter generate outcomes that can be interreted in terms of real numbers, such
Optimal Risky Portfolios
Otimal Risky Portolio Otimal Risky Portolios When choosing the otimal allocation between a risk-ree asset and a risky ortolio, we have assumed that we have already selected the otimal risky ortolio In
The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University
The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University [email protected] Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random
Bayes Theorem. Bayes Theorem- Example. Evaluation of Medical Screening Procedure. Evaluation of Medical Screening Procedure
Bayes Theorem P(C A) P(A) P(A C) = P(C A) P(A) + P(C B) P(B) P(E B) P(B) P(B E) = P(E B) P(B) + P(E A) P(A) P(D A) P(A) P(A D) = P(D A) P(A) + P(D B) P(B) Cost of procedure is $1,000,000 Data regarding
IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem
IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have
The Binomial Distribution
The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing
1 Gambler s Ruin Problem
Coyright c 2009 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins
CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction
CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous
Section 5-3 Binomial Probability Distributions
Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial
An Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
any any assistance on on this this examination.
I I ledge on on my honor that I have not given or received any any assistance on on this this examination. Signed: Name: Perm #: TA: This quiz consists of 11 questions and has a total of 6 ages, including
6 POISSON DISTRIBUTIONS
6 POISSON DISTRIBUTIONS Chapter 6 Poisson Distributions Objectives After studying this chapter you should be able to recognise when to use the Poisson distribution; be able to apply the Poisson distribution
Characteristics of Binomial Distributions
Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
Project Management and. Scheduling CHAPTER CONTENTS
6 Proect Management and Scheduling HAPTER ONTENTS 6.1 Introduction 6.2 Planning the Proect 6.3 Executing the Proect 6.7.1 Monitor 6.7.2 ontrol 6.7.3 losing 6.4 Proect Scheduling 6.5 ritical Path Method
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1.
Lecture 6: Chapter 6: Normal Probability Distributions A normal distribution is a continuous probability distribution for a random variable x. The graph of a normal distribution is called the normal curve.
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
Probability Distributions
CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution
ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003
ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003 1. (4 points) The number of claims for missing baggage for a well-known airline
Point and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
Binomial random variables (Review)
Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die
Practice Problems #4
Practice Problems #4 PRACTICE PROBLEMS FOR HOMEWORK 4 (1) Read section 2.5 of the text. (2) Solve the practice problems below. (3) Open Homework Assignment #4, solve the problems, and submit multiple-choice
Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.)
Name: Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) The total score is 100 points. Instructions: There are six questions. Each one is worth 20 points. TA will grade the best five
16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION
6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of
39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes
The Normal Approximation to the Binomial Distribution 39.2 Introduction We have already seen that the Poisson distribution can be used to approximate the binomial distribution for large values of n and
Lecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
Sampling Distributions
Sampling Distributions You have seen probability distributions of various types. The normal distribution is an example of a continuous distribution that is often used for quantitative measures such as
Lecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
IEEM 101: Inventory control
IEEM 101: Inventory control Outline of this series of lectures: 1. Definition of inventory. Examles of where inventory can imrove things in a system 3. Deterministic Inventory Models 3.1. Continuous review:
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
Penalty Interest Rates, Universal Default, and the Common Pool Problem of Credit Card Debt
Penalty Interest Rates, Universal Default, and the Common Pool Problem of Credit Card Debt Lawrence M. Ausubel and Amanda E. Dawsey * February 2009 Preliminary and Incomlete Introduction It is now reasonably
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.
2 Binomial, Poisson, Normal Distribution
2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.
Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions
Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
Beyond the F Test: Effect Size Confidence Intervals and Tests of Close Fit in the Analysis of Variance and Contrast Analysis
Psychological Methods 004, Vol. 9, No., 164 18 Coyright 004 by the American Psychological Association 108-989X/04/$1.00 DOI: 10.1037/108-989X.9..164 Beyond the F Test: Effect Size Confidence Intervals
Practice problems for Homework 11 - Point Estimation
Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
