Chapter 5. Discrete Probability Distributions
|
|
|
- Lillian Potter
- 10 years ago
- Views:
Transcription
1 Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable traits, one of them will be dominant and the other will be recessive. 2. Experiment using pea plants. Green dominant, yellow recessive. 3. P(green pod) = ¾ = offspring, 428 with green pods, 428/580 = Gene from Gene from Offspring Color of Parent 1 Parent 2 Genes Offspring Pod green + green green/green green green + yellow green/yellow green yellow + green yellow/green green yellow + yellow yellow/yellow yellow 1
2 5.1 Review and Preview Combine the descriptive statistics presented in chapter 2 and 3 and those of probability present in chapter 4. x f Chapters 2 and 3 Chapters 4 Collect sample 1 8 data, then 2 10 get statistics 3 11 x = 3.6 and graphs 4 12 s = P(1) = 1/6 Find the P(2) = 1/6 probability for P(3) = 1/6 Each outcome P(4) = 1/6 and graphs P(5) = 1/6 P(6) = 1/6 chapter 5 Create a theoretical model describing how the experiment is expected to behave, then get its parameter. x P(x) 1 1/6 2 1/6 3 1/6 = /6 = /6 6 1/6 Figure 5 1 Combining Descriptive Methods and Probability to Form a Theorem model of Behavior 2
3 5.2 Random Variables 1. Related Concepts 2. Graphs 3. Mean, Variance, and Standard Deviation 4. Rationale for Formula 5-1 through Identifying Unusual Results with the Range Rule of Thumb 6. Identifying Unusual Results with Probabilities 7. Expected Value 3
4 1. Related Concepts 5.2 Random Variables Definition A random variable is a variable (typically represented by x) that has a single numerical value, determined by chance, for each outcome of a procedure A probability distribution is a description that gives the probability for each value of the random variable. It is often expressed in the format of a graph, table, or formula 4
5 1. Related Concepts 5.2 Random Variables e.g.1 Genetics Consider the offspring of peas from parents both having the green/yellow combination of pod genes. Under these combinations, the probability that the offspring has a green pod is ¾ or If 5 such offspring is obtained, and let x = number of peas with green pods among 5 offspring peas then x is a random variable. Table 5-1 is a probability distribution. (5-3 will tell how the values of P(x) is obtained) x ( Number of Peas with Green Pods) P(x) Table 5-1. Probability Distribution: Probabilities of Numbers of Peas with Green Pods Among 5 Offspring Peas 5
6 1. Related Concepts 5.2 Random Variables Definition. A discrete random variable has either a finite number of values or a countable number of values A continuous random variable has infinitely many values, those values can be associated with measurements on a continuous scale without gaps or interruptions (voltmeter). 6
7 1. Related Concepts 5.2 Random Variables e.g.2 Determine each variable as discrete or continuous. 1). x = the # of eggs that a hen lays in a day Discrete 2). x = the # of stat students present in class on a given day Discrete 3). x = the amount of milk a cow produces Continuous 4). x = the measure of voltage for a particular smoke detector Continuous 7
8 Probability 2. Graphs Probability Histogram. 5.2 Random Variables Figure 5-3 Probabilities Histogram Number of Peas with Green Pods Among 5 8
9 5.2 Random Variables 2. Graphs Requirement for a Probability Distribution 1. P(x) = 1, where x assumes all possible values (the sum of all probabilities must be 1) 2. 0 P(x) 1, for every individual value of x, (that is, each probability value must be between 0 and 1 inclusive.) Example 3. Is Table 5-2 a probability distribution? x No P(x) Table 5-2 Cell Phones per Household 9
10 2. Graphs 5.2 Random Variables Example 4. P(x) = x/10, where x = 0, 1, 2, 3, 4. Is P a probability distribution? Yes 3. Mean, Variance, and Standard Deviation Formula 5-1 Formula 5-2 x P(x) 2 2 ( x ) P( x) Mean for a probability distribution Variance for a probability distribution Formula x P( x) Variance for a probability distribution Formula x P( ) x Standard Deviation for a probability distribution 10
11 5.2 Random Variables 4. Rationale for Formula 5-1 through 5-4 Consider mean for example. From Formula 3-2, section 3-2, we have Similarly, one can derive 5-2 (using formula on page 103 for Standard Deviation). Formula 5-3 is derived from Formula from 5-3 directly. f N x f x N x f N x P(x) 11
12 5.2 Random Variables 4. Rationale for Formula 5-1 through 5-4 Round-off Rule for 2,, and Round results by carrying one more decimal place than the number of decimal places used for the random variable x. If the value of x are integers, round decimal place 2,, and to one 12
13 5.2 Random Variables 5. Identifying Unusual Results with the Range Rule of Thumb e.g.5 Continue use the Chapter example. x P(x) x P(x) sum = x x 2 P(x) sum = Table 5-3 Calculating,, and for a Probability Distribution = = =
14 5.2 Random Variables 5. Identifying Unusual Results with the Range Rule of Thumb e.g.6 Identifying unusual results with the range rule of thumb. By Range Rule of Thumb Maximum usual value = + 2 = (1.0) = 5.8 Minimum usual value = 2 = 3.8 2(1.0) = 1.8 Interpretation. Based this result, we conclude that for groups of 5 offspring peas, the number of offspring peas with green pods should usually fall between 1.8 and 5.8. If 5 offspring peas are generated as described, it would be unusual to get only 1 with a green pod. 14
15 5.2 Random Variables 6. Identifying Unusual Results with Probabilities Rare Event Rule If, under a given assumption (such as the assumption that a 2 coin is fair), the probability of a particular observed event (such as 992 heads in 1000 tosses of a coin) is extremely small, we conclude that the assumption is probably not correct
16 5.2 Random Variables 6. Identifying Unusual Results with Probabilities Probabilities can be used to apply the rare event rule as follows: Using Probabilities to Determine When Results Are Unusual Unusually high number of success: x successes among n trials is an unusually high number of successes if P(x or more) 0.05.* e.g. 9 success in 10 trials is high if P(9 or more successes) 0.05 Unusually low number of success: x successes among n trials is an unusually low number of successes if P(x or fewer) 0.05.* e.g. 2 success in 10 trials is low if P(2 or fewer successes) 0.05 * The value of 0.05 is commonly used, but is not absolutely rigid. 16
17 5.2 Random Variables 6. Identifying Unusual Results with Probabilities Let s flip a coin to see it favors heads, 1000 tosses resulted in 501 heads. This is not an evidence that the coin favors heads P(501 heads in 1000 flips) = , a very low probability. However, P(at least 501 heads in 1000 flips) = 0.487, a high probability 17
18 5.2 Random Variables 6. Identifying Unusual Results with Probabilities e.g.7. Identifying Unusual Results with Probabilities Use probability to determine whether 1 is an unusually low number of peas with green pods when 5 offspring are generated from parents both having the green/yellow pair of genes. Solution. P( 1 or fewer ) = P(0 or 1) = P(0) + P(1) = = < 0.05 Interpretation: the result of 1 pea with a green pod is unusually low. There is a very small likelihood (0.016) of generating 1 or fewer peas with green pods. 18
19 7. Expected Value 5.2 Random Variables Definition the expected value of a discrete random variable is denoted by E, and it represents the average value of a the outcomes. It is obtained by finding the value of x P(x), E = x P(x) From formula 5-1, we see that E =. Thus the expected value of the number of peas with green pods is also
20 7. Expected Value 5.2 Random Variables e.g.8 How to be a Better Bettor. You are considering placing a bet either on the number 7 in a roulette or on the pass line in the dice game of craps at the Venetian casino in Las Vegas. a. If you bet $5 on the number 7 in roulette, the probability of losing $5 is 37/38 and the probability of making a net gain of $175 is 1/38. (the prize is $180, including your $5 bet, so the net gain is $175.) Find your expected value if you bet $5 on the number 7 in roulette. Table 5-4 Roulette Event x P(x) xp(x) Lose Gain (net) Total $5 37/38 $4.87 $175 1/38 $4.61 E = $0.26 (or 26 ) 20
21 7. Expected Value 5.2 Random Variables e.g.8 How to be a Better Bettor. Continue b. If you bet $5 on the pass line in the dice game of craps, the probability of losing $5 is 251/495 and the probability of making a net gain of $5 is 244/495. (If you bet $5 on the pass line and win, you are given $10 that includes your bet, so the net gain is $5). Find your expected value if you bet on the pass line. which one is better: a $5 on the number 7 in roulette or a $5 on the pass line in the dice game? Why? Table 5-5 Dice Event x P(x) xp(x) Lose Gain (net) Total $5 251/495 $2.54 $5 244/495 $2.46 E = $0.08 (or 8 ) 21
22 7. Expected Value 5.2 Random Variables Interpretation. The $5 bet in the roulette results in an expected value of 26 and the $5 bet in the dice game results in an expected value of 8. The bet in the dice game is better because it has large expected value. That is, you are better off losing 8 instead of losing 26. Even though the roulette game provides an opportunity for a larger payoff, the craps game is better in the long run. So far, we introduced the discrete probability distribution Next, the binomial probability distribution, a special case of the discrete distribution Other case, Poisson, geometric, hyper-geometric 22
23 5.3 Binomial Probability Distribution 1. Related Concepts 2. Rationale for Binomial Probability Formula 23
24 5.3 Binomial Probability Distribution 1. Related Concepts Definition A Binomial probability Distribution results from a procedure that meets all of the following requirements: 1) Fixed number of trials 2) The trials must be independent (the outcome of any individual trial doesn t affect the probabilities in the other trials) 3) Each trial must have all outcomes classified into two categories (commonly referred as success and failure) 4) The probability of a success remains the same in all trials. 24
25 5.3 Binomial Probability Distribution 1. Related Concepts Notation for Binomial Probability Distributions S and F (success and failure) denote the two possible categories of all outcomes; P(S) = p ( p = probability of a success) P(F) = q ( q = probability of a failure, q = 1 p ) n denote the fixed number of trial x specific number of success in n trials, 0 x n p denote the probability of success in one of n trials q denote the probability of failure in one of n trials P(x) the probability of getting exactly x success in n trials 25
26 5.3 Binomial Probability Distribution 1. Related Concepts e.g.1. Genetics. Consider an experiment in which 5 offspring peas are generated from 2 parents each having the green/yellow combination of genes for pod color. P(green pod) = We want to find the probability that exact 3 of the 5 offspring peas have a green pod. a. Does this procedure result in a binomial distribution? i. The number of trails is fixed (5) ii. iii. iv. The 5 trails are independent, because the probability of any spring pea having a green pod is not affected by the outcome of any other offspring pea. Each of the 5 trails has two categories of outcomes: the pea has a green pod or it does not For each offspring pea, the probability that it has a green pod is ¾ and the probability remains the same for each of the 5 peas 26
27 5.3 Binomial Probability Distribution 1. Related Concepts b. If yes, identify n, x, p and q. a) n = 5 b) x = 3 c) p = 0.75 d) q = 0.25 Method 1: Using the Binomial Probability Formula. Formula 5-5 P(x) = n! x!( n x)! p x q nx for x = 0, 1,, n 27
28 5.3 Binomial Probability Distribution 1. Related Concepts e.g.2. Continued. Method 1: Using the Formula 5-5 P(3) = 5! 3 53 (0.75) (0.25) 3!(5 3)! 5! 3 2 (0.75) (0.25) 3!2! = (10)( )(0.0625) = The probability of getting exactly 3 peas with green pods among among 5 offspring peas is (round to 3 significant digits) 28
29 5.3 Binomial Probability Distribution 1. Related Concepts Method 2: Using Technology Use Excel (function name: binom(x, n, p)) Use TI-84 (function name: binompdf(n, p, x)) 29
30 5.3 Binomial Probability Distribution 1. Related Concepts Method 3: Using Table A-1 in Appendix A Table A-1 cannot be used for e.g.2 because p = 0.75 is not included. e.g.3 McDonald s Brand Recognition. The fast food chain has a brand name recognition rate of 95% around the world. Randomly select 5 people, find a. The probability that exactly 3 of the 5 recognize McDonald s. b. The probability that the number of people who recognize McDonald s is 3 or fewer. Solution. a. P(3) = b. P(3 or fewer) = P(0) + P(1) + P(2) + P(3) = =
31 5.3 Binomial Probability Distribution 2. Rationale for the Binomial Probability Formula The number of outcomes with exactly x successes among n trials The probability of x successes among n trials for any one particular order P( x) n! x!( n x)! p x q nx 31
32 5.4 Mean, Variance, and SD for Binomial Distribution For Any Discrete Prob. Distribution For Binomial distribution Formula 5-1 = [x P(x)] Formula 5-6 = np Formula = [x 2 P(x)] 2 Formula = npq 2 2 Formula 5-4 [ x P( x)] Formula 5-8 npq Using the range rule of thumb, we can consider values to be unusual if they fall outside of the limits obtained from the following: maximum usual value: + 2 minimum usual value: 2 32
33 5.4 Mean, Variance, and SD for Binomial Distribution Example 1. Genetics. Use the formula 5-6 and 5-8 to find the mean and standard deviation for the number of peas with green pods when groups of 5 offspring peas are generated. Assume that there is a 0.75 probability that an offspring pea has a green pod (as described in the chapter problem).. Solution. Using n = 5, p = 0.75, and q = Now = np = 5(0.75) = 3.75 npq ( 5)(0.75)(0.25) (rounded) This results are consistent with the results on page example 5, section 5-2. But computation is much easy. 33
34 5.4 Mean, Variance, and SD for Binomial Distribution e.g.2. Genetics. In an actual experiment, Mendel generated 580 offspring peas. He claimed that 75%, or 435, of them would have green pods. The actual experiment resulted in 428 peas with green pods. a. Assuming that groups of 580 offspring peas are generated, find the mean and standard deviation for the numbers of peas with green pods. b. Use the range rule of thumb to find the minimum usual number and the maximum usual number of peas with green pods. Based on those numbers, can we conclude that Mendel s actual result of 428 peas with green pods is unusal? Does this suggest that Mendel s value of 75% is wrong? 34
35 5.4 Mean, Variance, and SD for Binomial Distribution Solution. a. Using n = 580, p = 0.75, and q = Now = np = (580)(0.75) = npq ( 580)(0.75)(0.25) 10.4 b. Maximum usual value: + 2 = (10.4) = Minimum usual value: 2 = (10.4) = Interpretation... If Mendel generated 580 offspring peas and if his 75% rate is correct, the number of peas with green pods should usually fall between and Mendel actually got 428 peas with green pods, and that value does fall within the range of usual values. So the experimental result is consistent with the 75% rate. 35
Chapter 4. Probability Distributions
Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive
MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
Section 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
MAT 155. Key Concept. September 22, 2010. 155S5.3_3 Binomial Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance, and Standard
MAT 155. Key Concept. February 03, 2011. 155S4.1 2_3 Review & Preview; Basic Concepts of Probability. Review. Chapter 4 Probability
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 4 Probability 4 1 Review and Preview 4 2 Basic Concepts of Probability 4 3 Addition Rule 4 4 Multiplication Rule: Basics 4 7 Counting To find
Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
The Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?
The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined
Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris [email protected] Department of Mathematics University of Michigan February 9, 2009 When a large
STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
Chapter 3. Probability
Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.
The Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.
Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of
Week 5: Expected value and Betting systems
Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2
Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4.
Math 115 N. Psomas Chapter 4 (Sections 4.3-4.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give
Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
If, under a given assumption, the of a particular observed is extremely. , we conclude that the is probably not
4.1 REVIEW AND PREVIEW RARE EVENT RULE FOR INFERENTIAL STATISTICS If, under a given assumption, the of a particular observed is extremely, we conclude that the is probably not. 4.2 BASIC CONCEPTS OF PROBABILITY
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover
Expected Value and the Game of Craps
Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the
Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
2 GENETIC DATA ANALYSIS
2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have
Solutions: Problems for Chapter 3. Solutions: Problems for Chapter 3
Problem A: You are dealt five cards from a standard deck. Are you more likely to be dealt two pairs or three of a kind? experiment: choose 5 cards at random from a standard deck Ω = {5-combinations of
Chapter 5: Discrete Probability Distributions
Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter
The Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
Chapter 5. Random variables
Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like
2. Discrete random variables
2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups
Probability & Probability Distributions
Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions
Statistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
4.1 4.2 Probability Distribution for Discrete Random Variables
4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.
University of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
Binomial Probability Distribution
Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are
MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard
We { can see that if U = 2, 3, 7, 11, or 12 then the round is decided on the first cast, U = V, and W if U = 7, 11 X = L if U = 2, 3, 12.
How to Play Craps: Craps is a dice game that is played at most casinos. We will describe here the most common rules of the game with the intention of understanding the game well enough to analyze the probability
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
STAT 35A HW2 Solutions
STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups
HONORS STATISTICS. Mrs. Garrett Block 2 & 3
HONORS STATISTICS Mrs. Garrett Block 2 & 3 Tuesday December 4, 2012 1 Daily Agenda 1. Welcome to class 2. Please find folder and take your seat. 3. Review OTL C7#1 4. Notes and practice 7.2 day 1 5. Folders
36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
Betting systems: how not to lose your money gambling
Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple
Normal Distribution as an Approximation to the Binomial Distribution
Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable
DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions
Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
Thursday, November 13: 6.1 Discrete Random Variables
Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
3.2 Roulette and Markov Chains
238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.
WEEK #23: Statistics for Spread; Binomial Distribution
WEEK #23: Statistics for Spread; Binomial Distribution Goals: Study measures of central spread, such interquartile range, variance, and standard deviation. Introduce standard distributions, including the
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001
Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
Probability Distributions
CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,
ST 371 (IV): Discrete Random Variables
ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible
CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS
CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,
Expected Value and Variance
Chapter 6 Expected Value and Variance 6.1 Expected Value of Discrete Random Variables When a large collection of numbers is assembled, as in a census, we are usually interested not in the individual numbers,
Review. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population
The normal approximation to the binomial
The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very
In the situations that we will encounter, we may generally calculate the probability of an event
What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead
Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
Section 5-3 Binomial Probability Distributions
Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial
Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.
3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately
Example. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away)
: Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris [email protected] Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest
Expected Value and Variance
Chapter 6 Expected Value and Variance 6.1 Expected Value of Discrete Random Variables When a large collection of numbers is assembled, as in a census, we are usually interested not in the individual numbers,
Worksheet for Teaching Module Probability (Lesson 1)
Worksheet for Teaching Module Probability (Lesson 1) Topic: Basic Concepts and Definitions Equipment needed for each student 1 computer with internet connection Introduction In the regular lectures in
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
John Kerrich s coin-tossing Experiment. Law of Averages - pg. 294 Moore s Text
Law of Averages - pg. 294 Moore s Text When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So, if the coin is tossed a large number of times, the number of heads and the
Random variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
Section 6-5 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
Lab 11. Simulations. The Concept
Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that
Ch. 13.3: More about Probability
Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the
MrMajik s Money Management Strategy Copyright MrMajik.com 2003 All rights reserved.
You are about to learn the very best method there is to beat an even-money bet ever devised. This works on almost any game that pays you an equal amount of your wager every time you win. Casino games are
Section 5 Part 2. Probability Distributions for Discrete Random Variables
Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability
AP Statistics 7!3! 6!
Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
b) All outcomes are equally likely with probability = 1/6. The probabilities do add up to 1, as they must.
10. a. if you roll a single die and count the number of dots on top, what is the sample space of all possible outcomes? b. assign probabilities to the outcomes of the sample space of part (a). Do the possibilities
Second Midterm Exam (MATH1070 Spring 2012)
Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems
Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.
Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()
The Binomial Distribution
The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
3.2 Measures of Spread
3.2 Measures of Spread In some data sets the observations are close together, while in others they are more spread out. In addition to measures of the center, it's often important to measure the spread
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about
Expected Value. 24 February 2014. Expected Value 24 February 2014 1/19
Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery
6 PROBABILITY GENERATING FUNCTIONS
6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned
Sample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
Discrete Probability Distributions
blu497_ch05.qxd /5/0 :0 PM Page 5 Confirming Pages C H A P T E R 5 Discrete Probability Distributions Objectives Outline After completing this chapter, you should be able to Introduction Construct a probability
Name: Class: Date: ID: A
Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human
Binomial random variables (Review)
Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die
The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
Normal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in
WHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
Statistics. Head First. A Brain-Friendly Guide. Dawn Griffiths
A Brain-Friendly Guide Head First Statistics Discover easy cures for chart failure Improve your season average with the standard deviation Make statistical concepts stick to your brain Beat the odds at
