1 Gambler s Ruin Problem

Size: px
Start display at page:

Download "1 Gambler s Ruin Problem"

Transcription

1 Coyright c 2009 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins $1 or loses $1 indeendent of the ast with robabilities and q = 1 resectively. Let X n denote the total fortune after the n th gamble. The gambler s objective is to reach a total fortune of $N, without first getting ruined (running out of money). If the gambler succeeds, then the gambler is said to win the game. In any case, the gambler stos laying after winning or getting ruined, whichever haens first. {X n } yields a Markov chain (MC) on the state sace S = {0, 1,..., N}. The transition robabilities are given by P i,i+1 =, P i,i 1 = q, 0 < i < N, and both 0 and N are absorbing states, P 00 = P NN = 1. 1 For examle, when N = 4 the transition matrix is given by q P = 0 q q While the game roceeds, this MC forms a simle random walk X n = i n, n 1, X 0 = i, where { n } forms an i.i.d. sequence of r.v.s. distributed as P ( = 1) =, P ( = 1) = q = 1, and reresents the earnings on the successive gambles. Since the game stos when either X n = 0 or X n = N, let τ i = min{n 0 : X n {0, N} X 0 = i}, denote the time at which the game stos when X 0 = i. If X τi = N, then the gambler wins, if X τi = 0, then the gambler is ruined. Let P i (N) = P (X τi = N) denote the robability that the gambler wins when X 0 = i. P i (N) denotes the robability that the gambler, starting initially with $i, reaches a total fortune of N before ruin; 1 P i (N) is thus the corresonding robably of ruin Clearly P 0 (N) = 0 and P N (N) = 1 by definition, and we next roceed to comute P i (N), 1 i N 1. Proosition 1.1 (Gambler s Ruin Problem) 1 ( q )i P i (N) = 1 ( q, if q; )N (1) i N, if = q = There are three communication classes: C 1 = {0}, C 2 = {1,..., N 1}, C 3 = {N}. C 1 and C 3 are recurrent whereas C 2 is transient. 1

2 Proof : For our derivation, we let P i = P i (N), that is, we suress the deendence on N for ease of notation. The key idea is to condition on the outcome of the first gamble, 1 = 1 or 1 = 1, yielding P i = P i+1 + qp i 1. (2) The derivation of this recursion is as follows: If 1 = 1, then the gambler s total fortune increases to X 1 = i+1 and so by the Markov roerty the gambler will now win with robability P i+1. Similarly, if 1 = 1, then the gambler s fortune decreases to X 1 = i 1 and so by the Markov roerty the gambler will now win with robability P i 1. The robabilities corresonding to the two outcomes are and q yielding (2). Since + q = 1, (2) can be re-written as P i + qp i = P i+1 + qp i 1, yielding P i+1 P i = q (P i P i 1 ). In articular, P 2 P 1 = (q/)(p 1 P 0 ) = (q/)p 1 (since P 0 = 0), so that P 3 P 2 = (q/)(p 2 P 1 ) = (q/) 2 P 1, and more generally Thus P i+1 P i = ( q )i P 1, 0 < i < N. P i+1 P 1 = = i (P k+1 P k ) k=1 i k=1 ( q )k P 1, yielding i P i+1 = P 1 + P 1 ( q i )k = P 1 ( q )k = k=1 k=0 1 ( q P )i ( q ), if q; P 1 (i + 1), if = q = 0.5. (3) (Here we are using the geometric series equation i n=0 a i = 1 ai+1 1 a, for any number a and any integer i 1.) Choosing i = N 1 and using the fact that P N = 1 yields 1 ( q 1 = P N = P )N 1 1 ( q, if q; ) P 1 N, if = q = 0.5, from which we conclude that P 1 = 1 q 1 ( q )N, if q; 1 N, if = q = 0.5, 2

3 thus obtaining from (3) (after algebra) the solution 1 ( q )i P i = 1 ( q, if q; )N (4) i N, if = q = Becoming infinitely rich or getting ruined In the formula (1), it is of interest to see what haens as N ; denote this by P i ( ) = lim N P i (N). This limiting quantity denotes the robability that the gambler, if allowed to lay forever unless ruined, will in fact never get ruined and instead will obtain an infinitely large fortune. Proosition 1.2 Define P i ( ) = lim N P i (N). If > 0.5, then P i ( ) = 1 ( q )i > 0. (5) If 0.50, then P i ( ) = 0. (6) Thus, unless the gambles are strictly better than fair ( > 0.5), ruin is certain. Proof : If > 0.5, then q < 1; hence in the denominator of (1), ( q )N 0 yielding the result. If < 0.50, then q > 1; hence in the the denominator of (1), ( q )N yielding the result. Finally, if = 0.5, then i (N) = i/n 0. Examles 1. John starts with $2, and = 0.6: What is the robability that John obtains a fortune of N = 4 without going broke? i = 2, N = 4 and q = 1 = 0.4, so q/ = 2/3, and we want P 2 (4) = 1 (2/3)2 1 (2/3) 4 = What is the robability that John will become infinitely rich? P 2 ( ) = 1 (2/3) 2 = 5/9 = If John instead started with i = $1, what is the robability that he would go broke? The robability he becomes infinitely rich is P 1 ( ) = 1 (q/) = 1/3, so the robability of ruin is 1 P 1 ( ) = 2/3. 3

4 1.2 Alications Risk insurance business Consider an insurance comany that earns $1 er day (from interest), but on each day, indeendent of the ast, might suffer a claim against it for the amount $2 with robability q = 1. Whenever such a claim is suffered, $2 is removed from the reserve of money. Thus on the n th day, the net income for that day is exactly n as in the gamblers ruin roblem: 1 with robability, 1 with robability q. If the insurance comany starts off initially with a reserve of $i 1, then what is the robability it will eventually get ruined (run out of money)? The answer is given by (5) and (??): If > 0.5 then the robability is given by ( q )i > 0, whereas if 0.5 ruin will always ocurr. This makes intuitive sense because if > 0.5, then the average net income er day is E( ) = q > 0, whereas if 0.5, then the average net income er day is E( ) = q 0. So the comany can not exect to stay in business unless earning (on average) more than is taken away by claims. 1.3 Random walk hitting robabilities Let a > 0 and b > 0 be integers, and let R n = n, n 1, R 0 = 0 denote a simle random walk initially at the origin. Let (a) = P ({R n } hits level a before hitting level b). By letting i = b, and N = a + b, we can equivalently imagine a gambler who starts with i = b and wishes to reach N = a + b before going broke. So we can comute (a) by casting the roblem into the framework of the gambler s ruin roblem: (a) = P i (N) where N = a + b, i = b. Thus Examles 1 ( q )b (a) = 1 ( q, if q; )a+b (7) b a+b, if = q = Ellen bought a share of stock for $10, and it is believed that the stock rice moves (day by day) as a simle random walk with = What is the robability that Ellen s stock reaches the high value of $15 before the low value of $5? We want the robability that the stock goes u by 5 before going down by 5. This is equivalent to starting the random walk at 0 with a = 5 and b = 5, and comuting (a). (a) = 1 ( q )b 1 (0.82)5 1 ( q = = 0.73 )a+b 1 (0.82) What is the robability that Ellen will become infinitely rich? 4

5 Here we equivalently want to know the robability that a gambler starting with i = 10 becomes infinitely rich before going broke. Just like Examle 2 on Page 3: 1 (q/) i = 1 (0.82) = Maximums and minimums of the simle random walk Formula (7) can immediately be used for comuting the robability that the simle random walk {R n }, starting initially at R 0 = 0, will ever hit level a, for any given ositive integer a 1: Kee a fixed while taking the limit as b in (7). The result deends on wether < 0.50 or A little thought reveals that we can state this roblem as comuting the tail P (M a), a 0, where M def = max{r n : n 0} is the all-time maximum of the random walk; a non-negative random variable, because {M a} = {R n = a, for some n 1}. Proosition 1.3 Let M def = max{r n : n 0} for the simle random walk starting initially at the origin (R 0 = 0). 1. When < 0.50, P (M a) = (/q) a, a 0; M has a geometric distribution with success robability 1 (/q): P (M = k) = (/q) k (1 (/q)), k 0. In this case, the random walk drifts down to, w1, but before doing so reaches the finite maximum M. 2. If 0.50, then P (M a) = 1, a 0: P (M = ) = 1; the random walk will, with robability 1, reach any ositive integer a no matter how large. Proof : Taking the limit in (7) as b yields the result by considering the two cases < 0.5 or 0.5: If < 0.5, then (q/) > 1 and so both (q/) b and (q/) a+b tend to as b. But before taking the limit, multily both numerator and denominator by (q/) b = (/q) b, yielding (a) = (/q)b 1 (/q) b (q/) a. Since (/q) b 0 as b, the result follows. If > 0.5, then (q/) < 1 and so both (q/) b and (q/) a+b tend to 0 as b yielding the limit in (7) as 1. If = 0.5, then (a) = b/(b + a) 1 as b. If < 0.5, then E( ) < 0, and if > 0.5, then E( ) > 0; so Proosition 1.3 is consistent with the fact that any random walk with E( ) < 0 (called the negative drift case) satisfies lim n R n =, w1, and any random walk with E( ) > 0 ( called the ositive drift case) satisfies lim n R n = +, w1. 2 But furthermore we learn that when < 0.5, although w1 the chain drifts off to, it first reaches a finite maximum M before doing so, and this rv M has a geometric distribution. 2 R From the strong law of large numbers, lim n n n + if E( ) > 0. = E( ), w1, so R n ne( ) if E( ) < 0 and 5

6 Finally Proosition 1.3 also offers us a roof that when = 0.5, the symmetric case, the random walk will w1 hit any ositive value, P (M a) = 1. By symmetry, we also obtain analogous results for the minimum, : Corollary 1.1 Let m def = min{r n : n 0} for the simle random walk starting initially at the origin (R 0 = 0). 1. If > 0.5, then P (m b) = (q/) b, b 0. In this case, the random walk drifts u to +, but before doing so dros down to a finite minimum m 0. Taking absolute values of m makes it non-negative and so we can exress this result as P ( m b) = (q/) b, b 0; m has a geometric distribution with success robability 1 (q/): P ( m = k) = (q/) k (1 (q/)), k If 0.50, then P (m b) = 1, b 0: P (m = ) = 1; the random walk will, with robability 1, reach any negative integer a no matter how small. Note that when < 0.5, P (M = 0) = 1 (/q) > 0. This is because it is ossible that the random walk will never enter the ositive axis before drifting off to ; with ositive robability R n 0, n 0. Similarly, if > 0.5, then P (m = 0) = 1 (q/) > 0; with ositive robability R n 0, n 0. Recurrence of the simle symmetric random walk Combining the results for both M and m in the revious section when = 0.5, we have Proosition 1.4 The simle symmetric ( = 0.50) random walk, starting at the origin, will w1 eventually hit any integer a, ositive or negative. In fact it will hit any given integer a infinitely often, always returning yet again after leaving; it is a recurrent Markov chain. Proof : The first statement follows directly from Proosition 1.3 and Corollary 1.1; P (M = ) = 1 = P (m = ) = 1. For the second statement we argue as follows: Using the first statement, we know that the simle symmetric random walk starting at 0 will hit 1 eventually. But when it does, we can use the same result to conclude that it will go back and hit 0 eventually after that, because that is stochastically equivalent to starting at R 0 = 0 and waiting for the chain to hit 1, which also will haen eventually. But then yet again it must hit 1 again and so on (back and forth infinitely often), all by the same logic. We conclude that the chain will, over and over again, return to state 0 w1; it will do so infinitely often; 0 is a recurrent state for the simle symmetric random walk. Thus (since the chain is irreducible) all states are recurrent. Let τ = min{n 1 : R n = 0 R 0 = 0}, the so-called return time to state 0. We just argued that τ is a roer random variable, that is, P (τ < ) = 1. This means that if the chain starts in state 0, then, if we wait long enough, we will (w1) see it return to state 0. What we will rove later is that E(τ) = ; meaning that on average our wait is infinite. This imlies that the simle symmetric random walk forms a null recurrent Markov chain. 6

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks 6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about one-dimensional random walks. In

More information

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

More information

Stat 134 Fall 2011: Gambler s ruin

Stat 134 Fall 2011: Gambler s ruin Stat 134 Fall 2011: Gambler s ruin Michael Lugo Setember 12, 2011 In class today I talked about the roblem of gambler s ruin but there wasn t enough time to do it roerly. I fear I may have confused some

More information

Pythagorean Triples and Rational Points on the Unit Circle

Pythagorean Triples and Rational Points on the Unit Circle Pythagorean Triles and Rational Points on the Unit Circle Solutions Below are samle solutions to the roblems osed. You may find that your solutions are different in form and you may have found atterns

More information

Binomial lattice model for stock prices

Binomial lattice model for stock prices Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

More information

Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W

Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W The rice elasticity of demand (which is often shortened to demand elasticity) is defined to be the

More information

As we have seen, there is a close connection between Legendre symbols of the form

As we have seen, there is a close connection between Legendre symbols of the form Gauss Sums As we have seen, there is a close connection between Legendre symbols of the form 3 and cube roots of unity. Secifically, if is a rimitive cube root of unity, then 2 ± i 3 and hence 2 2 3 In

More information

FREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES

FREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES FREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES AVNER ASH, LAURA BELTIS, ROBERT GROSS, AND WARREN SINNOTT Abstract. We consider statistical roerties of the sequence of ordered airs obtained by taking

More information

SOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q. 1. Quadratic Extensions

SOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q. 1. Quadratic Extensions SOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q TREVOR ARNOLD Abstract This aer demonstrates a few characteristics of finite extensions of small degree over the rational numbers Q It comrises attemts

More information

Large Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n

Large Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n Large Samle Theory In statistics, we are interested in the roerties of articular random variables (or estimators ), which are functions of our data. In ymtotic analysis, we focus on describing the roerties

More information

The Online Freeze-tag Problem

The Online Freeze-tag Problem The Online Freeze-tag Problem Mikael Hammar, Bengt J. Nilsson, and Mia Persson Atus Technologies AB, IDEON, SE-3 70 Lund, Sweden mikael.hammar@atus.com School of Technology and Society, Malmö University,

More information

Stochastic Derivation of an Integral Equation for Probability Generating Functions

Stochastic Derivation of an Integral Equation for Probability Generating Functions Journal of Informatics and Mathematical Sciences Volume 5 (2013), Number 3,. 157 163 RGN Publications htt://www.rgnublications.com Stochastic Derivation of an Integral Equation for Probability Generating

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information

1 Interest rates, and risk-free investments

1 Interest rates, and risk-free investments Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)

More information

POISSON PROCESSES. Chapter 2. 2.1 Introduction. 2.1.1 Arrival processes

POISSON PROCESSES. Chapter 2. 2.1 Introduction. 2.1.1 Arrival processes Chater 2 POISSON PROCESSES 2.1 Introduction A Poisson rocess is a simle and widely used stochastic rocess for modeling the times at which arrivals enter a system. It is in many ways the continuous-time

More information

PRIME NUMBERS AND THE RIEMANN HYPOTHESIS

PRIME NUMBERS AND THE RIEMANN HYPOTHESIS PRIME NUMBERS AND THE RIEMANN HYPOTHESIS CARL ERICKSON This minicourse has two main goals. The first is to carefully define the Riemann zeta function and exlain how it is connected with the rime numbers.

More information

Week 4: Gambler s ruin and bold play

Week 4: Gambler s ruin and bold play Week 4: Gambler s ruin and bold play Random walk and Gambler s ruin. Imagine a walker moving along a line. At every unit of time, he makes a step left or right of exactly one of unit. So we can think that

More information

MARTINGALES AND GAMBLING Louis H. Y. Chen Department of Mathematics National University of Singapore

MARTINGALES AND GAMBLING Louis H. Y. Chen Department of Mathematics National University of Singapore MARTINGALES AND GAMBLING Louis H. Y. Chen Department of Mathematics National University of Singapore 1. Introduction The word martingale refers to a strap fastened belween the girth and the noseband of

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100 Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,

More information

Markov Chains. Chapter 4. 4.1 Stochastic Processes

Markov Chains. Chapter 4. 4.1 Stochastic Processes Chapter 4 Markov Chains 4 Stochastic Processes Often, we need to estimate probabilities using a collection of random variables For example, an actuary may be interested in estimating the probability that

More information

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié.

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié. Random access protocols for channel access Markov chains and their stability laurent.massoulie@inria.fr Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

Point Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11)

Point Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11) Point Location Prerocess a lanar, olygonal subdivision for oint location ueries. = (18, 11) Inut is a subdivision S of comlexity n, say, number of edges. uild a data structure on S so that for a uery oint

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information

Lectures on Stochastic Processes. William G. Faris

Lectures on Stochastic Processes. William G. Faris Lectures on Stochastic Processes William G. Faris November 8, 2001 2 Contents 1 Random walk 7 1.1 Symmetric simple random walk................... 7 1.2 Simple random walk......................... 9 1.3

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

Number Theory Naoki Sato <ensato@hotmail.com>

Number Theory Naoki Sato <ensato@hotmail.com> Number Theory Naoki Sato 0 Preface This set of notes on number theory was originally written in 1995 for students at the IMO level. It covers the basic background material that an

More information

Sample Induction Proofs

Sample Induction Proofs Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Risk in Revenue Management and Dynamic Pricing

Risk in Revenue Management and Dynamic Pricing OPERATIONS RESEARCH Vol. 56, No. 2, March Aril 2008,. 326 343 issn 0030-364X eissn 1526-5463 08 5602 0326 informs doi 10.1287/ore.1070.0438 2008 INFORMS Risk in Revenue Management and Dynamic Pricing Yuri

More information

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

arxiv:1112.0829v1 [math.pr] 5 Dec 2011 How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

More information

Introduction to NP-Completeness Written and copyright c by Jie Wang 1

Introduction to NP-Completeness Written and copyright c by Jie Wang 1 91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use time-bounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of

More information

TRANSCENDENTAL NUMBERS

TRANSCENDENTAL NUMBERS TRANSCENDENTAL NUMBERS JEREMY BOOHER. Introduction The Greeks tried unsuccessfully to square the circle with a comass and straightedge. In the 9th century, Lindemann showed that this is imossible by demonstrating

More information

The Magnus-Derek Game

The Magnus-Derek Game The Magnus-Derek Game Z. Nedev S. Muthukrishnan Abstract We introduce a new combinatorial game between two layers: Magnus and Derek. Initially, a token is laced at osition 0 on a round table with n ositions.

More information

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

An important observation in supply chain management, known as the bullwhip effect,

An important observation in supply chain management, known as the bullwhip effect, Quantifying the Bullwhi Effect in a Simle Suly Chain: The Imact of Forecasting, Lead Times, and Information Frank Chen Zvi Drezner Jennifer K. Ryan David Simchi-Levi Decision Sciences Deartment, National

More information

Stochastic Processes and Advanced Mathematical Finance. Ruin Probabilities

Stochastic Processes and Advanced Mathematical Finance. Ruin Probabilities Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Modeling and Performance Evaluation of Computer Systems Security Operation 1

Modeling and Performance Evaluation of Computer Systems Security Operation 1 Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system

More information

1 Portfolio mean and variance

1 Portfolio mean and variance Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring

More information

25 Integers: Addition and Subtraction

25 Integers: Addition and Subtraction 25 Integers: Addition and Subtraction Whole numbers and their operations were developed as a direct result of people s need to count. But nowadays many quantitative needs aside from counting require numbers

More information

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation 6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Index Numbers OPTIONAL - II Mathematics for Commerce, Economics and Business INDEX NUMBERS

Index Numbers OPTIONAL - II Mathematics for Commerce, Economics and Business INDEX NUMBERS Index Numbers OPTIONAL - II 38 INDEX NUMBERS Of the imortant statistical devices and techniques, Index Numbers have today become one of the most widely used for judging the ulse of economy, although in

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

More information

Piracy and Network Externality An Analysis for the Monopolized Software Industry

Piracy and Network Externality An Analysis for the Monopolized Software Industry Piracy and Network Externality An Analysis for the Monoolized Software Industry Ming Chung Chang Deartment of Economics and Graduate Institute of Industrial Economics mcchang@mgt.ncu.edu.tw Chiu Fen Lin

More information

Multiperiod Portfolio Optimization with General Transaction Costs

Multiperiod Portfolio Optimization with General Transaction Costs Multieriod Portfolio Otimization with General Transaction Costs Victor DeMiguel Deartment of Management Science and Oerations, London Business School, London NW1 4SA, UK, avmiguel@london.edu Xiaoling Mei

More information

Large firms and heterogeneity: the structure of trade and industry under oligopoly

Large firms and heterogeneity: the structure of trade and industry under oligopoly Large firms and heterogeneity: the structure of trade and industry under oligooly Eddy Bekkers University of Linz Joseh Francois University of Linz & CEPR (London) ABSTRACT: We develo a model of trade

More information

Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2. Fractions and Algebra Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

More information

Jena Research Papers in Business and Economics

Jena Research Papers in Business and Economics Jena Research Paers in Business and Economics A newsvendor model with service and loss constraints Werner Jammernegg und Peter Kischka 21/2008 Jenaer Schriften zur Wirtschaftswissenschaft Working and Discussion

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

More information

Effect Sizes Based on Means

Effect Sizes Based on Means CHAPTER 4 Effect Sizes Based on Means Introduction Raw (unstardized) mean difference D Stardized mean difference, d g Resonse ratios INTRODUCTION When the studies reort means stard deviations, the referred

More information

M/M/1 and M/M/m Queueing Systems

M/M/1 and M/M/m Queueing Systems M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential

More information

Stochastic Processes and Advanced Mathematical Finance. Duration of the Gambler s Ruin

Stochastic Processes and Advanced Mathematical Finance. Duration of the Gambler s Ruin Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota Goal Problems in Gambling and Game Theory Bill Sudderth School of Statistics University of Minnesota 1 Three problems Maximizing the probability of reaching a goal. Maximizing the probability of reaching

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

United Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane

United Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane United Arab Emirates University College of Sciences Deartment of Mathematical Sciences HOMEWORK 1 SOLUTION Section 10.1 Vectors in the Plane Calculus II for Engineering MATH 110 SECTION 0 CRN 510 :00 :00

More information

Frequentist vs. Bayesian Statistics

Frequentist vs. Bayesian Statistics Bayes Theorem Frequentist vs. Bayesian Statistics Common situation in science: We have some data and we want to know the true hysical law describing it. We want to come u with a model that fits the data.

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

How to Gamble If You Must

How to Gamble If You Must How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games

More information

F inding the optimal, or value-maximizing, capital

F inding the optimal, or value-maximizing, capital Estimating Risk-Adjusted Costs of Financial Distress by Heitor Almeida, University of Illinois at Urbana-Chamaign, and Thomas Philion, New York University 1 F inding the otimal, or value-maximizing, caital

More information

Properties of sequences Since a sequence is a special kind of function it has analogous properties to functions:

Properties of sequences Since a sequence is a special kind of function it has analogous properties to functions: Sequences and Series A sequence is a special kind of function whose domain is N - the set of natural numbers. The range of a sequence is the collection of terms that make up the sequence. Just as the word

More information

On Multicast Capacity and Delay in Cognitive Radio Mobile Ad-hoc Networks

On Multicast Capacity and Delay in Cognitive Radio Mobile Ad-hoc Networks On Multicast Caacity and Delay in Cognitive Radio Mobile Ad-hoc Networks Jinbei Zhang, Yixuan Li, Zhuotao Liu, Fan Wu, Feng Yang, Xinbing Wang Det of Electronic Engineering Det of Comuter Science and Engineering

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

Essentials of Stochastic Processes

Essentials of Stochastic Processes i Essentials of Stochastic Processes Rick Durrett 70 60 50 10 Sep 10 Jun 10 May at expiry 40 30 20 10 0 500 520 540 560 580 600 620 640 660 680 700 Almost Final Version of the 2nd Edition, December, 2011

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

Automatic Search for Correlated Alarms

Automatic Search for Correlated Alarms Automatic Search for Correlated Alarms Klaus-Dieter Tuchs, Peter Tondl, Markus Radimirsch, Klaus Jobmann Institut für Allgemeine Nachrichtentechnik, Universität Hannover Aelstraße 9a, 0167 Hanover, Germany

More information

A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

1 Error in Euler s Method

1 Error in Euler s Method 1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

3.2 Roulette and Markov Chains

3.2 Roulette and Markov Chains 238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.

More information

Stability Improvements of Robot Control by Periodic Variation of the Gain Parameters

Stability Improvements of Robot Control by Periodic Variation of the Gain Parameters Proceedings of the th World Congress in Mechanism and Machine Science ril ~4, 4, ianin, China China Machinery Press, edited by ian Huang. 86-8 Stability Imrovements of Robot Control by Periodic Variation

More information

Factoring of Prime Ideals in Galois Extensions

Factoring of Prime Ideals in Galois Extensions Chater 8 Factoring of Prime Ideals in Galois Extensions 8.1 Decomosition and Inertia Grous We return to the general AKLB setu: A is a Dedekind domain with fraction field K, L is a finite searable extension

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

Software Model Checking: Theory and Practice

Software Model Checking: Theory and Practice Software Model Checking: Theory and Practice Lecture: Secification Checking - Temoral Logic Coyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are coyrighted

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

THE WELFARE IMPLICATIONS OF COSTLY MONITORING IN THE CREDIT MARKET: A NOTE

THE WELFARE IMPLICATIONS OF COSTLY MONITORING IN THE CREDIT MARKET: A NOTE The Economic Journal, 110 (Aril ), 576±580.. Published by Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 50 Main Street, Malden, MA 02148, USA. THE WELFARE IMPLICATIONS OF COSTLY MONITORING

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsampling

The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsampling The Fundamental Incomatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsamling Michael Betancourt Deartment of Statistics, University of Warwick, Coventry, UK CV4 7A BETANAPHA@GMAI.COM Abstract

More information

Coin ToGa: A Coin-Tossing Game

Coin ToGa: A Coin-Tossing Game Coin ToGa: A Coin-Tossing Game Osvaldo Marrero and Paul C Pasles Osvaldo Marrero OsvaldoMarrero@villanovaedu studied mathematics at the University of Miami, and biometry and statistics at Yale University

More information

DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

More information

Monitoring Frequency of Change By Li Qin

Monitoring Frequency of Change By Li Qin Monitoring Frequency of Change By Li Qin Abstract Control charts are widely used in rocess monitoring roblems. This aer gives a brief review of control charts for monitoring a roortion and some initial

More information

X How to Schedule a Cascade in an Arbitrary Graph

X How to Schedule a Cascade in an Arbitrary Graph X How to Schedule a Cascade in an Arbitrary Grah Flavio Chierichetti, Cornell University Jon Kleinberg, Cornell University Alessandro Panconesi, Saienza University When individuals in a social network

More information

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative

More information

Accentuate the Negative: Homework Examples from ACE

Accentuate the Negative: Homework Examples from ACE Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),

More information

Number Theory Naoki Sato <sato@artofproblemsolving.com>

Number Theory Naoki Sato <sato@artofproblemsolving.com> Number Theory Naoki Sato 0 Preface This set of notes on number theory was originally written in 1995 for students at the IMO level. It covers the basic background material

More information

Let s explore the content and skills assessed by Heart of Algebra questions.

Let s explore the content and skills assessed by Heart of Algebra questions. Chapter 9 Heart of Algebra Heart of Algebra focuses on the mastery of linear equations, systems of linear equations, and linear functions. The ability to analyze and create linear equations, inequalities,

More information

EECS 122: Introduction to Communication Networks Homework 3 Solutions

EECS 122: Introduction to Communication Networks Homework 3 Solutions EECS 22: Introduction to Communication Networks Homework 3 Solutions Solution. a) We find out that one-layer subnetting does not work: indeed, 3 deartments need 5000 host addresses, so we need 3 bits (2

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information