Practice Problems #4

Size: px
Start display at page:

Download "Practice Problems #4"

Transcription

1 Practice Problems #4 PRACTICE PROBLEMS FOR HOMEWORK 4 (1) Read section 2.5 of the text. (2) Solve the practice problems below. (3) Open Homework Assignment #4, solve the problems, and submit multiple-choice answers. In each exercise, use the appropriate distribution. Binomial and Poisson probabilities can be computed directly by their PMF formulas or by using distribution tables, such as Tables C.1 and C.2 on pp of the text. 1. (10 marks) Ten percent of computer parts produced by a certain supplier are defective. What is the probability that a sample of 10 parts contains more than 3 defective ones? 2. (10 marks) On the average, two tornadoes hit major U.S. metropolitan areas every year. What is the probability that more than five tornadoes occur in major U.S. metropolitan areas next year? (As you probably saw in the news, a real tornado occurred near downtown Dallas on Sep 8, 2010.) 3. (10 marks) A lab network consisting of 20 computers was attacked by a computer virus. This virus enters each computer with probability 0.4, independently of other computers. a) Find the probability that the virus enters at least 10 computers. b) A computer manager checks the lab computers, one after another, to see if they were infected by the virus. What is the probability that she has to test at least 6 computers to find the first infected one? 4. (10 marks) On the average, 1 computer in 800 crashes during a severe thunderstorm. A certain company had 4,000 working computers when the areawas hit by a severe thunderstorm. a) Compute the expected value and variance of the number of crashed computers. b) Compute the probability that less than 10 computers crashed. c) Compute the probability that exactly 10 computers crashed. (You may use a suitable approximation.) 5. (10 marks) A baker put 500 raisins into dough, mixed well, and made 100 cookies. You take a random cookie. What is the probability of finding at least 4 raisins in it? (Hint: use Poisson approximation to the Binomial distribution of the number of raisins in one cookie.) 1

2 6. (10 marks) (Sec 2.5, p. 91, #3) A mischievous student wants to break into a computer file, which is password-protected. Assume that there are n passwords only one of which is correct, and that the student tries possible passwords in a random order. Let N be the number of trials required to break into the file. Determine the pmf of a) if unsuccessful passwords are not eliminated from further selections, and b) if they are eliminated. c) If n = 10, what is the expected number of trials in each case (a) and (b)? 7. (10 marks) An internet search engine looks for a certain keywordin a sequence of independent web sites. It is believed that 20% of the sites contain this keyword. a) Let X be the number of websites visited until the first keywordis found. Find the distribution of X. b) Compute the expected value and the standard deviation of X. c) Out of the first 10 websites, let Y be the number of sites that contain the keyword. Find the distribution of Y. d) Compute the expected value and the standard deviation of Y. e) Compute the probability that at least 5 of the first 10 websites contain the keyword. f) Compute the probability that the search engine had to visit at least 5 sites inorder to find the first occurrence of a keyword. 8. (10 marks) Identical computer components are shipped in boxes of 5. About 15% of components have defects. Boxes are tested in a random order. a) What is the probability that a randomly selected box has only non-defective components? b) What is the probability that at least 8 of randomly selected 10 boxes have only non-defective components? c) What is the distribution of the number of boxes tested until a box without defective components is found? 9. (10 marks) A master file consists of 150,000 records. When a transaction file is run against the master file, approximately 12,000 records are updated.the records to be updated are assumed to be distributed uniformly over the master file. A program reads all the records one by one and updates those which are necessary to update. What is the probability that a) the first record is to be updated? b) at least 20 records are read before the first record to be updated is found? 2

3 c) exactly 20 records are read before the first record to be updated is found? 10. (10 marks) The Stanley Cup winner is determined in the final series between two teams. The first team to win 4 games wins the Cup. Suppose that Dallas Stars advance to the final series, and they have a probability of 0.55 to win each game, and the game results are independent of each other. Find the probability that a) Dallas Stars wins the Stanley Cup b) seven games are required to determine the Cup winner (Hint: Without loss of generality, you can assume that the series continues until 7 games are played, even if the Cup winner is determined earlier. This change of Stanley Cup rules will not change the answer to the problem!) 11. (10 marks) (The previous problem continued...) Suppose that the series continues until Dallas Stars win 4 games, even if the other rival wins the Cup earlier. a) What is the expected number of games to be played? b) Find the probability that the series consists of less than 10 games. c) Find the probability that by the end of the series, the other rival wins at least 3 games. 12. (10 marks) Suppose that the number of inquiries arriving at a certain interactive system follows a Poisson distribution with arrival rate of 12 inquiries per minute. Find the probability of 10 inquiries arriving a) in a 1-minute interval; b) in a 3-minute interval. c. What is the expectation and the variance of the number of arrivals during each of these intervals? 3

4 Solutions: 1. We need to find P (X > 3), where X is the number of defective parts in a sample of 10 parts. This X is the number of successes in 10 trials, therefore, it has Binomialdistribution with parameters n = 10 and p = 0.1. From the Table of Binomial distribution, Or, by the formula of Binomial PMF, P (X > 3) = 1 F (3) = = P (X > 3) = 1 P (0) P (1) P (2) P (3) = 1 (0.9) 10 (10)(0.1)(0.9) 9 ( )(0.1)2 (0.9) 8 ( )(0.1) 3 (0.9) 7 = We need to find P (X > 5), where X is the number of tornadoes in major U.S. metropolitan areas next year. Tornadoes are rare events, therefore, this X has Poisson distribution with parameter λ = 2 years 1. From the Poisson Table, P (X > 5) = 1 F (5) = = a. Let X be the number of computers entered by the virus. Each of the 20 computers is either entered or not, thus X is the number of successes in n = 20 Bernoulli trials. Hence, X has Binomial distribution with n = 20 and p = 0.4. From the Table of Binomial distribution, P (X 10) = 1 P (X 9) = = b. We need to find P (Y 6), where Y is the number of computers tested until the first infected computer is found. This is the number of trials required to see the first success, therefore, Y has Geometric(p = 0.4) distribution. Using Geometric PMF (and geometric series), P (Y 6) = y=6 (0.6) y 1 (0.4) = (0.6) (0.4) = (0.6)5 = Another solution... The computer manager has to check at least 6 computers if the first five were not infected. The first five computers are not infected with probability (1 0.4) 5 =

5 4. Let X be the number of crashed computers. This is the number of successes (crashed computers) out of 4,000 trials (computers), with the probability of success 1/800. Thus, it has Binomial distribution with parameters n = 4, 000 (large) and p = 1/800 (small). a. Using Binomial distribution with n = 4, 000 and p = 1/800, 5. E(X) = np = 5 and V ar(x) = np(1 p) = 5(1 1/800) = This distribution is approximately Poisson with parameter λ = np = 5. Using the Table of Poisson distribution with parameter 5, b. P (X < 10) = F (9) = c. P (X = 10) = F (10) F (9) = = The number of raisins X in one cookie is Binomial with n = 500 and p = It is approximately Poisson with parameter np = 5. The probability of finding at least 4 raisins is from the Poisson Table. P (X 4) = 1 F (3) = = a) N has Geometric distribution with p = 1/n because it is the number of independent Bernoulli trials until the first success, and each trial is a success (correct password) with probability 1/n. Therefore, P (N = x) = (1/n)(1 1/n) x 1 for x = 1, 2, 3,... b) Here, the probability of success increases after each failure, therefore, the distribution of N is not Geometric. Since the order is random, the correct password has the same chance to appear first, second, etc., in a sequence of trials. Therefore, P (N = x) = 1/n for x = 1, 2,..., n (this is called Discrete Uniform distribution). c) In (a), the distribution is Geometric, so E(X) = 1 p = n = 10 5

6 In (b), the distribution is Discrete Uniform, so E(X) = xp (x) = 10 x=1 ( ) 1 x = = 5.5 Certainly, a smarter strategy (b) yields a smaller expected number of trials. 7. a) X is Geometric(p = 0.2). b) E(X) = 1/p = 5 and Std(X) = 1 p/p = 0.8/0.2 = c) Y is Binomial(n = 10, p = 0.2). d) E(Y ) = np = 2 and Std(Y ) = np(1 p) = = e) From the Binomial Table, P (X 5) = 1 F (4) = = f) P (Y 5) = (1 p) 4 = a) In a given box, let X be the number of non-defective components. This X is Binomial, n = 5, p = The probability of a box with five non-defective components is P (X = 5) = (0.85) 5 = b) Now, let Y be the number of boxes with only non-defective components. This Y is also Binomial. Its parameters are n = 10 and p = 0.44, where p is calculated in (a). P (Y 8) = P (8)+P (9)+P (10) = ( )(.44)8 (.56) 2 +(10)(.44) 9 (.56)+(.44) 10 = c) This is precisely the number of trials needed to get the firstsuccess. Therefore, the distribution is Geometric with p = a) 12, 000/150, 000 =

7 b) Let X be the number of records read to find the first record tobe updated. Then X has the Geometric distribution with p = 0.08, and P (X 20) = (0.92) 19 = (Use the Geometric PMF and compute the geometric series) c) P (X = 20) = (0.92) 19 (0.08) = a) Let the series continue till 7 games are played, and let X be the number of games won by Dallas Stars. X has Binomial distribution with parameters n = 7, p = P ( Dallas wins ) = P (X 4) = 1 F (3) = b) LetY be the number of games won by Dallas among the first 6 games. Then Y has a { Binomial} distribution with parameters n = 6, p = P ( 7 games required ) = P (Y = 3) = F (3) F (2) = a) The number of games played until the first Dallas Stars victory is Geometric with parameter p = 0.55 and expected value E(X) = 1/p = 20/11. Then, the expected number of games until the 4-th victory is E(X 1 + X 2 + X 3 + X 4 ) = 4 ( ) 20 = games b. We need to find the probability that Dallas Stars wins at least 4 of the first 9 games, and it equals Use Binomial(n = 9, p = 0.55) distribution. c. This is the probability that the series lasts at least 7 games,which means that 6 games weren t enough, so Dallas had no more than 3 wins after 6 games. Using Binomial distribution with n = 6, p = 0.55, we find that P (X 3) = a) Let X be the number of inquiries in a 1-min interval. Then X is a Poisson random variable with the parameter 12. 7

8 P (X = 10) = e = ! b. Let X be the number of inquiries in a 3-min interval. Then X is a Poisson random variable with the parameter 36. P (X = 10) = e = ! c. For Poisson distribution with parameter λ, we have E(X) = V ar(x) = λ. Therefore, for a 1-min interval, E(X) = V ar(x) = 12, and for a 3-min interval, E(X) = V ar(x) = 36. 8

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here. Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

More information

Practice Problems for Homework #6. Normal distribution and Central Limit Theorem.

Practice Problems for Homework #6. Normal distribution and Central Limit Theorem. Practice Problems for Homework #6. Normal distribution and Central Limit Theorem. 1. Read Section 3.4.6 about the Normal distribution and Section 4.7 about the Central Limit Theorem. 2. Solve the practice

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Some special discrete probability distributions

Some special discrete probability distributions University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

More information

e.g. arrival of a customer to a service station or breakdown of a component in some system.

e.g. arrival of a customer to a service station or breakdown of a component in some system. Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables 2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 Solutions to HW4 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

2. Discrete random variables

2. Discrete random variables 2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

More information

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

More information

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) = . A mail-order computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process

LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process LECTURE 16 Readings: Section 5.1 Lecture outline Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process Number of successes Distribution of interarrival times The

More information

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Notes on the Negative Binomial Distribution

Notes on the Negative Binomial Distribution Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.

More information

MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions

MAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard

More information

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION 6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

More information

Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.)

Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) Name: Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) The total score is 100 points. Instructions: There are six questions. Each one is worth 20 points. TA will grade the best five

More information

Tenth Problem Assignment

Tenth Problem Assignment EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiple-choice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution 2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

Chapter 9 Monté Carlo Simulation

Chapter 9 Monté Carlo Simulation MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

Chapter 5 Discrete Probability Distribution. Learning objectives

Chapter 5 Discrete Probability Distribution. Learning objectives Chapter 5 Discrete Probability Distribution Slide 1 Learning objectives 1. Understand random variables and probability distributions. 1.1. Distinguish discrete and continuous random variables. 2. Able

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Binomial random variables (Review)

Binomial random variables (Review) Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

6.2. Discrete Probability Distributions

6.2. Discrete Probability Distributions 6.2. Discrete Probability Distributions Discrete Uniform distribution (diskreetti tasajakauma) A random variable X follows the dicrete uniform distribution on the interval [a, a+1,..., b], if it may attain

More information

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have

More information

Unit 4 The Bernoulli and Binomial Distributions

Unit 4 The Bernoulli and Binomial Distributions PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

More information

Binomial random variables

Binomial random variables Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS 6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2. Probability Distributions for Discrete Random Variables Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

More information

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008 Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

STAT 3502. x 0 < x < 1

STAT 3502. x 0 < x < 1 Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous

More information

Section 5-3 Binomial Probability Distributions

Section 5-3 Binomial Probability Distributions Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial

More information

Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION MODULE IV BINOMIAL DISTRIBUTION A random variable X is said to follow binomial distribution with parameters n & p if P ( X ) = nc x p x q n x where x = 0, 1,2,3..n, p is the probability of success & q

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Binomial lattice model for stock prices

Binomial lattice model for stock prices Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

More information

ISyE 6761 Fall 2012 Homework #2 Solutions

ISyE 6761 Fall 2012 Homework #2 Solutions 1 1. The joint p.m.f. of X and Y is (a) Find E[X Y ] for 1, 2, 3. (b) Find E[E[X Y ]]. (c) Are X and Y independent? ISE 6761 Fall 212 Homework #2 Solutions f(x, ) x 1 x 2 x 3 1 1/9 1/3 1/9 2 1/9 1/18 3

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

More information

MAT 155. Key Concept. September 22, 2010. 155S5.3_3 Binomial Probability Distributions. Chapter 5 Probability Distributions

MAT 155. Key Concept. September 22, 2010. 155S5.3_3 Binomial Probability Distributions. Chapter 5 Probability Distributions MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance, and Standard

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

Binomial Probability Distribution

Binomial Probability Distribution Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are

More information

APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING

APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING Sulaimon Mutiu O. Department of Statistics & Mathematics Moshood Abiola Polytechnic, Abeokuta, Ogun State, Nigeria. Abstract

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

More information

PROBABILITY AND SAMPLING DISTRIBUTIONS

PROBABILITY AND SAMPLING DISTRIBUTIONS PROBABILITY AND SAMPLING DISTRIBUTIONS SEEMA JAGGI AND P.K. BATRA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 [email protected]. Introduction The concept of probability

More information

WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM

WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM EXAMPLE 1. A biased coin (with probability of obtaining a Head equal to p > 0) is tossed repeatedly and independently until the first head is observed.

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

Sample Questions for Mastery #5

Sample Questions for Mastery #5 Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could

More information

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 5.1 Homework Answers 5.7 In the proofreading setting if Exercise 5.3, what is the smallest number of misses m with P(X m)

More information

Applied Reliability ------------------------------------------------------------------------------------------------------------ Applied Reliability

Applied Reliability ------------------------------------------------------------------------------------------------------------ Applied Reliability Applied Reliability Techniques for Reliability Analysis with Applied Reliability Tools (ART) (an EXCEL Add-In) and JMP Software AM216 Class 6 Notes Santa Clara University Copyright David C. Trindade, Ph.

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

More information

Normal and Binomial. Distributions

Normal and Binomial. Distributions Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris [email protected] Department of Mathematics University of Michigan February 9, 2009 When a large

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

The Binomial Distribution. Summer 2003

The Binomial Distribution. Summer 2003 The Binomial Distribution Summer 2003 Internet Bubble Several industry experts believe that 30% of internet companies will run out of cash in 6 months and that these companies will find it very hard to

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

Teaching Mathematics and Statistics Using Tennis

Teaching Mathematics and Statistics Using Tennis Teaching Mathematics and Statistics Using Tennis Reza Noubary ABSTRACT: The widespread interest in sports in our culture provides a great opportunity to catch students attention in mathematics and statistics

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

Normal Distribution as an Approximation to the Binomial Distribution

Normal Distribution as an Approximation to the Binomial Distribution Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

More information

STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013

STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013 STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013 The quiz covers Chapters 4, 5 and 6. 1. (8 points) If the IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. (a) (3 pts)

More information

Fourth Problem Assignment

Fourth Problem Assignment EECS 401 Due on Feb 2, 2007 PROBLEM 1 (25 points) Joe and Helen each know that the a priori probability that her mother will be home on any given night is 0.6. However, Helen can determine her mother s

More information

Solutions for Review Problems for Exam 2 Math 1040 1 1. You roll two fair dice. (a) Draw a tree diagram for this experiment.

Solutions for Review Problems for Exam 2 Math 1040 1 1. You roll two fair dice. (a) Draw a tree diagram for this experiment. Solutions for Review Problems for Exam 2 Math 1040 1 1. You roll two fair dice. (a) Draw a tree diagram for this experiment. 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information