Isolated Horizons: Ideas, framework and applications
|
|
|
- Walter Marsh
- 9 years ago
- Views:
Transcription
1 Isolated Horizons: Ideas, framework and applications Jonathan Engle Centre de Physique Theorique, Marseille (Abhay Fest, 2009) (Workers in IH/DH: Ashtekar, Baez, Beetle, Booth, Corichi, Dryer, JE, Fairhurst, Krasnov, Krishnan, Lewandowski, Pawlowski, Schnetter, Schoemaker, Sudarsky, Wisniewski, Van Den Broeck... Many more recent people: Ansorg, Chatterjee, Ghosh, Jaramillo, Liko, Limousin, Xiaoning Wu,...)
2 Goals To summarize Isolated Horizons and their results Motivations and definitions Covariant Hamiltonian framework: mass, angular momentum, multipoles, laws of BH mechanics Mention Dynamical Horizons: Energy momentum flux and area balance law To summarize their applications Classical (Numerical Relativity) Quantum (Quantum Horizons and entropy)
3 Motivation Most commonly used horizons: Event H. and Killing H. Many applications Event H. only `hard' way to define BH's generally Laws of BH mechanics (e.g.:) M = 8 G a J However: Event H. too global'' Furthermore: In 1 st law, M & J defined at, a at horizon, and k & Ω mixed. Killing Horizons assume symmetry beyond just at horizon not available in realistic cases
4 Isolated Horizons: Horizon is stationary but time dependence outside. Dynamical Horizons: Horizon itself is time dependent. (can be related to Hayward's trapping horizons)
5 Definition: Isolated Horizon More precisely, an IH Δ is a null, S 2 xr hypersurface s.t. i. -T ab l b is future causal; where l a is null normal ii. Θ (l) = Δ 0 (Expansion-free) Ensures a induces D a on Δ iii.d a commutes with L l acting on vt fields on Δ Let q ab := pull back of g ab. Def'n implies L l q ab = Δ 0. Generically l a unique upto constant rescalings: reminiscent of Killing horizons Killing horizons are IH, but infinitely many more ex.s of IH (local ex. Thm of Lewandowski)
6 Settling to IH at late times
7 Laws of BH Mechanics 0 th law: l a D a l b = κ (l) l b (l'=cl κ (l') =cκ (l) ) surface gravity κ (l) is const. on Δ. 1st law: use Hamiltonian methods covariant phase space
8 Angular Momentum Fix φa on space-time s.t. It is asymptotic rotation at infinity, and s.t. L φ q ab = 0, L l φ a = 0 at the horizon. Generator of this rotation is J φ = J φ ADM Jφ Δ, where J = 1 8 G a a d 2 V = 1 4 G f I[ 2 ]d 2 V D a l b = a l b a ab = b f Jφ is ang. mtm. of radiation in the bulk (is zero if φ is global KVF) J φ Δ is ang. mtm. of horizon; is defined locally no ref. to infinity. Fix φ at the horizon and restrict to space-times compatible with it there
9 Energy Fix t a on space-time s.t. It is asymptotic TT at infinity, and s.t. t a = c (t) l a Ω (t) φ a at Δ, for some c (t) and Ω (t) const on Δ. Ω (t) : angular velocity, c (t) : determines surf. grav. k (t) = c (t) k (l). Evolution along t a is Hamiltonian, i.e., is generated by some E (t) = E (t) ADM -E(t) Δ, iff a) κ (t) and Ω (t) are functions only of a Δ and J φ Δ b) t J =8 G t a But these are suff. to imply First Law for E (t) Δ! t E = t 8 G a t J Furthermore E (t) Δ is a local fn at Δ has interp of horizon energy corr. to t a Δ
10 Canonical choice of energy A priori, can construct infinite number of possible t a and E (t) Δ : each choice of κ (t) (a Δ, J (φ) Δ ) determines Ω(a Δ, J(φ) Δ ) determines ta and E (t) Δ. All of them satisfy first law. Is there canonical choice of t a and hence E (t) Δ? YES! Stipulate that ta reduce to stationary KVF on stationary space-times. Implies o = kerr a, J = R 4 4G 2 2 J 2R 3 R 4 4G 2 J 2 (a Δ = 4πR Δ2 ) Leading to E t = R 4 4G 2 2 J Satisfies canonical M 2G R first law Local expression, surprisingly simple, but derived not postulated.
11 Symmetry Groups `horizon geometry' (q ab, D a ) Pull-back of metric to Δ Derivative operator induced on Δ Type I: (q ab, D a ) is spherically symmetric Type II: (q ab, D a ) is axially symmetric Type III: (qab, D a ) has only l- symmetry
12 Chern-Simons symplectic structure Was not said, but in the can. framework, in order for the symplectic structure `Ω' to be conserved, it is nec. to include a boundary term in the sympl. str. In Type I case, the boundary sympl. str. takes Chern-Simons form in terms of Ashtekar-Barbero connection A i a =Γi a +γki a : = a S 1, Tr G S 1 A 2 A (Also happens in Type II case, but more subtle ) Is important for quantization of IH (next talk).
13 Further developments Laws of BH mech. extend to Einstein-Maxwell and Einstein-YM cases Mass and angular momentum multipoles M n, J n in type II case Natural foliation of Δ, cov.-defined coordinates and tetrad in a neighbd of Δ Dynamical Horizons Local expr. for energy-mtm flux across horizon Area balance law and integral version of 1 st law 2 nd law: Area always increases Higher dim. IH, and more recently: supersymm IH (Booth, Liko)...
14 Applications Numerical Relativity Each continuous piece of apparent horizon world tube is a Dynamical Horizon Many IH constructions can still be used (horizon angular mtm, horizon mass, multipoles) Quantum Isolated Horizons and Black hole entropy See next talk (new paper out on the non-gauge-fixed SU(2) calculation: JE, Noui, Perez, arxiv: )
15 Summary IH and DH give quasilocal description of black holes allowing radiation arbitrarily close to horizon. IH: horizon is in equilibrium. (can be related to Hayward's trapping horizons) Can construct Hamiltonian framework for IH, define Ang. Mtm., Mass, Multipoles. 1 st law is satisfied with all quantities quasilocally defined. Is used in interpreting numerical simulations: simple and well-motivated expressions Is used in BH entropy calculations in LQG
16
Euclidean quantum gravity revisited
Institute for Gravitation and the Cosmos, Pennsylvania State University 15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology Based on: First-order action and Euclidean quantum gravity,
MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)
MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM
INTERACTION OF TWO CHARGES IN A UNIFORM MAGNETIC FIELD: II. SPATIAL PROBLEM D. PINHEIRO AND R. S. MACKAY Dedicated to the memory of John Greene. Abstract. The interaction of two charges moving in R 3 in
The Math Circle, Spring 2004
The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Quantum Mechanics and Representation Theory
Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30
CLASSIFICATION OF TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS, RESPONSES AND QUANTUM ANOMALIES
CLASSIFICATION OF TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS, RESPONSES AND QUANTUM ANOMALIES ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Shinsei Ryu (UC-Berkeley) Andreas Schnyder
How To Understand General Relativity
Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional
3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.
Tentamen i Statistisk Fysik I den tjugosjunde februari 2009, under tiden 9.00-15.00. Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6
Assessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
Review D: Potential Energy and the Conservation of Mechanical Energy
MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...
A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant
A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant H.M.Mok Radiation Health Unit, 3/F., Saiwanho Health Centre, Hong Kong SAR Govt, 8 Tai Hong St., Saiwanho, Hong
From local to global relativity
Physical Interpretations of Relativity Theory XI Imperial College, LONDON, 1-15 SEPTEMBER, 8 From local to global relativity Tuomo Suntola, Finland T. Suntola, PIRT XI, London, 1-15 September, 8 On board
hep-th/9409195 30 Sep 94
1. Classical Theory S. W. Hawking hep-th/9409195 30 Sep 94 In these lectures Roger Penrose and I will put forward our related but rather different viewpoints on the nature of space and time. We shall speak
Generally Covariant Quantum Mechanics
Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). ([email protected], www.aias.us, www.atomicprecision.com) Dedicated to the Late
Neutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967.
Neutron Stars How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967. Using a radio telescope she noticed regular pulses of radio
6 J - vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems
Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes
J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced
Precession of spin and Precession of a top
6. Classical Precession of the Angular Momentum Vector A classical bar magnet (Figure 11) may lie motionless at a certain orientation in a magnetic field. However, if the bar magnet possesses angular momentum,
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Special Theory of Relativity
June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition
FLAP P11.2 The quantum harmonic oscillator
F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES. and MARCO ZAMBON
Vol. 65 (2010) REPORTS ON MATHEMATICAL PHYSICS No. 2 DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES IVÁN CALVO Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, E-28040 Madrid, Spain
Quantum Mechanics: Postulates
Quantum Mechanics: Postulates 5th April 2010 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through
The Quantum Harmonic Oscillator Stephen Webb
The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems
The de Sitter and anti-de Sitter Sightseeing Tour
Séminaire Poincaré 1 (2005) 1 12 Séminaire Poincaré The de Sitter and anti-de Sitter Sightseeing Tour Ugo Moschella Dipartimento di Fisica e Matematica Università dell Insubria, 22100 Como INFN, Sezione
QUANTUM GEOMETRY AND ITS APPLICATIONS
QUANTUM GEOMETRY AND TS APPLCATONS Abhay Ashtekar 1 and Jerzy Lewandowski 2 1. nstitute for Gravitational Physics and Geometry Physics Department, Penn State, University Park, PA 16802-6300 2. nstytut
Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims
Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
Physics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 [email protected] heidelberg.de Last week The conservation of mass implies the continuity equation:
CBE 6333, R. Levicky 1 Differential Balance Equations
CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,
Testing dark matter halos using rotation curves and lensing
Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences
Quantum Mechanics. Dr. N.S. Manton. Michælmas Term 1996. 1 Introduction 1
Quantum Mechanics Dr. N.S. Manton Michælmas Term 1996 Contents 1 Introduction 1 The Schrödinger Equation 1.1 Probabilistic Interpretation of ψ...................................1.1 Probability Flux and
Heating & Cooling in Molecular Clouds
Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core
Faraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1
Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope
Physics 53 Gravity Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope Kepler s laws Explanations of the motion of the celestial bodies sun, moon, planets
Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
Gravity as an Emergent Phenomenon
Gravity as an Emergent Phenomenon John Jeffrey Damasco 19 December 2012 Abstract While general relativity explains gravitational interactions well, it only answers the question of the nature of gravity
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical
Orbits of the Lennard-Jones Potential
Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
Universality of global dynamics for the cubic wave equation
IOP PUBLISHING Nonlinearity (009) 473 485 NONLINEARITY doi:10.1088/0951-7715//10/009 Universality of global dynamics for the cubic wave equation Piotr Bizoń 1 and Anıl Zenginoğlu,3 1 M. Smoluchowski Institute
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Differential Balance Equations (DBE)
Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
Introduction: Keywords: CFD, MRF, Blower Angular Orientation
Behavior of MRF Approach on Flow Rate, for the Blower Having Four Anti Fouling Blades & By Changing the Angular Orientation of the Blower about the Axis of Rotation Vikas D Pawar CFD - Analyst GTEC Whirlpool
Scalars, Vectors and Tensors
Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector
Center of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
Let s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).
Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the
Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries
Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities
Stokes flow. Chapter 7
Chapter 7 Stokes flow We have seen in section 6.3 that the dimensionless form of the Navier-Stokes equations for a Newtonian viscous fluid of constant density and constant viscosity is, now dropping the
8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 5
8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Tuesday March 5 Problem Set 5 Due Tuesday March 12 at 11.00AM Assigned Reading: E&R 6 9, App-I Li. 7 1 4 Ga. 4 7, 6 1,2
Problem Set V Solutions
Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3
A Simple Pseudo Random Number algorithm
Lecture 7 Generating random numbers is a useful technique in many numerical applications in Physics. This is because many phenomena in physics are random, and algorithms that use random numbers have applications
CONSERVATION LAWS. See Figures 2 and 1.
CONSERVATION LAWS 1. Multivariable calculus 1.1. Divergence theorem (of Gauss). This states that the volume integral in of the divergence of the vector-valued function F is equal to the total flux of F
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
P.A.M. Dirac Received May 29, 1931
P.A.M. Dirac, Proc. Roy. Soc. A 133, 60 1931 Quantised Singularities in the Electromagnetic Field P.A.M. Dirac Received May 29, 1931 1. Introduction The steady progress of physics requires for its theoretical
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
THE MEANING OF THE FINE STRUCTURE CONSTANT
THE MEANING OF THE FINE STRUCTURE CONSTANT Robert L. Oldershaw Amherst College Amherst, MA 01002 USA [email protected] Abstract: A possible explanation is offered for the longstanding mystery surrounding
SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES
SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial
Chapter 2. Parameterized Curves in R 3
Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,
1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
Elasticity Theory Basics
G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
Fuzzballs, Firewalls, and all that..
Fuzzballs, Firewalls, and all that.. Samir D. Mathur The Ohio State University Avery, Balasubramanian, Bena, Carson, Chowdhury, de Boer, Gimon, Giusto, Halmagyi, Keski-Vakkuri, Levi, Lunin, Maldacena,
Review of Vector Analysis in Cartesian Coordinates
R. evicky, CBE 6333 Review of Vector Analysis in Cartesian Coordinates Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, time, distance, and real numbers.
Magnetism and Magnetic Materials K. Inomata
Magnetism and Magnetic Materials K. Inomata 1. Origin of magnetism 1.1 Magnetism of free atoms and ions 1.2 Magnetism for localized electrons 1.3 Itinerant electron magnetism 2. Magnetic properties of
Rotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
Journal of Theoretics Journal Home Page
Journal of Theoretics Journal Home Page MASS BOOM VERSUS BIG BANG: THE ROLE OF PLANCK S CONSTANT by Antonio Alfonso-Faus E.U.I.T. Aeronáutica Plaza Cardenal Cisneros s/n 8040 Madrid, SPAIN e-mail: [email protected]
Objective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
1 Lecture 3: Operators in Quantum Mechanics
1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators
Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses
Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses Russell L. Herman and Gabriel Lugo University of North Carolina Wilmington, Wilmington, NC Abstract We describe the
Practice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy
Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
2. Spin Chemistry and the Vector Model
2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing
