GPGPU acceleration in OpenFOAM
|
|
|
- Gwenda Davidson
- 9 years ago
- Views:
Transcription
1 Carl-Friedrich Gauß Faculty GPGPU acceleration in OpenFOAM Northern germany OpenFoam User meeting Braunschweig Institute of Technology Thorsten Grahs Institute of Scientific Computing/move-csc 2nd October 2013 Slide 1/19
2 Overview 1 HPC on GPGPUs 2 GPU-plugins f. OpenFOAM 3 Comparison CPU-GPU Slide 2/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
3 Why GPGPUs are perfect for HPC? CPU vs. GPU Chip-Design CPU is optimized for serial tasks (single thread) GPU is optimized for massive parallel data handling (multiple threads) GPU does not care if pixel data has to be handled (tessellation, transformation, rendering) or scientific calculation has to be performed. Slide 3/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
4 Single instruction multiple threads Massive parallel data throughput High demand on computational power (real time rendering) Programing model inspired by vector computers (SIMD) Goal: Work off as many threads in parallel as possible Through-put orientated approach Accomplished by: Many Arithmetic Logical Units High clock rate of the data bus Highly suitable for massive parallel computing Slide 4/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
5 NVIDIA Quadro 6000 NVIDIA Quadro 6000 Affordable computing cluster in your workstation CUDA cores: 448 GFlops (SP): GFlops (DP): Frame buffer: 6 GB GDDR5 Memory bandwidth: 144 GB/s Cost: e( 4,800 $) Slide 5/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
6 GPGPU accelerated CFD GPGPU-plugins for OpenFOAM Make use of one of this libraries Open Source ofgpu v1.0 Linear solver library (Symscape) CUFFlink (CUda For Foam Link) Dan Combest speed-it classic (Vratis free version) Commercial (not tested) Culises (FluidDyna) Speed-IT 2.3 (Vratis) Slide 6/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
7 Proceeding Compile the plugin Check in the library (controldict) functions { cudagpu { type cudagpu; functionobjectlibs ( " gpu " ); cudadevice 0; } } Declare solver (fvsolutions) p { solver PCGgpu; preconditioner smoothed_aggregation; tolerance 1e-06; reltol 0.01; } Slide 7/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
8 Cuda side Open Libraries mostly make use of CUSP library for sparse linear algebra and graph computations on CUDA Linear Solver on GPU CG, BiCG, BiCGstab, GMRES Sparse Matrix Formats CSR, DIA, ELL, HYP Thrust parallel algorithms library which resembles the C++ Standard Template Library (STL). Commerial libraries based on own solver implementation in CUDA Slide 8/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
9 ... so far Very nice (easy use) but where s the beef??? What is the acceleration one can get? With how many CPUS/GPGPUS (Hardware) Does this pay off? Slide 9/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
10 Validation Coming to numbers one mostly see something like this: Test case lid-driven cavity with very small residuals i.e (1e-15) in order to keep the matrix solver busy. Slide 10/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
11 but who needs a lid-driven cavity... Speed-up for lid-driven cavity (icofoam solver) Hardware Mill cells remark CPU only ofgpu Single Precision cufflink fpe fpe OF 1.6ext. SpeedITclassic SP (tubs) Student project TUBS 8 CPUs How does these plugins perform on real test cases? Slide 11/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
12 KRISO container ship example Test Cases (1.8 M cells) a) Solver: simplefoam (steady state) relative Tolerance reltol = 0.1 absolute Tolerance atol=e-7/e-8 b) Solver: simplefoam (steady state) relative Tolerance reltol = 0.0 absolute Tolerance atol=e-7/e-8 c) Solver: interfoam (transient) relative Tolerance reltol = 0.1 absolute Tolerance atol=1e-8 Slide 12/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
13 Speedup KCS example Speed-up for KCS-test case Hardware a) b) c) remark CPU only ofgpu SinglePrecision cufflink OF 1.6ext. speeditclassic fpe fpe 0.66 CG for pressure SP (tubs) CPUs only CPUs + cufflink Slide 13/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
14 Commercial library Culises B. Landmann, Accelerating the Numerical Simulation of Heavy-Vehicle Aerodynamics Using GPUs with Culises, ISC 2013, Leipzig, June 2013 Slide 14/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
15 Ahmdals Law...? July 2013 Our recent findings indicate that the SpeedIT alone cannot accelerate OpenFOAM (and probably other CFD codes) to the satisfactory extent. If you follow our recent reports you will see SpeedIT is attractive for desktop computers but performs worse when compared to server class CPUs, such as Intel Xeon. The reason for such mild acceleration is the Amdahl s Law which states that the acceleration is bounded by the percentage of the code that cannot be parallalized.??? Ahmdal s law stems from Slide 15/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
16 What happened GPUs are made for number crunching Sometimes there is too few to crunch Inner solver iterations for KCS: Velocity 3 pressure 3 (k, ω) 1 To few inner solver iterations in this example Time to copy matrix from CPU to GPU is dominant Most validation test cases are tuned to very small tolerances This gains the impressive speed-up Realistic test cases needs usually less iterations & more relaxed tolerance settings Slide 16/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
17 Overhead influence (A. Monakov, V. Platono: Accelerating OpenFOAM with a Parallel GPU, 8th OpenFOAM Workshop 2013) Slide 17/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
18 Consequences For real speedup I see two possible ways: Bring the whole algorithm (i.e. Simple/PISO) to the GPGPU Not only the matrix Student research Project at the Institute Scientific Computing Matthias Huy, TU Braunschweig Problems: Object-oriented manner of OpenFOAM A whole bunch of basic classes has to be brought to the GPU Program your own solver to the GPU... Slide 18/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
19 Comparison CPU-FV vs. LBM-GPU CPU-Finite Volume code Commercial solver running on 80 cores, Two-phase flow Hardware: 80 Core cluster Simulation time: 2 weeks GPU-LBM code Lattice-Bolzmann code on a workstation Two-phase flow Hardware: 1 NVIDIA Quadro 6000 GPGPUs Simulation time : 8 hours Comparison not really fair, but... Speed up 40 Slide 19/19 Thorsten Grahs GPU plugins for OpenFOAM 2nd October 2013
GPGPU accelerated Computational Fluid Dynamics
t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute
Accelerating CFD using OpenFOAM with GPUs
Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications
AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications Dr. Bjoern Landmann Dr. Kerstin Wieczorek Stefan Bachschuster 18.03.2015 FluiDyna GmbH, Lichtenbergstr. 8, 85748 Garching
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
Introduction to GPU hardware and to CUDA
Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware
GPU Acceleration of the SENSEI CFD Code Suite
GPU Acceleration of the SENSEI CFD Code Suite Chris Roy, Brent Pickering, Chip Jackson, Joe Derlaga, Xiao Xu Aerospace and Ocean Engineering Primary Collaborators: Tom Scogland, Wu Feng (Computer Science)
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui
Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools
HPC with Multicore and GPUs
HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware
Case Study on Productivity and Performance of GPGPUs
Case Study on Productivity and Performance of GPGPUs Sandra Wienke [email protected] ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia
Introduction to GPGPU. Tiziano Diamanti [email protected]
[email protected] Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate
Real-time Visual Tracker by Stream Processing
Real-time Visual Tracker by Stream Processing Simultaneous and Fast 3D Tracking of Multiple Faces in Video Sequences by Using a Particle Filter Oscar Mateo Lozano & Kuzahiro Otsuka presented by Piotr Rudol
YALES2 porting on the Xeon- Phi Early results
YALES2 porting on the Xeon- Phi Early results Othman Bouizi Ghislain Lartigue Innovation and Pathfinding Architecture Group in Europe, Exascale Lab. Paris CRIHAN - Demi-journée calcul intensif, 16 juin
Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks. October 20 th 2015
INF5063: Programming heterogeneous multi-core processors because the OS-course is just to easy! Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks October 20 th 2015 Håkon Kvale
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
SUBJECT: SOLIDWORKS HARDWARE RECOMMENDATIONS - 2013 UPDATE
SUBJECT: SOLIDWORKS RECOMMENDATIONS - 2013 UPDATE KEYWORDS:, CORE, PROCESSOR, GRAPHICS, DRIVER, RAM, STORAGE SOLIDWORKS RECOMMENDATIONS - 2013 UPDATE Below is a summary of key components of an ideal SolidWorks
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
ST810 Advanced Computing
ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*
Graphic Processing Units: a possible answer to High Performance Computing?
4th ABINIT Developer Workshop RESIDENCE L ESCANDILLE AUTRANS HPC & Graphic Processing Units: a possible answer to High Performance Computing? Luigi Genovese ESRF - Grenoble 26 March 2009 http://inac.cea.fr/l_sim/
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance
64-Bit versus 32-Bit CPUs in Scientific Computing
64-Bit versus 32-Bit CPUs in Scientific Computing Axel Kohlmeyer Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum March 2004 1/25 Outline 64-Bit and 32-Bit CPU Examples
Turbomachinery CFD on many-core platforms experiences and strategies
Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
GPU File System Encryption Kartik Kulkarni and Eugene Linkov
GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through
Large-Scale Reservoir Simulation and Big Data Visualization
Large-Scale Reservoir Simulation and Big Data Visualization Dr. Zhangxing John Chen NSERC/Alberta Innovates Energy Environment Solutions/Foundation CMG Chair Alberta Innovates Technology Future (icore)
Evaluation of CUDA Fortran for the CFD code Strukti
Evaluation of CUDA Fortran for the CFD code Strukti Practical term report from Stephan Soller High performance computing center Stuttgart 1 Stuttgart Media University 2 High performance computing center
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 [email protected] THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833
High Performance Matrix Inversion with Several GPUs
High Performance Matrix Inversion on a Multi-core Platform with Several GPUs Pablo Ezzatti 1, Enrique S. Quintana-Ortí 2 and Alfredo Remón 2 1 Centro de Cálculo-Instituto de Computación, Univ. de la República
Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.
Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide
GPU for Scientific Computing. -Ali Saleh
1 GPU for Scientific Computing -Ali Saleh Contents Introduction What is GPU GPU for Scientific Computing K-Means Clustering K-nearest Neighbours When to use GPU and when not Commercial Programming GPU
The Methodology of Application Development for Hybrid Architectures
Computer Technology and Application 4 (2013) 543-547 D DAVID PUBLISHING The Methodology of Application Development for Hybrid Architectures Vladimir Orekhov, Alexander Bogdanov and Vladimir Gaiduchok Department
Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software
GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
Assessing the Performance of OpenMP Programs on the Intel Xeon Phi
Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and Matthias S. Müller [email protected] Rechen- und Kommunikationszentrum
Parallel Computing. Introduction
Parallel Computing Introduction Thorsten Grahs, 14. April 2014 Administration Lecturer Dr. Thorsten Grahs (that s me) [email protected] Institute of Scientific Computing Room RZ 120 Lecture Monday 11:30-13:00
ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop. Emily Apsey Performance Engineer
ArcGIS Pro: Virtualizing in Citrix XenApp and XenDesktop Emily Apsey Performance Engineer Presentation Overview What it takes to successfully virtualize ArcGIS Pro in Citrix XenApp and XenDesktop - Shareable
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM
Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture
White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
Efficient Parallel Graph Exploration on Multi-Core CPU and GPU
Efficient Parallel Graph Exploration on Multi-Core CPU and GPU Pervasive Parallelism Laboratory Stanford University Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun Graph and its Applications Graph Fundamental
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
Computer Graphics Hardware An Overview
Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and
Experiences on using GPU accelerators for data analysis in ROOT/RooFit
Experiences on using GPU accelerators for data analysis in ROOT/RooFit Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak European Organization for Nuclear Research (CERN), Geneva,
Retargeting PLAPACK to Clusters with Hardware Accelerators
Retargeting PLAPACK to Clusters with Hardware Accelerators Manuel Fogué 1 Francisco Igual 1 Enrique S. Quintana-Ortí 1 Robert van de Geijn 2 1 Departamento de Ingeniería y Ciencia de los Computadores.
Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors
Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Joe Davis, Sandeep Patel, and Michela Taufer University of Delaware Outline Introduction Introduction to GPU programming Why MD
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core
OpenFOAM at FM LTH. Erdzan Hodzic. FM Seminars: 16-march-2016. Division of Fluid Mechanics, Department of Energy Sciences, Lund University
FM Seminars: 16-march-2016 OpenFOAM at FM LTH Erdzan Hodzic Division of Fluid Mechanics, Department of Energy Sciences, Lund University This offering is not approved or endorsed by ESI Group, ESI-OpenCFD
Hardware Acceleration for CST MICROWAVE STUDIO
Hardware Acceleration for CST MICROWAVE STUDIO Chris Mason Product Manager Amy Dewis Channel Manager Agenda 1. Introduction 2. Why use Hardware Acceleration? 3. Hardware Acceleration Technologies 4. Current
GPU Parallel Computing Architecture and CUDA Programming Model
GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel
OpenFOAM Workshop. Yağmur Gülkanat Res.Assist.
OpenFOAM Workshop Yağmur Gülkanat Res.Assist. Introduction to OpenFOAM What is OpenFOAM? FOAM = Field Operation And Manipulation OpenFOAM is a free-to-use open-source numerical simulation software with
RWTH GPU Cluster. Sandra Wienke [email protected] November 2012. Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky
RWTH GPU Cluster Fotos: Christian Iwainsky Sandra Wienke [email protected] November 2012 Rechen- und Kommunikationszentrum (RZ) The RWTH GPU Cluster GPU Cluster: 57 Nvidia Quadro 6000 (Fermi) innovative
HPC Cluster Decisions and ANSYS Configuration Best Practices. Diana Collier Lead Systems Support Specialist Houston UGM May 2014
HPC Cluster Decisions and ANSYS Configuration Best Practices Diana Collier Lead Systems Support Specialist Houston UGM May 2014 1 Agenda Introduction Lead Systems Support Specialist Cluster Decisions Job
NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist
NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get
Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1
Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC
Chapter 2 Parallel Architecture, Software And Performance
Chapter 2 Parallel Architecture, Software And Performance UCSB CS140, T. Yang, 2014 Modified from texbook slides Roadmap Parallel hardware Parallel software Input and output Performance Parallel program
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING GPU COMPUTING VISUALISATION XENON Accelerating Exploration Mineral, oil and gas exploration is an expensive and challenging
Sourcery Overview & Virtual Machine Installation
Sourcery Overview & Virtual Machine Installation Damian Rouson, Ph.D., P.E. Sourcery, Inc. www.sourceryinstitute.org Sourcery, Inc. About Us Sourcery, Inc., is a software consultancy founded by and for
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster
Acta Technica Jaurinensis Vol. 3. No. 1. 010 A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster G. Molnárka, N. Varjasi Széchenyi István University Győr, Hungary, H-906
Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model
Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA Part 1: Hardware design and programming model Amin Safi Faculty of Mathematics, TU dortmund January 22, 2016 Table of Contents Set
Concurrent Solutions to Linear Systems using Hybrid CPU/GPU Nodes
Concurrent Solutions to Linear Systems using Hybrid CPU/GPU Nodes Oluwapelumi Adenikinju1, Julian Gilyard2, Joshua Massey1, Thomas Stitt 1 Department of Computer Science and Electrical Engineering, UMBC
How To Run A Steady Case On A Creeper
Crash Course Introduction to OpenFOAM Artur Lidtke University of Southampton [email protected] November 4, 2014 Artur Lidtke Crash Course Introduction to OpenFOAM 1 / 32 What is OpenFOAM? Using OpenFOAM
Enhancing Cloud-based Servers by GPU/CPU Virtualization Management
Enhancing Cloud-based Servers by GPU/CPU Virtualiz Management Tin-Yu Wu 1, Wei-Tsong Lee 2, Chien-Yu Duan 2 Department of Computer Science and Inform Engineering, Nal Ilan University, Taiwan, ROC 1 Department
Le langage OCaml et la programmation des GPU
Le langage OCaml et la programmation des GPU GPU programming with OCaml Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte Le projet OpenGPU : un an plus tard Ecole Polytechnique - 8 juin 2011 Outline
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
GeoImaging Accelerator Pansharp Test Results
GeoImaging Accelerator Pansharp Test Results Executive Summary After demonstrating the exceptional performance improvement in the orthorectification module (approximately fourteen-fold see GXL Ortho Performance
OpenACC Parallelization and Optimization of NAS Parallel Benchmarks
OpenACC Parallelization and Optimization of NAS Parallel Benchmarks Presented by Rengan Xu GTC 2014, S4340 03/26/2014 Rengan Xu, Xiaonan Tian, Sunita Chandrasekaran, Yonghong Yan, Barbara Chapman HPC Tools
ultra fast SOM using CUDA
ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
Equalizer. Parallel OpenGL Application Framework. Stefan Eilemann, Eyescale Software GmbH
Equalizer Parallel OpenGL Application Framework Stefan Eilemann, Eyescale Software GmbH Outline Overview High-Performance Visualization Equalizer Competitive Environment Equalizer Features Scalability
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer
Cluster Scalability of ANSYS FLUENT 12 for a Large Aerodynamics Case on the Darwin Supercomputer Stan Posey, MSc and Bill Loewe, PhD Panasas Inc., Fremont, CA, USA Paul Calleja, PhD University of Cambridge,
GPU Architecture. Michael Doggett ATI
GPU Architecture Michael Doggett ATI GPU Architecture RADEON X1800/X1900 Microsoft s XBOX360 Xenos GPU GPU research areas ATI - Driving the Visual Experience Everywhere Products from cell phones to super
E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices
E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,
GPU Renderfarm with Integrated Asset Management & Production System (AMPS)
GPU Renderfarm with Integrated Asset Management & Production System (AMPS) Tackling two main challenges in CG movie production Presenter: Dr. Chen Quan Multi-plAtform Game Innovation Centre (MAGIC), Nanyang
Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems
Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Murilo Boratto Núcleo de Arquitetura de Computadores e Sistemas Operacionais, Universidade do Estado
QCD as a Video Game?
QCD as a Video Game? Sándor D. Katz Eötvös University Budapest in collaboration with Győző Egri, Zoltán Fodor, Christian Hoelbling Dániel Nógrádi, Kálmán Szabó Outline 1. Introduction 2. GPU architecture
The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model
The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model Vangelis Skaperdas, Aristotelis Iordanidis, Grigoris Fotiadis BETA CAE Systems S.A. 2 nd Northern Germany OpenFOAM User
Performance Characteristics of Large SMP Machines
Performance Characteristics of Large SMP Machines Dirk Schmidl, Dieter an Mey, Matthias S. Müller [email protected] Rechen- und Kommunikationszentrum (RZ) Agenda Investigated Hardware Kernel Benchmark
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
CFD Implementation with In-Socket FPGA Accelerators
CFD Implementation with In-Socket FPGA Accelerators Ivan Gonzalez UAM Team at DOVRES FuSim-E Programme Symposium: CFD on Future Architectures C 2 A 2 S 2 E DLR Braunschweig 14 th -15 th October 2009 Outline
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,
SGI HPC Systems Help Fuel Manufacturing Rebirth
SGI HPC Systems Help Fuel Manufacturing Rebirth Created by T A B L E O F C O N T E N T S 1.0 Introduction 1 2.0 Ongoing Challenges 1 3.0 Meeting the Challenge 2 4.0 SGI Solution Environment and CAE Applications
Cell-SWat: Modeling and Scheduling Wavefront Computations on the Cell Broadband Engine
Cell-SWat: Modeling and Scheduling Wavefront Computations on the Cell Broadband Engine Ashwin Aji, Wu Feng, Filip Blagojevic and Dimitris Nikolopoulos Forecast Efficient mapping of wavefront algorithms
