NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist
|
|
|
- Rudolph Richard
- 10 years ago
- Views:
Transcription
1 NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist
2 Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get Started! Exercises / Examples Interleaved with Presentation Materials Homework for later 2
3 Future Science and Engineering Breakthroughs Hinge on Computing Computational Geoscience Computational Chemistry Computational Medicine Computational Modeling Computational Physics Computational Biology Computational Finance Image Processing 3
4 Faster is not just Faster 2-3X faster is just faster Do a little more, wait a little less Doesn t change how you work 5-10x faster is significant Worth upgrading Worth re-writing (parts of) the application 100x+ faster is fundamentally different Worth considering a new platform Worth re-architecting the application Makes new applications possible Drives time to discovery and creates fundamental changes in Science 4
5 The GPU is a New Computation Engine Fully Programmable G80 Relative Floating Point Performance Era of Shaders
6 Closely Coupled CPU-GPU Function Lib Lib Function Function Init Alloc GPU CPU Operation 1 Operation 2 Operation 3 Integrated programming model High speed data transfer up to 3.2 GB/s Asynchronous operation Large GPU memory systems 6
7 Millions of CUDA-enabled GPUs 50 Dedicated computing C on the GPU Servers through Notebook PCs Total GPUs (millions)
8 GeForce Entertainment Quadro Design & Creation Tesla TM High Performance Computing 8
9 VMD/NAMD Molecular Dynamics 240X speedup Computational biology 9
10 EvolvedMachines Simulate the brain circuit Sensory computing: vision, olfactory 130X Speed up EvolvedMachines 10
11 Hanweck Associates VOLERA, real-time options implied volatility engine Accuracy results with SINGLE PRECISION Evaluate all U.S. listed equity options in <1 second ( 11
12 LIBOR APPLICATION: Mike Giles and Su Xiaoke Oxford University Computing Laboratory LIBOR Model with portfolio of swaptions 80 initial forward rates and 40 timesteps to maturity 80 Deltas computed with adjoint approach No Greeks Greeks Intel Xeon 18.1s s - ClearSpeed Advance 2 CSX s 6x 6.4s 4x NVIDIA 8800 GTX 0.045s 400x 0.18s 149x The performance of the CUDA code on the 8800 GTX is exceptional -Mike Giles Source codes and papers available at: 12
13 Manifold 8 GIS Application From the Manifold 8 feature list: applications fitting CUDA capabilities that might have taken tens of seconds or even minutes can be accomplished in hundredths of seconds. CUDA will clearly emerge to be the future of almost all GIS computing From the user manual: "NVIDIA CUDA could well be the most revolutionary thing to happen in computing since the invention of the microprocessor 13
14 nbody Astrophysics Astrophysics research 1 GF on standard PC 300+ GF on GeForce 8800GTX Faster than GRAPE-6Af custom simulation computer Video demo 14
15 Matlab: Language of Science 17X with MATLAB CPU+GPU Pseudo-spectral simulation of 2D Isotropic turbulence 15
16 CUDA Programming Model Overview
17 GPU Computing GPU is a massively parallel processor NVIDIA G80: 128 processors Support thousands of active threads (12,288 on G80) GPU Computing requires a programming model that can efficiently express that kind of parallelism Most importantly, data parallelism CUDA implements such a programming model 17
18 CUDA Kernels and s Parallel portions of an application are executed on the device as kernels One kernel is executed at a time Many threads execute each kernel Differences between CUDA and CPU threads CUDA threads are extremely lightweight Very little creation overhead Instant switching CUDA uses 1000s of threads to achieve efficiency Multi-core CPUs can use only a few Definitions: Device = GPU; Host = CPU Kernel = function that runs on the device 18
19 Arrays of Parallel s A CUDA kernel is executed by an array of threads All threads run the same code Each thread has an ID that it uses to compute memory addresses and make control decisions threadid float x = input[threadid]; float y = func(x); output[threadid] = y; 19
20 Cooperation The Missing Piece: threads may need to cooperate cooperation is valuable Share results to save computation Synchronization Share memory accesses Drastic bandwidth reduction cooperation is a powerful feature of CUDA 20
21 Blocks: Scalable Cooperation Divide monolithic thread array into multiple blocks s within a block cooperate via shared memory s in different blocks cannot cooperate Enables programs to transparently scale to any number of processors! Block 0 Block 0 Block N - 1 threadid float x = input[threadid]; float y = func(x); output[threadid] = y; float x = input[threadid]; float y = func(x); output[threadid] = y; float x = input[threadid]; float y = func(x); output[threadid] = y; 21
22 Transparent Scalability Hardware is free to schedule thread blocks on any processor at any time A kernel scales across any number of parallel multiprocessors Device Block 0 Block 1 Kernel grid Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Device Block 0 Block 1 Block 2 Block 3 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 4 Block 5 Block 6 Block 7 22
23 CUDA Programming Model A kernel is executed by a grid of thread blocks A thread block is a batch of threads that can cooperate with each other by: Sharing data through shared memory Synchronizing their execution Host Kernel 1 Kernel 2 Block (1, 1) (0, 0) Device (1, 0) Grid 1 Block (0, 0) Block (0, 1) Grid 2 (2, 0) Block (1, 0) Block (1, 1) (3, 0) (4, 0) Block (2, 0) Block (2, 1) s from different blocks cannot cooperate (0, 1) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2) 23
24 G80 Device Processors execute computing threads Execution Manager issues threads 128 Processors grouped into 16 Multiprocessors (SMs) Parallel Data Cache (Shared Memory) enables thread cooperation Host Input Assembler Execution Manager Processors Processors Processors Processors Processors Processors Processors Processors Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Parallel Data Cache Load/store Global Memory 24
25 and Block IDs s and blocks have IDs Each thread can decide what data to work on Device Grid 1 Block ID: 1D or 2D ID: 1D, 2D, or 3D Block (0, 0) Block (0, 1) Block (1, 0) Block (1, 1) Block (2, 0) Block (2, 1) Simplifies memory addressing when processing multi-dimensional data Image processing Solving PDEs on volumes Block (1, 1) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) (3, 0) (3, 1) (3, 2) (4, 0) (4, 1) (4, 2) 25
26 Kernel Memory Access Registers Global Memory (external DRAM) Kernel input and output data reside here Off-chip, large Uncached Grid Block (0, 0) Shared Memory Registers Registers Block (1, 0) Shared Memory Registers Registers Shared Memory (Parallel Data Cache) Shared among threads in a single block On-chip, small As fast as registers Host (0, 0) Global Memory (1, 0) (0, 0) (1, 0) The host can read & write global memory but not shared memory 26
27 Execution Model Kernels are launched in grids One kernel executes at a time A block executes on one Streaming Multiprocessor (SM) Does not migrate Several blocks can reside concurrently on one SM Control limitations (of G8X/G9X GPUs): At most 8 concurrent blocks per SM At most 768 concurrent threads per SM Number is further limited by SM resources Register file is partitioned among all resident threads Shared memory is partitioned among all resident thread blocks 27
28 CUDA Advantages over Legacy GPGPU (Legacy GPGPU is programming GPU through graphics APIs) Random access byte-addressable memory can access any memory location Unlimited access to memory can read/write as many locations as needed Shared memory (per block) and thread synchronization s can cooperatively load data into shared memory Any thread can then access any shared memory location Low learning curve Just a few extensions to C No knowledge of graphics is required No graphics API overhead 28
29 CUDA Model Summary Thousands of lightweight concurrent threads No switching overhead Hide instruction and memory latency Shared memory User-managed L1 cache communication / cooperation within blocks Random access to global memory Any thread can read/write any location(s) Current generation hardware: Up to 128 streaming processors Memory Location Cached Access Scope ( Who? ) Shared On-chip N/A Read/write All threads in a block Global Off-chip No Read/write All threads + host 29
30 Getting Started 30
31 Get CUDA CUDA Zone: Programming Guide and other Documentation Toolkits and SDKs for: Windows Linux MacOS Libraries Plugins Forums Code Samples 31
32 Come visit the class! UIUC ECE498AL Programming Massively Parallel Processors ( David Kirk (NVIDIA) and Wenmei Hwu (UIUC) co-instructors CUDA programming, GPU computing, lab exercises, and projects Lecture slides and voice recordings 32
33 Questions? 33
GPU Parallel Computing Architecture and CUDA Programming Model
GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel
Introduction to GPU hardware and to CUDA
Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1
Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
GPGPU Computing. Yong Cao
GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices
E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,
GPGPU for Real-Time Data Analytics: Introduction. Nanyang Technological University, Singapore 2
GPGPU for Real-Time Data Analytics: Introduction Bingsheng He 1, Huynh Phung Huynh 2, Rick Siow Mong Goh 2 1 Nanyang Technological University, Singapore 2 A*STAR Institute of High Performance Computing,
GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
Texture Cache Approximation on GPUs
Texture Cache Approximation on GPUs Mark Sutherland Joshua San Miguel Natalie Enright Jerger {suther68,enright}@ece.utoronto.ca, [email protected] 1 Our Contribution GPU Core Cache Cache
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
Clustering Billions of Data Points Using GPUs
Clustering Billions of Data Points Using GPUs Ren Wu [email protected] Bin Zhang [email protected] Meichun Hsu [email protected] ABSTRACT In this paper, we report our research on using GPUs to accelerate
Stream Processing on GPUs Using Distributed Multimedia Middleware
Stream Processing on GPUs Using Distributed Multimedia Middleware Michael Repplinger 1,2, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken, Germany 2 German Research
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61
F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase
HPC with Multicore and GPUs
HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware
Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Modern GPU
GPU File System Encryption Kartik Kulkarni and Eugene Linkov
GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through
Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA
Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Technology, Computer Engineering by Amol
CUDA Debugging. GPGPU Workshop, August 2012. Sandra Wienke Center for Computing and Communication, RWTH Aachen University
CUDA Debugging GPGPU Workshop, August 2012 Sandra Wienke Center for Computing and Communication, RWTH Aachen University Nikolay Piskun, Chris Gottbrath Rogue Wave Software Rechen- und Kommunikationszentrum
GPU Performance Analysis and Optimisation
GPU Performance Analysis and Optimisation Thomas Bradley, NVIDIA Corporation Outline What limits performance? Analysing performance: GPU profiling Exposing sufficient parallelism Optimising for Kepler
NVIDIA GeForce GTX 580 GPU Datasheet
NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines
Optimizing Application Performance with CUDA Profiling Tools
Optimizing Application Performance with CUDA Profiling Tools Why Profile? Application Code GPU Compute-Intensive Functions Rest of Sequential CPU Code CPU 100 s of cores 10,000 s of threads Great memory
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.
Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide
Embedded Systems: map to FPGA, GPU, CPU?
Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven [email protected] Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
ultra fast SOM using CUDA
ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A
NVIDIA Tools For Profiling And Monitoring. David Goodwin
NVIDIA Tools For Profiling And Monitoring David Goodwin Outline CUDA Profiling and Monitoring Libraries Tools Technologies Directions CScADS Summer 2012 Workshop on Performance Tools for Extreme Scale
The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA
The Evolution of Computer Graphics Tony Tamasi SVP, Content & Technology, NVIDIA Graphics Make great images intricate shapes complex optical effects seamless motion Make them fast invent clever techniques
Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries
Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries Shin Morishima 1 and Hiroki Matsutani 1,2,3 1Keio University, 3 14 1 Hiyoshi, Kohoku ku, Yokohama, Japan 2National Institute
Guided Performance Analysis with the NVIDIA Visual Profiler
Guided Performance Analysis with the NVIDIA Visual Profiler Identifying Performance Opportunities NVIDIA Nsight Eclipse Edition (nsight) NVIDIA Visual Profiler (nvvp) nvprof command-line profiler Guided
GPU Computing - CUDA
GPU Computing - CUDA A short overview of hardware and programing model Pierre Kestener 1 1 CEA Saclay, DSM, Maison de la Simulation Saclay, June 12, 2012 Atelier AO and GPU 1 / 37 Content Historical perspective
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
CUDA SKILLS. Yu-Hang Tang. June 23-26, 2015 CSRC, Beijing
CUDA SKILLS Yu-Hang Tang June 23-26, 2015 CSRC, Beijing day1.pdf at /home/ytang/slides Referece solutions coming soon Online CUDA API documentation http://docs.nvidia.com/cuda/index.html Yu-Hang Tang @
NVIDIA Tesla. GPU Computing Technical Brief. Version 1.0.0 5/24/07
NVIDIA Tesla GPU Computing Technical Brief Version 1.0.0 5/24/07 ii NVIDIA Tesla: GPU Compute Tech Brief, Version 1.0.0 Table of Contents Chapter 1. High-Performance Computing on the GPU... 1 1.1 High-Performance
How To Build A Cloud Computer
Introducing the Singlechip Cloud Computer Exploring the Future of Many-core Processors White Paper Intel Labs Jim Held Intel Fellow, Intel Labs Director, Tera-scale Computing Research Sean Koehl Technology
Accelerating CFD using OpenFOAM with GPUs
Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING GPU COMPUTING VISUALISATION XENON Accelerating Exploration Mineral, oil and gas exploration is an expensive and challenging
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la
CUDA Basics. Murphy Stein New York University
CUDA Basics Murphy Stein New York University Overview Device Architecture CUDA Programming Model Matrix Transpose in CUDA Further Reading What is CUDA? CUDA stands for: Compute Unified Device Architecture
Multi-GPU Load Balancing for Simulation and Rendering
Multi- Load Balancing for Simulation and Rendering Yong Cao Computer Science Department, Virginia Tech, USA In-situ ualization and ual Analytics Instant visualization and interaction of computing tasks
GPGPU accelerated Computational Fluid Dynamics
t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Qingyu Meng, Alan Humphrey, Martin Berzins Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute Justin Luitjens
Next Generation Operating Systems
Next Generation Operating Systems Zeljko Susnjar, Cisco CTG June 2015 The end of CPU scaling Future computing challenges Power efficiency Performance == parallelism Cisco Confidential 2 Paradox of the
NVIDIA VIDEO ENCODER 5.0
NVIDIA VIDEO ENCODER 5.0 NVENC_DA-06209-001_v06 November 2014 Application Note NVENC - NVIDIA Hardware Video Encoder 5.0 NVENC_DA-06209-001_v06 i DOCUMENT CHANGE HISTORY NVENC_DA-06209-001_v06 Version
Parallel Firewalls on General-Purpose Graphics Processing Units
Parallel Firewalls on General-Purpose Graphics Processing Units Manoj Singh Gaur and Vijay Laxmi Kamal Chandra Reddy, Ankit Tharwani, Ch.Vamshi Krishna, Lakshminarayanan.V Department of Computer Engineering
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
Computer Graphics Hardware An Overview
Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and
CLOUD GAMING WITH NVIDIA GRID TECHNOLOGIES Franck DIARD, Ph.D., SW Chief Software Architect GDC 2014
CLOUD GAMING WITH NVIDIA GRID TECHNOLOGIES Franck DIARD, Ph.D., SW Chief Software Architect GDC 2014 Introduction Cloud ification < 2013 2014+ Music, Movies, Books Games GPU Flops GPUs vs. Consoles 10,000
HP ProLiant SL270s Gen8 Server. Evaluation Report
HP ProLiant SL270s Gen8 Server Evaluation Report Thomas Schoenemeyer, Hussein Harake and Daniel Peter Swiss National Supercomputing Centre (CSCS), Lugano Institute of Geophysics, ETH Zürich [email protected]
ACCELERATING SELECT WHERE AND SELECT JOIN QUERIES ON A GPU
Computer Science 14 (2) 2013 http://dx.doi.org/10.7494/csci.2013.14.2.243 Marcin Pietroń Pawe l Russek Kazimierz Wiatr ACCELERATING SELECT WHERE AND SELECT JOIN QUERIES ON A GPU Abstract This paper presents
OpenCL Programming for the CUDA Architecture. Version 2.3
OpenCL Programming for the CUDA Architecture Version 2.3 8/31/2009 In general, there are multiple ways of implementing a given algorithm in OpenCL and these multiple implementations can have vastly different
High Performance GPGPU Computer for Embedded Systems
High Performance GPGPU Computer for Embedded Systems Author: Dan Mor, Aitech Product Manager September 2015 Contents 1. Introduction... 3 2. Existing Challenges in Modern Embedded Systems... 3 2.1. Not
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Amanda O Connor, Bryan Justice, and A. Thomas Harris IN52A. Big Data in the Geosciences:
Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server
Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Technology brief Introduction... 2 GPU-based computing... 2 ProLiant SL390s GPU-enabled architecture... 2 Optimizing
<Insert Picture Here> Oracle In-Memory Database Cache Overview
Oracle In-Memory Database Cache Overview Simon Law Product Manager The following is intended to outline our general product direction. It is intended for information purposes only,
NVIDIA CUDA GETTING STARTED GUIDE FOR MICROSOFT WINDOWS
NVIDIA CUDA GETTING STARTED GUIDE FOR MICROSOFT WINDOWS DU-05349-001_v6.0 February 2014 Installation and Verification on TABLE OF CONTENTS Chapter 1. Introduction...1 1.1. System Requirements... 1 1.2.
Introduction to GPGPU. Tiziano Diamanti [email protected]
[email protected] Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate
Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software
GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas
The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
Enhancing Cloud-based Servers by GPU/CPU Virtualization Management
Enhancing Cloud-based Servers by GPU/CPU Virtualiz Management Tin-Yu Wu 1, Wei-Tsong Lee 2, Chien-Yu Duan 2 Department of Computer Science and Inform Engineering, Nal Ilan University, Taiwan, ROC 1 Department
15-418 Final Project Report. Trading Platform Server
15-418 Final Project Report Yinghao Wang [email protected] May 8, 214 Trading Platform Server Executive Summary The final project will implement a trading platform server that provides back-end support
Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1
Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion
~ Greetings from WSU CAPPLab ~
~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)
GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 4 - Optimizations Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 3 Control flow Coalescing Latency hiding
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 [email protected] THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833
Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU
Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU Heshan Li, Shaopeng Wang The Johns Hopkins University 3400 N. Charles Street Baltimore, Maryland 21218 {heshanli, shaopeng}@cs.jhu.edu 1 Overview
Lecture 1: an introduction to CUDA
Lecture 1: an introduction to CUDA Mike Giles [email protected] Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Overview hardware view software view CUDA programming
Operating Systems for Parallel Processing Assistent Lecturer Alecu Felician Economic Informatics Department Academy of Economic Studies Bucharest
Operating Systems for Parallel Processing Assistent Lecturer Alecu Felician Economic Informatics Department Academy of Economic Studies Bucharest 1. Introduction Few years ago, parallel computers could
FPGA-based Multithreading for In-Memory Hash Joins
FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded
Case Study on Productivity and Performance of GPGPUs
Case Study on Productivity and Performance of GPGPUs Sandra Wienke [email protected] ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia
L20: GPU Architecture and Models
L20: GPU Architecture and Models scribe(s): Abdul Khalifa 20.1 Overview GPUs (Graphics Processing Units) are large parallel structure of processing cores capable of rendering graphics efficiently on displays.
Application. EDIUS and Intel s Sandy Bridge Technology
Application Note How to Turbo charge your workflow with Intel s Sandy Bridge processors and chipsets Alex Kataoka, Product Manager, Editing, Servers & Storage (ESS) August 2011 Would you like to cut the
RevoScaleR Speed and Scalability
EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.
Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup
Chapter 12: Multiprocessor Architectures Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Objective Be familiar with basic multiprocessor architectures and be able to
OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA
OpenCL Optimization San Jose 10/2/2009 Peng Wang, NVIDIA Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary Overall Optimization
Direct GPU/FPGA Communication Via PCI Express
Direct GPU/FPGA Communication Via PCI Express Ray Bittner, Erik Ruf Microsoft Research Redmond, USA {raybit,erikruf}@microsoft.com Abstract Parallel processing has hit mainstream computing in the form
A general-purpose virtualization service for HPC on cloud computing: an application to GPUs
A general-purpose virtualization service for HPC on cloud computing: an application to GPUs R.Montella, G.Coviello, G.Giunta* G. Laccetti #, F. Isaila, J. Garcia Blas *Department of Applied Science University
Removing Performance Bottlenecks in Databases with Red Hat Enterprise Linux and Violin Memory Flash Storage Arrays. Red Hat Performance Engineering
Removing Performance Bottlenecks in Databases with Red Hat Enterprise Linux and Violin Memory Flash Storage Arrays Red Hat Performance Engineering Version 1.0 August 2013 1801 Varsity Drive Raleigh NC
Unisys ClearPath Forward Fabric Based Platform to Power the Weather Enterprise
Unisys ClearPath Forward Fabric Based Platform to Power the Weather Enterprise Introducing Unisys All in One software based weather platform designed to reduce server space, streamline operations, consolidate
Lecture 2: Computer Hardware and Ports. [email protected] http://faculty.sau.edu.sa/y.alharbi/en
BMTS 242: Computer and Systems Lecture 2: Computer Hardware and Ports Yousef Alharbi Email Website [email protected] http://faculty.sau.edu.sa/y.alharbi/en The System Unit McGraw-Hill Copyright 2011
10- High Performance Compu5ng
10- High Performance Compu5ng (Herramientas Computacionales Avanzadas para la Inves6gación Aplicada) Rafael Palacios, Fernando de Cuadra MRE Contents Implemen8ng computa8onal tools 1. High Performance
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
Experiences on using GPU accelerators for data analysis in ROOT/RooFit
Experiences on using GPU accelerators for data analysis in ROOT/RooFit Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak European Organization for Nuclear Research (CERN), Geneva,
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance
Four Keys to Successful Multicore Optimization for Machine Vision. White Paper
Four Keys to Successful Multicore Optimization for Machine Vision White Paper Optimizing a machine vision application for multicore PCs can be a complex process with unpredictable results. Developers need
