Mobile robots. Structure of this lecture. Section A: Introduction to AGV: mobile robots. Section B: Design of the ShAPE mobile robot

Size: px
Start display at page:

Download "Mobile robots. Structure of this lecture. Section A: Introduction to AGV: mobile robots. Section B: Design of the ShAPE mobile robot"

Transcription

1 slide n. 1 Mobile robots Development of the ShAPE mobile robot Ing. A.Tasora Dipartimento di Ingegneria Industriale Università di Parma, Italy tasora@ied.unipr.it slide n. 2 Structure of this lecture Section A: Introduction to AGV: mobile robots Section B: Design of the ShAPE mobile robot 1

2 slide n. 3 Section A: Introduction to AGV: mobile robots slide n. 4 Autonomous guided vehicles Mobile robots: used for surveillance logistics entertainment, etc. Solutions are different in terms of method of locomotion (wheels, legs, tracks, etc.) payload & speed (performance) navigation system etc 2

3 slide n. 5 Some ready-to-use AGV Esatroll Paquito Max speed 1.3 m/s with laser scanner and bumpers Proxaut MT10 Max speed 1.3 m/s Max payload 1000 kg LGV navigation, with laser and gyroscope slide n. 6 Some ready-to-use AGV Skilled MT10 Max speed 1.5 m/s Max payload 2500 kg LGV navigation, with laser Repeatability: 10 mm 3

4 slide n. 7 Locomotion systems Propeller / jet / rocket.. (UAV, unmanned aerial vehicles) 6-DOF navigation GPS + gyroscopes + magnetic gyrocompass + vision awareness + laser altimeter + accelerometers (and Kalman filter ) Legs Difficult to control Useful for uneven pavements Not useful for industrial environments Tracks / snakes / etc. Mostly for research not in industry slide n. 8 Locomotion systems Three Interroll omnidirectional wheels No need to turn wheels: direct transmission with 3 motors All types of 3-DOF manouvers on 2D plane Not suited for high speeds Not suited for high loads Possible improvements ( Mecanum wheels) 4

5 slide n. 9 Locomotion systems 3 or 4 fully steerable wheels All types of 3-DOF manouvers on 2D plane Good performances but Complex design (more motors than DOFs) slide n. 10 Locomotion systems Two parallel wheels and one steerable wheel Simplified design Only two motors Good speed & payload (ex. industrial environments) Not all 3-DOF motions in 2D are possible! (non-holonomic constraints) Two different approaches: Differential wheels Motorized steering wheel m1 m2 m1 m2 5

6 slide n. 11 Locomotion systems Motorized steering wheel m1 m2 Advantages: Front wheel never gets stuck Disadvantages Two sizes for the motors One of the two motors works much more than the other The mechanism for steering requires vertical space slide n. 12 Locomotion systems Differential wheels m1 m2 Advantages: Same size for motors, reducers and controllers Both motors are used for accelerating lightweight design Very simple to build Small footprint Disadvantages The front wheel has passive steering, it can get stuck.. 6

7 slide n. 13 Navigation systems & sensors How to get the absolute position (x, y,θ ) of the robot? Odometric data (recordings of wheel rotation) is not enough! It accumulates errors it must be integrated with other more absolute information.. Y I Y R G X R θ Absolute position must be updated in real-time, as fast as possible X I No need for extreme precision (10 mm repeatability is good) Solution? Different systems are used. slide n. 14 Navigation systems & sensors Robot on railways / on guides Easy solution, but not flexible Requires expensive modifications to the building floor/roof Wires in the floor & inductive sensor Easy solution, not 100% flexible Requires expensive modifications to the building floor Optical lanes painted on the floor Easy solution, not 100% flexible Cheap modifications to the building floor, but painted lines on the ground can be covered by dirt 7

8 slide n. 15 Navigation systems & sensors Gyroscopes Only rotation information Mechanical / Laser Sagnac effect / Piezo (MEMS) Only piezo gyros are cheap, but easily accumulate drifting.. Magnetic gyrocompasses Only rotation information Extremely cheap (two IC fluxometers) Measure the magnetic field of Earth absolute, but low precision Affected by disturbs slide n. 16 Navigation systems & sensors Satellite GPS Only x,y position Not precise enough (but cheap) Requires open air MEMS gyroscopes + MEMS accelerometers ( + gyrocompass + ) 3 DOF rotation without drifting Useful for attitude of UAV, drones, etc Redundant sensors: exploit Kalman filters Adding GPS for translation too: full 6 DOF 8

9 slide n. 17 Navigation systems & sensors Example: a quadcopter drone with autopilot (Ilmenau University, DE) slide n. 18 Navigation systems & sensors Laser navigation (LGV) Both x,y position and rotation Very used for industrial AGV Rotates a laser and sees when it hits some fixed reflective markers in the building Problems with occluded markers / bad illumination Not that cheap 9

10 slide n. 19 Navigation systems & sensors Feedback with artificial vision 1) One or more camera on the roof see the AGV 2) Image analysis software can extract features from camera views 3) Position of AGV is obtained in view field, then trasformed to abs.space No need to put the computer on the robot Often used for small robots (soccer robot games, etc) Robots must have recognizable symbols on their top (problems with bad illumination, etc.) Artificial vision awareness (SLAM approach) The camera is mounted on the robot the robot looks at the environment which it navigates, while an AI software with artificial vision can understand the position respect to known objects (walls, windows). Very complex sw, low robustness not ready for industrial applications. slide n. 20 Section B: Design of the ShAPE mobile robot 10

11 slide n. 21 Operating environment The robot must carry small boxes filled with plastic materials Small footprint is required (max 1m length) No need to buy large commercial AGV We developed a custom AGV, with simple navigation method based on feedback from fixed videocameras and image analysis slide n. 22 Operating environment The carthesian robot which assists the AGV and the storage system 11

12 slide n. 23 Operating environment The storage system: how the load/unload buffer works slide n. 24 Locomotion system Differential wheels m1 m2 We choose the differential system because, among other advantages, allowed us to keep the vertical size of the load plane under the strict requirement (150 mm) 12

13 slide n. 25 Overall sizing slide n. 26 Choosing motors and transmissions Requirements: Speed: 1 m/s Ramps: 8% Accelerations: as from various benchmark for typical duty cycles.. Results: Reducers ratio: 1/20 Wheel diameter: 120 mm Brushless motors LENZE Fluxxtorque 931E (0.8 Nm nominal torque) 13

14 slide n. 27 Choosing motors and transmissions Lenze brushless motors (24V) slide n. 28 Choosing motors and transmissions The worm reducer Low precision (some backlash) and low efficiency but..fits into budget constraints..and takes small room in the robot frame 14

15 slide n. 29 Mechanical design The aluminum truss slide n. 30 Mechanical design The box for drive controllers, electronic devices and accumulators 15

16 slide n. 31 Mechanical design Details slide n. 32 Mechanical design The wheel: it must touch the ground in a point (i.e. the smallest possible area) Bearings must be resistant (1000N of radial force) 16

17 slide n. 33 Mechanical design The pivoting wheel must be as stiff as possible, with toroidal surface, so that it does not create unwanted frictional effects during changes of direction. We tried different types of materials. Cast polyurethane is worse than hard polyammide. Cylindrical tire is worse than beveled or toroidal surface. slide n. 34 Electrical design The 24V power circuit 17

18 slide n. 35 Electrical design The accumulators: 4 x 27Ah standard lead batteries Predicted continuous operating time without need to recharge: 2h. slide n. 36 Control The AGV is controlled by a remote computer using Wi-Fi ethernet The remote computer is fixed to ground (it does not waste electric power) while on the AGV there are only simple controllers for the simplest tasks The remote computer is also responsible of complex image analysis from the fixed videocamera 18

19 slide n. 37 Control Hi-Res Videocamera firewire Remote computer Router wireless Bridge wireless Converter Ethernet CAN MCU realtime controller Drives of the two motors CAN bus Ethernet Wireless IEEE g Ethernet slide n. 38 Control Bridge wireless Converter ethernet/can Note!!! This CAN-over-WiFi scheme is enough for the prototype, but NOT for hard-real-time environments (an embedded controller should take care of RT) 19

20 slide n. 39 Control The two drives for the control of the brushless motors slide n. 40 Software The software updates the state of the robot each 20ms Acceleration / speed / rotation ramps for the two wheels are calculated on-the-fly, so the speed setpoint is continuously passed to the two controllers with CAN telegrams: 20

21 slide n. 41 Software The user interface Allows: - jogging - storing a position list - programming slide n. 42 Software Example of program running through a position list 21

22 slide n. 43 Repeatability Test: good results even with open-loop feed-forward only slide n. 44 Examples 22

23 slide n. 45 Conclusions The ShAPE mobile robot is a custom AGV with good performance and low cost Global positioning comes from artificial vision CPU-intensive operations are performed on a computer that is fixed to ground Information passed to the AGV using Wi-Fi devices. 23

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras 1 CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation Prof. Dr. Hani Hagras Robot Locomotion Robots might want to move in water, in the air, on land, in space.. 2 Most of the

More information

Aerospace Information Technology Topics for Internships and Bachelor s and Master s Theses

Aerospace Information Technology Topics for Internships and Bachelor s and Master s Theses Aerospace Information Technology s for Internships and Bachelor s and Master s Theses Version Nov. 2014 The Chair of Aerospace Information Technology addresses several research topics in the area of: Avionic

More information

sonobot autonomous hydrographic survey vehicle product information guide

sonobot autonomous hydrographic survey vehicle product information guide sonobot autonomous hydrographic survey vehicle product information guide EvoLogics Sonobot an autonomous unmanned surface vehicle for hydrographic surveys High Precision Differential GPS for high-accuracy

More information

Tracking devices. Important features. 6 Degrees of freedom. Mechanical devices. Types. Virtual Reality Technology and Programming

Tracking devices. Important features. 6 Degrees of freedom. Mechanical devices. Types. Virtual Reality Technology and Programming Tracking devices Virtual Reality Technology and Programming TNM053: Lecture 4: Tracking and I/O devices Referred to head-tracking many times Needed to get good stereo effect with parallax Essential for

More information

Control of a quadrotor UAV (slides prepared by M. Cognetti)

Control of a quadrotor UAV (slides prepared by M. Cognetti) Sapienza Università di Roma Corso di Laurea in Ingegneria Elettronica Corso di Fondamenti di Automatica Control of a quadrotor UAV (slides prepared by M. Cognetti) Unmanned Aerial Vehicles (UAVs) autonomous/semi-autonomous

More information

Onboard electronics of UAVs

Onboard electronics of UAVs AARMS Vol. 5, No. 2 (2006) 237 243 TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent

More information

An inertial haptic interface for robotic applications

An inertial haptic interface for robotic applications An inertial haptic interface for robotic applications Students: Andrea Cirillo Pasquale Cirillo Advisor: Ing. Salvatore Pirozzi Altera Innovate Italy Design Contest 2012 Objective Build a Low Cost Interface

More information

Definitions. A [non-living] physical agent that performs tasks by manipulating the physical world. Categories of robots

Definitions. A [non-living] physical agent that performs tasks by manipulating the physical world. Categories of robots Definitions A robot is A programmable, multifunction manipulator designed to move material, parts, tools, or specific devices through variable programmed motions for the performance of a variety of tasks.

More information

SONOBOT AUTONOMOUS HYDROGRAPHIC SURVEY VEHICLE PRODUCT INFORMATION GUIDE

SONOBOT AUTONOMOUS HYDROGRAPHIC SURVEY VEHICLE PRODUCT INFORMATION GUIDE SONOBOT AUTONOMOUS HYDROGRAPHIC SURVEY VEHICLE PRODUCT INFORMATION GUIDE EvoLogics SONOBOT: Autonomous Surface Vehicle for Hydrographic Surveys High Precision Differential GPS for high-accuracy cartography

More information

Autonomous Mobile Robot-I

Autonomous Mobile Robot-I Autonomous Mobile Robot-I Sabastian, S.E and Ang, M. H. Jr. Department of Mechanical Engineering National University of Singapore 21 Lower Kent Ridge Road, Singapore 119077 ABSTRACT This report illustrates

More information

Experimental Results from TelOpTrak - Precision Indoor Tracking of Tele-operated UGVs

Experimental Results from TelOpTrak - Precision Indoor Tracking of Tele-operated UGVs Experimental Results from TelOpTrak - Precision Indoor Tracking of Tele-operated UGVs Johann Borenstein*, Adam Borrell, Russ Miller, David Thomas All authors are with the University of Michigan, Dept of

More information

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation Pilotage, which essentially relies on recognizing landmarks

More information

DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites

DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites DEOS Deutsche Orbitale Servicing Mission The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites B. Sommer, K. Landzettel, T. Wolf, D. Reintsema, German Aerospace Center

More information

Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview

Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview YuMi: IRB 14000 Agenda Differentiated value proposition Overview and vision Main features Payload Working range Performance and accuracy

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

2/26/2008. Sensors For Robotics. What is sensing? Why do robots need sensors? What is the angle of my arm? internal information

2/26/2008. Sensors For Robotics. What is sensing? Why do robots need sensors? What is the angle of my arm? internal information Sensors For Robotics What makes a machine a robot? Sensing Planning Acting information about the environment action on the environment where is the truck? What is sensing? Sensing is converting a quantity

More information

3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving

3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving 3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving AIT Austrian Institute of Technology Safety & Security Department Christian Zinner Safe and Autonomous Systems

More information

Design Specifications of an UAV for Environmental Monitoring, Safety, Video Surveillance, and Urban Security

Design Specifications of an UAV for Environmental Monitoring, Safety, Video Surveillance, and Urban Security Design Specifications of an UAV for Environmental Monitoring, Safety, Video Surveillance, and Urban Security A. Alessandri, P. Bagnerini, M. Gaggero, M. Ghio, R. Martinelli University of Genoa - Faculty

More information

Autonomous Advertising Mobile Robot for Exhibitions, Developed at BMF

Autonomous Advertising Mobile Robot for Exhibitions, Developed at BMF Autonomous Advertising Mobile Robot for Exhibitions, Developed at BMF Kucsera Péter (kucsera.peter@kvk.bmf.hu) Abstract In this article an autonomous advertising mobile robot that has been realized in

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Background of the Research Agile and precise maneuverability of helicopters makes them useful for many critical tasks ranging from rescue and law enforcement task to inspection

More information

Robotics. Lecture 3: Sensors. See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information.

Robotics. Lecture 3: Sensors. See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Robotics Lecture 3: Sensors See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review: Locomotion Practical

More information

ZMART Technical Report The International Aerial Robotics Competition 2014

ZMART Technical Report The International Aerial Robotics Competition 2014 ZMART Technical Report The International Aerial Robotics Competition 2014 ZJU s Micro-Aerial Robotics Team (ZMART) 1 Zhejiang University, Hangzhou, Zhejiang Province, 310027, P.R.China Abstract The Zhejiang

More information

IEEE Projects in Embedded Sys VLSI DSP DIP Inst MATLAB Electrical Android

IEEE Projects in Embedded Sys VLSI DSP DIP Inst MATLAB Electrical Android About Us : We at Ensemble specialize in electronic design and manufacturing services for various industrial segments. We also offer student project guidance and training for final year projects in departments

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions Basic Facts What does the name ASIMO stand for? ASIMO stands for Advanced Step in Innovative Mobility. Who created ASIMO? ASIMO was developed by Honda Motor Co., Ltd., a world

More information

Obstacle Avoidance Design for Humanoid Robot Based on Four Infrared Sensors

Obstacle Avoidance Design for Humanoid Robot Based on Four Infrared Sensors Tamkang Journal of Science and Engineering, Vol. 12, No. 3, pp. 249 258 (2009) 249 Obstacle Avoidance Design for Humanoid Robot Based on Four Infrared Sensors Ching-Chang Wong 1 *, Chi-Tai Cheng 1, Kai-Hsiang

More information

Data Sheet. Remote Presence for the Enterprise. Product Overview. Benefits of Video Collaboration Robots

Data Sheet. Remote Presence for the Enterprise. Product Overview. Benefits of Video Collaboration Robots Data Sheet Remote Presence for the Enterprise Product Overview irobot Ava 500 Video Collaboration Robot builds on the value of telepresence by extending the power of in-person beyond fixed environments

More information

Static Environment Recognition Using Omni-camera from a Moving Vehicle

Static Environment Recognition Using Omni-camera from a Moving Vehicle Static Environment Recognition Using Omni-camera from a Moving Vehicle Teruko Yata, Chuck Thorpe Frank Dellaert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 USA College of Computing

More information

LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS

LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS HONCŮ JAROSLAV, HYNIOVÁ KATEŘINA, STŘÍBRSKÝ ANTONÍN Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University Karlovo

More information

Sensors. Marco Ronchetti Università degli Studi di Trento

Sensors. Marco Ronchetti Università degli Studi di Trento 1 Sensors Marco Ronchetti Università degli Studi di Trento Sensor categories Motion sensors measure acceleration forces and rotational forces along three axes. This category includes accelerometers, gravity

More information

Robotics & Automation

Robotics & Automation Robotics & Automation Levels: Grades 10-12 Units of Credit: 1.0 CIP Code: 21.0117 Core Code: 38-01-00-00-130 Prerequisite: None Skill Test: 612 COURSE DESCRIPTION Robotics & Automation is a lab-based,

More information

Automated Recording of Lectures using the Microsoft Kinect

Automated Recording of Lectures using the Microsoft Kinect Automated Recording of Lectures using the Microsoft Kinect Daniel Sailer 1, Karin Weiß 2, Manuel Braun 3, Wilhelm Büchner Hochschule Ostendstraße 3 64319 Pfungstadt, Germany 1 info@daniel-sailer.de 2 weisswieschwarz@gmx.net

More information

CAD Training Center Sooxma Technologies Ameerpet, Hyderabad. Ph: 9490219339, 040-23731030

CAD Training Center Sooxma Technologies Ameerpet, Hyderabad. Ph: 9490219339, 040-23731030 CAD Training Center Sooxma Technologies Ameerpet, Hyderabad. Ph: 9490219339, 040- MECHANICAL FINAL YEAR PROJECTS LIST PRODUCTION BASED CTC-1. Empirical modeling of tool wear and material removal rate using

More information

DryLin ZLW Belt Drive

DryLin ZLW Belt Drive Belt Drive +50º 0º DryLin toothed belt drives have been developed for the fast positioning of small loads. The linear units with toothed belt drive are corrosion resistant, light and compact, besides having

More information

Field and Service Robotics. Odometry sensors

Field and Service Robotics. Odometry sensors Field and Service Robotics Odometry sensors Navigation (internal) Sensors To sense robot s own state Magnetic compass (absolute heading) Gyro (angular speed => change of heading) Acceleration sensors (acceleration)

More information

Engineers from Geodetics select KVH for versatile high-performance inertial sensors. White Paper. kvh.com

Engineers from Geodetics select KVH for versatile high-performance inertial sensors. White Paper. kvh.com White Paper Overcoming GNSS Vulnerability by Applying Inertial Data Integration in Multi-Sensor Systems for High Accuracy Navigation, Pointing, and Timing Solutions Engineers from Geodetics select KVH

More information

Improved Mecanum Wheel Design for Omni-directional Robots

Improved Mecanum Wheel Design for Omni-directional Robots Proc. 2002 Australasian Conference on Robotics and Automation Auckland, 27-29 November 2002 Improved Mecanum Wheel Design for Omni-directional Robots Olaf Diegel, Aparna Badve, Glen Bright, Johan Potgieter,

More information

IP-S2 Compact+ 3D Mobile Mapping System

IP-S2 Compact+ 3D Mobile Mapping System IP-S2 Compact+ 3D Mobile Mapping System 3D scanning of road and roadside features Delivers high density point clouds and 360 spherical imagery High accuracy IMU options without export control Simple Map,

More information

CS-525V: Building Effective Virtual Worlds. Input Devices. Robert W. Lindeman. Worcester Polytechnic Institute Department of Computer Science

CS-525V: Building Effective Virtual Worlds. Input Devices. Robert W. Lindeman. Worcester Polytechnic Institute Department of Computer Science CS-525V: Building Effective Virtual Worlds Input Devices Robert W. Lindeman Worcester Polytechnic Institute Department of Computer Science gogo@wpi.edu Motivation The mouse and keyboard are good for general

More information

Hartford, Connecticut

Hartford, Connecticut TENTH ANNUAL INTERNATIONAL GROUND VEHICLE COMPETITION Design Report ALVIN III Trinity College Hartford, Connecticut 1 STATEMENT FROM FACULTY This is to certify that ALVIN III has undergone significant

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions Basic Facts What does the name ASIMO stand for? ASIMO stands for Advanced Step in Innovative Mobility. Who created ASIMO? ASIMO was developed by Honda Motor Co., Ltd., a world

More information

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

More information

Design Report. IniTech for

Design Report. IniTech for Design Report by IniTech for 14 th Annual Intelligent Ground Vehicle Competition University of Maryland: Baltimore County: Erik Broman (Team Lead and Requirement Lead) Albert Hsu (Design Lead) Sean Wilson

More information

A semi-autonomous sewer surveillance and inspection vehicle

A semi-autonomous sewer surveillance and inspection vehicle A semi-autonomous sewer surveillance and inspection vehicle R.M. Gooch, T.A. Clarke, & T.J. Ellis. Dept of Electrical, Electronic and Information Engineering, City University, Northampton Square, LONDON

More information

IP-S3 HD1. Compact, High-Density 3D Mobile Mapping System

IP-S3 HD1. Compact, High-Density 3D Mobile Mapping System IP-S3 HD1 Compact, High-Density 3D Mobile Mapping System Integrated, turnkey solution Ultra-compact design Multiple lasers minimize scanning shades Unparalleled ease-of-use No user calibration required

More information

Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December-2001. Theo N.M.M.

Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December-2001. Theo N.M.M. Information regarding the Lockheed F-104 Starfighter F-104 LN-3 An article published in the Zipper Magazine #48 December-2001 Author: Country: Website: Email: Theo N.M.M. Stoelinga The Netherlands http://www.xs4all.nl/~chair

More information

Torque motors. direct drive technology

Torque motors. direct drive technology Torque motors direct drive technology Why Direct Drive Motors? Fast and effective Direct-drive technology in mechanical engineering is defined as the use of actuators which transfer their power directly

More information

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - nzarrin@qiau.ac.ir

More information

Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry

Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry Mobile Robotics I: Lab 2 Dead Reckoning: Autonomous Locomotion Using Odometry CEENBoT Mobile Robotics Platform Laboratory Series CEENBoT v2.21 '324 Platform The Peter Kiewit Institute of Information Science

More information

BUILDING BLOCKS AND CHALLENGES. of the Internet of Things

BUILDING BLOCKS AND CHALLENGES. of the Internet of Things BUILDING BLOCKS AND CHALLENGES of the Internet of Things Agenda SunMan Engineering Introduction What is the IoT? Why now? How can it help my problems? What are the challenges? The SunMan Engineering Solution

More information

T-REDSPEED White paper

T-REDSPEED White paper T-REDSPEED White paper Index Index...2 Introduction...3 Specifications...4 Innovation...6 Technology added values...7 Introduction T-REDSPEED is an international patent pending technology for traffic violation

More information

Scooter, 3 wheeled cobot North Western University. PERCRO Exoskeleton

Scooter, 3 wheeled cobot North Western University. PERCRO Exoskeleton Scooter, 3 wheeled cobot North Western University A cobot is a robot for direct physical interaction with a human operator, within a shared workspace PERCRO Exoskeleton Unicycle cobot the simplest possible

More information

Building a Better Robot

Building a Better Robot http://tinyurl.com/betterro Building a Better Robot Tips and Techniques for a great robot design Weight and Balance Too much weight on non-drive wheel(s) Hard to make turns Need more force to overcome

More information

ABB Robotics, June 2014. IRB 1200 Overview. ABB Group August 21, 2014 Slide 1

ABB Robotics, June 2014. IRB 1200 Overview. ABB Group August 21, 2014 Slide 1 ABB Robotics, June 2014 IRB 1200 Overview August 21, 2014 Slide 1 Overview Differentiated value proposition Have you ever wanted to make your machines 15% smaller and 10% faster? ABB s new IRB 1200 allows

More information

TBG-25 OPTIONS X AXIS TRAVEL (MM) Z AXIS TRAVEL (MM) OPTIONS FOR: SPECIFICATIONS. Specifications. Configuration. Belt Type 25.

TBG-25 OPTIONS X AXIS TRAVEL (MM) Z AXIS TRAVEL (MM) OPTIONS FOR: SPECIFICATIONS. Specifications. Configuration. Belt Type 25. LINEAR ROBOTICS > T-BOT GANTRY ROBOTS T-BOT GANTRY ROBOTS TBG-25 OPTIONS X AXIS TRAVEL (MM) 500 1000 2000 Custom Z AXIS TRAVEL (MM) 250 500 Custom Controls Motor Gearbox HOW TO BUILD YOUR TBG-25: Features

More information

VTOL UAV. Design of the On-Board Flight Control Electronics of an Unmanned Aerial Vehicle. Árvai László, ZMNE. Tavaszi Szél 2012 ÁRVAI LÁSZLÓ, ZMNE

VTOL UAV. Design of the On-Board Flight Control Electronics of an Unmanned Aerial Vehicle. Árvai László, ZMNE. Tavaszi Szél 2012 ÁRVAI LÁSZLÓ, ZMNE Design of the On-Board Flight Control Electronics of an Unmanned Aerial Vehicle Árvai László, ZMNE Contents Fejezet Témakör 1. Features of On-Board Electronics 2. Modularity 3. Functional block schematics,

More information

Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen

Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen Robot Sensors Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0760 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Sensors 1 / 38 Outline 1

More information

How To Control Gimbal

How To Control Gimbal Tarot 2-Axis Brushless Gimbal for Gopro User Manual V1.0 1. Introduction Tarot T-2D gimbal is designed for the Gopro Hero3, which is widely used in film, television productions, advertising aerial photography,

More information

AUTOMOTIVE EXCELLENCE

AUTOMOTIVE EXCELLENCE PURCHASING/LOGISTIC Purchasing and logistics are sectors in which economic interests and technology typically meet and connect. Pepperl+Fuchs speaks both languages. Vehicle manufacturing begins when sheets

More information

Precise heavy-duty cutting

Precise heavy-duty cutting PR 130 / PR 150 / PR 160 / PR 180 / PR 200 / PR 260 Precise heavy-duty cutting P-SERIES K-SERIES T-SERIES MILLFORCE 02 / Fields of application 03 / Machine concept 04 / Machine technology 05 / Options

More information

The Design and Implementation of a Quadrotor Flight Controller Using the QUEST Algorithm

The Design and Implementation of a Quadrotor Flight Controller Using the QUEST Algorithm The Design and Implementation of a Quadrotor Flight Controller Using the QUEST Algorithm Jacob Oursland Department of Mathematics and Computer Science South Dakota School of Mines and Technology Rapid

More information

Collision Prevention and Area Monitoring with the LMS Laser Measurement System

Collision Prevention and Area Monitoring with the LMS Laser Measurement System Collision Prevention and Area Monitoring with the LMS Laser Measurement System PDF processed with CutePDF evaluation edition www.cutepdf.com A v o i d...... collisions SICK Laser Measurement Systems are

More information

UAVNet: Prototype of a Highly Adaptive and Mobile Wireless Mesh Network using Unmanned Aerial Vehicles (UAVs) Simon Morgenthaler University of Bern

UAVNet: Prototype of a Highly Adaptive and Mobile Wireless Mesh Network using Unmanned Aerial Vehicles (UAVs) Simon Morgenthaler University of Bern UAVNet: Prototype of a Highly Adaptive and Mobile Wireless Mesh Network using Unmanned Aerial Vehicles (UAVs) Simon Morgenthaler University of Bern Dez 19, 2011 Outline Introduction Related Work Mikrokopter

More information

BRUSHLESS DC MOTORS. BLDC 22mm. BLDC Gearmotor Size 9. nuvodisc 32BF. BLDC Gearmotor Size 5

BRUSHLESS DC MOTORS. BLDC 22mm. BLDC Gearmotor Size 9. nuvodisc 32BF. BLDC Gearmotor Size 5 BRUSHLESS DC MOTORS BLDC Gearmotor Size 9 BLDC 22mm nuvodisc 32BF BLDC Gearmotor Size 5 Portescap Brushless DC motors are extremely reliable and built to deliver the best performances. Their high power

More information

Hand-held marking system FlyMarker mini

Hand-held marking system FlyMarker mini Hand-held marking system FlyMarker mini ergonomics Due to the well-conceived economics, the marking device sits perfectly in the hand and an effortless operation is possible, also in vertical work positions.

More information

Developing a Sewer Inspection Robot through a Mechatronics Approach

Developing a Sewer Inspection Robot through a Mechatronics Approach Developing a Sewer Inspection Robot through a Mechatronics Approach Alireza. Hadi, Gholamhossein. Mohammadi Abstract Sewerage is a harsh environment which requires periodically inspection. The inspection

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

Hand Gestures Remote Controlled Robotic Arm

Hand Gestures Remote Controlled Robotic Arm Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 5 (2013), pp. 601-606 Research India Publications http://www.ripublication.com/aeee.htm Hand Gestures Remote Controlled

More information

Microcontrollers, Actuators and Sensors in Mobile Robots

Microcontrollers, Actuators and Sensors in Mobile Robots SISY 2006 4 th Serbian-Hungarian Joint Symposium on Intelligent Systems Microcontrollers, Actuators and Sensors in Mobile Robots István Matijevics Polytechnical Engineering College, Subotica, Serbia mistvan@vts.su.ac.yu

More information

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

More information

CURRICULUM SAMPLE. 2009 PCS Edventures, Inc. Use of this material is restricted to PCS Lab Licensees.

CURRICULUM SAMPLE. 2009 PCS Edventures, Inc. Use of this material is restricted to PCS Lab Licensees. CURRICULUM SAMPLE 1 HOW IT WORKS CURRICULUM OVERVIEW ONLINE OVERVIEW Quarterly Challenges are posted online. Travel is not required; teams åparticipate from their classroom and submit data via the Internet.

More information

Applications > Robotics research and education > Assistant robot at home > Surveillance > Tele-presence > Entertainment/Education > Cleaning

Applications > Robotics research and education > Assistant robot at home > Surveillance > Tele-presence > Entertainment/Education > Cleaning Introduction robulab 10 is a multi-purpose mobile robot designed for various indoor applications, such as research and education, tele-presence, assistance to people staying at home. robulab 10 is a generic

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Grant agreement no: FP7-600877 SPENCER: Project start: April 1, 2013 Duration: 3 years XXXXXXXXXXDELIVERABLE 6.6XXXXXXXXXX

Grant agreement no: FP7-600877 SPENCER: Project start: April 1, 2013 Duration: 3 years XXXXXXXXXXDELIVERABLE 6.6XXXXXXXXXX Grant agreement no: FP7-600877 SPENCER: Social situation-aware perception and action for cognitive robots Project start: April 1, 2013 Duration: 3 years XXXXXXXXXXDELIVERABLE 6.6XXXXXXXXXX Safety Audit

More information

MEASURING AND LEVELING TOOLS

MEASURING AND LEVELING TOOLS MEASURING AND LEVELING TOOLS LASER LEVELING FAST AND ACCURATE LEVELING Earth moving, laying of floors, interior design and set up; all applications for our laser and optical levels to prove their accuracy,

More information

Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

Analog control unit for mobile robots

Analog control unit for mobile robots Analog control unit for mobile robots Soldering kit for experimentation For Fischertechnik robots and others Most diverse functions Requires no programming Patented sensor technology Summary We are pleased

More information

Control Design of Unmanned Aerial Vehicles (UAVs)

Control Design of Unmanned Aerial Vehicles (UAVs) Control Design of Unmanned Aerial Vehicles (UAVs) Roberto Tempo CNR-IEIIT Consiglio Nazionale delle Ricerche Politecnico di Torino tempo@polito.it Control of UAVs UAVs: Unmanned aerial vehicles of different

More information

Precision Work on the Human Eye

Precision Work on the Human Eye Precision Work on the Human Eye Piezo-Based Nanopositioning Systems for Ophthalmology Page 1 of 5 Introduction Human beings are visual animals, in other words, they acquire most information visually. It

More information

DEVELOPMENT OF SMALL-SIZE WINDOW CLEANING ROBOT BY WALL CLIMBING MECHANISM

DEVELOPMENT OF SMALL-SIZE WINDOW CLEANING ROBOT BY WALL CLIMBING MECHANISM DEVELOPMENT OF SMALL-SIZE WINDOW CLEANING ROBOT BY WALL CLIMBING MECHANISM Tohru MIYAKE MIRAIKIKAI Inc. and Graduate school of Engineering, Kagwa Univ. 2217-2, Hayashi, Takamatsu, Kagawa 761-396 Japan

More information

UNIT II Robots Drive Systems and End Effectors Part-A Questions

UNIT II Robots Drive Systems and End Effectors Part-A Questions UNIT II Robots Drive Systems and End Effectors Part-A Questions 1. Define End effector. End effector is a device that is attached to the end of the wrist arm to perform specific task. 2. Give some examples

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

DC Motor Driven Throttle Bodies and Control Valves

DC Motor Driven Throttle Bodies and Control Valves DC Motor Driven Throttle Bodies and Control Valves Flexible Air Management DC motor driven throttle bodies and control valves The Pierburg modular ETC system is a consistent extension of the Pierburg

More information

Motion Sensing with mcube igyro Delivering New Experiences for Motion Gaming and Augmented Reality for Android Mobile Devices

Motion Sensing with mcube igyro Delivering New Experiences for Motion Gaming and Augmented Reality for Android Mobile Devices Motion Sensing with mcube igyro Delivering New Experiences for Motion Gaming and Augmented Reality for Android Mobile Devices MAY 2014 Every high-end smartphone and tablet today contains three sensing

More information

- 2.12 Lecture Notes - H. Harry Asada Ford Professor of Mechanical Engineering

- 2.12 Lecture Notes - H. Harry Asada Ford Professor of Mechanical Engineering - 2.12 Lecture Notes - H. Harry Asada Ford Professor of Mechanical Engineering Fall 2005 1 Chapter 1 Introduction Many definitions have been suggested for what we call a robot. The word may conjure up

More information

Development of Docking System for Mobile Robots Using Cheap Infrared Sensors

Development of Docking System for Mobile Robots Using Cheap Infrared Sensors Development of Docking System for Mobile Robots Using Cheap Infrared Sensors K. H. Kim a, H. D. Choi a, S. Yoon a, K. W. Lee a, H. S. Ryu b, C. K. Woo b, and Y. K. Kwak a, * a Department of Mechanical

More information

Traffic Monitoring Systems. Technology and sensors

Traffic Monitoring Systems. Technology and sensors Traffic Monitoring Systems Technology and sensors Technology Inductive loops Cameras Lidar/Ladar and laser Radar GPS etc Inductive loops Inductive loops signals Inductive loop sensor The inductance signal

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Presentation January 2012

Presentation January 2012 LIM Mechatronics LIM Lab Mechatronics POLITECNICO Lab DI TORINO POLITECNICO DI TORINO Presentation January 2012 An interdepartmental structure founded in 1993 as joint-venture by a number of people of

More information

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR National nstitute for Space Research NPE Space Mechanics and Control Division DMC São José dos Campos, SP, Brasil MODELLNG A SATELLTE CONTROL SYSTEM SMULATOR Luiz C Gadelha Souza gadelha@dem.inpe.br rd

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 2 HYDRAULIC AND PNEUMATIC CYLINDERS The material needed for outcome 2 is very extensive

More information

2. TEST PITCH REQUIREMENT

2. TEST PITCH REQUIREMENT Analysis of Line Sensor Configuration for the Advanced Line Follower Robot M. Zafri Baharuddin 1, Izham Z. Abidin 1, S. Sulaiman Kaja Mohideen 1, Yap Keem Siah 1, Jeffrey Tan Too Chuan 2 1 Department of

More information

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and

More information

Fredriksons conveyor systems handle goods with a width from 20 mm up to 600 mm.

Fredriksons conveyor systems handle goods with a width from 20 mm up to 600 mm. Conveyor Solutions Whatever your logistic needs, we can offer a conveyor solution. Our flexible systems primary and secondary packaging for single and multi packages, can transport your goods from one

More information

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement

More information

Simple Machines. Figure 2: Basic design for a mousetrap vehicle

Simple Machines. Figure 2: Basic design for a mousetrap vehicle Mousetrap Vehicles Figure 1: This sample mousetrap-powered vehicle has a large drive wheel and a small axle. The vehicle will move slowly and travel a long distance for each turn of the wheel. 1 People

More information

Micro and Mini UAV Airworthiness, European and NATO Activities

Micro and Mini UAV Airworthiness, European and NATO Activities Recent Development in Unmanned Aircraft Systems Micro and Mini UAV Airworthiness, European and NATO Activities iti Fulvia Quagliotti Politecnico di Torino Department of Aerospace Engineering Torino, Italy

More information

The Future of Mobile Robots In 2020, 26 Million Mobile Robots Will Enable Autonomy in Smart Factories, Unmanned Transportation, and Connected Homes

The Future of Mobile Robots In 2020, 26 Million Mobile Robots Will Enable Autonomy in Smart Factories, Unmanned Transportation, and Connected Homes The Future of Mobile Robots In 2020, 26 Million Mobile Robots Will Enable Autonomy in Smart Factories, Unmanned Transportation, and Connected Homes NE5C-MT January 2015 NE5C-MT 1 Contents Section Slide

More information