GRADUATION PROJECT REPORT

Size: px
Start display at page:

Download "GRADUATION PROJECT REPORT"

Transcription

1 SPAM Flter School of Publc Admtrato Computer Stude Program GRADUATION PROJECT REPORT 2007-I-A02 SPAM Flter Project group leader: Project group member: Supervor: Aeor: Academc year (emeter): MCCS390 Graduato Project I Marco, Lou Cha Wa (P ) Macro, Leog Weg Hog (P ) Phlp Le Adrew Su 2007/2008 (2 d emeter) 頁

2 SPAM Flter Cotet table: Abtract... 3 Objectve... 4 Feature... 5 Sytem Archtecture... 6 Learg Project... 7 Clafcato Proce... 7 Nave Bayea... 8 Problem of Nave Bayea ad mprovemet... 9 Our varato of Nave Bayea algorthm... 2 Expermet... 3 Prototype... 5 Future work... 7 Develop Evromet:... 8 Sytem Requremet... 8 Cocluo... 9 Job dtrbuto Referece... 2 MCCS390 Graduato Project I 頁 2

3 SPAM Flter Abtract: Spam ha bee a problem for may year but oly utl recetly ha people tarted to become dguted wth t. Performace could alo be a cocer for may people. That problem ot oly appear E-Mal, the SMS o moble phoe alo commo. Curretly, there are may famou pam flter ervce, uch a Yahoo, Google Why we develop th project? Becaue the defto of pam or o-pam very ubjectve, our method are accordg to uer habt, doe t have ay tadard to defe pam or o-pam, a th reao, everyoe ca defe h ow Spam ad o pam trag et. Study Bayea techology ad propoe ome mprovemet of Bayea formula are the maly challege th project. I that part, we make ome chage of Naïve Bayea ad we perform ome expermet to valdate our flter. We bae o JAVA platform to program. Therefore, we ca be applyg eay varou vero, uch a erver vero, clet vero, moble vero. We wll exted our ytem to hadle SMS pam the ext emeter. MCCS390 Graduato Project I 3

4 SPAM Flter Itroducto: Several commo At-Spam E-mal techologe. E-mal header aaly: The mal header are caed for ome mall cotece that ca gve away forgere: A mal date the pat or the future, forged meage ID, ad the lke. 2. Keyword checkg ad text aaly: The mal body caed for typcal pam mal cotet, uch a pam keyword, captalzed letter, or vtato to buy or clck omethg. 3. Whte ad blacklt checkg: Whte ad Black lt ca be ued to cofgure whch emal addree are permtted or deed. 4. Bayea Spam Flterg: Bayea pam flterg tattcally calculate the probablty that a meage pam. Spam mal ca be traed, o that mlar mal are more lkely to be detfed a a pam the future. Objectve & Goal The goal of our project the vetgato of SMS pam flterg ug Bayea. I th emeter, our objectve to vetgate pam flterg for Eglh emal. We tudy Bayea pam flter ad propoe ome mprovemet, ad the we perform ome expermet to valdate our pam flter. I the fal, we develop a prototype to how our reearch reult ca be appled ealy. MCCS390 Graduato Project I 4

5 SPAM Flter Feature: There are ome feature our pam flter: Cutomzable: Everyoe ca defe h ow Spam ad o pam trag et. Adaptve: The clafcato proce ca flter the ew pam whe the learg proce updated the trag et. Accurate: The rate of correct clafcato hgh (Over 95%). Platform depedet: Bae o Java platform to program. Our pam flter ca be ued varou vero (e.g.) erver vero, clet vero, moble vero. MCCS390 Graduato Project I 5

6 SPAM Flter Sytem Archtecture MCCS390 Graduato Project I 6

7 SPAM Flter Tak A: Learg Proce: I the Learg Proce, there wll to cout the word frequecy trag et ad the output three map. May be you wll ak, what the cotag of map th project. The map ha three type: (Spam, No-Spam, All) Spam Map: word frequecy pam meage. No pam Map: word frequecy o pam meage. All Map: word frequecy um up the pam ad o pam meage. (e.g.) All Map(Vagra,40)=Spam(Vagra,37)+o pam(vagra,3) All Map(the,40)=Spam(the,20)+o pam(the,20) Whe to ru Learg Proce: Uer may perform learg proce aga whe ewly collected pam ad o pam are avalable. Uer ca defe how ofte wll ru the learg proce. Lke daly, weekly, mothly. Learg proce mut ru perodcally to cofrm the data et up-to-date. Tak B: Clafcato Proce: What about Clafcato Proce: Baed o the three map from the learg proce, apply the Bayea formula to etmate the probablty that a ew meage SPAM. If the etmato greater tha 50%, the clafcato reult SPAM, otherwe that o SPAM. Our clafcato algorthm a varato of ave Bayea flterg. MCCS390 Graduato Project I 頁 7

8 SPAM Flter Nave Bayea: SPAM D) = SPAM ) + SPAM ) ( SPAM )) D={S,S2 S}: Meage D a et of word. P (S SPAM):The probablty that S appear pam. Cout S / um of pam meage trag et SPAM ) = SPAM )* 2 SPAM )*...* SPAM ) P (SPAM D):The probablty of the meage SPAM. MCCS390 Graduato Project I 頁 8

9 SPAM Flter Problem of Nave Bayea ad mprovemet: SPAM D) Problem: If a meage cota a word S wth P (S SPAM) =0, the P (SPAM D) = 0. It mea f S dd t appear pam map, ad the the meage clafed a o pam. = SPAM ) + Improvemet: Ue S o SPAM) tat of ( - P (S SPAM)). Expermet Reult: After the below mprovemet, f S dd t appear pam map, t wll fd o-pam map, the formula wll become the follow. SPAM ) ( SPAM )) MCCS390 Graduato Project I 9

10 SPAM Flter SPAM D) Problem:. If S dd t appear the pam or o pam map, the deomator become Our expermet howed that whe umber of pam much larger tha umber of o pam, the accuracy of clafcato drop. Improvemet:. Igore word that do t appear trag et. 2. Itroduce the percetage of pam ad o-pam meage the formula. Expermet Reult: After the below mprovemet, the clafcato wll ot oly retur 0 ad, t wll retur actually a percetage of that a pam, lke The formula wll become the follow. = SPAM ) + SPAM ) o SPAM ) MCCS390 Graduato Project I 0

11 SPAM Flter SPAM D) = SPAM )* o SPAM ) + SPAM )* o SPAM ) o SPAM )* SPAM ) P (SPAM): Percetage of pam meage trag et. P (o_spam):percetage of o pam meage trag et. Problem: Polarzato: If ome P (S pam ) very mall (eg. 0.00), the the product SPAM ) quckly approache 0. The reult P (pam D)=0 regardle of other word the meage. Example: The follow a SPAM mal, ad ue the below formula to clafy. The follow a SPAM mal ame a the left te ad add up a o-pam meage the ue the below formula to clafy. Hey have you heard? Fally, the 2008 Collecto are, ejoy 70% OFF Brad Name Shoe & Boot for Me & Wome from TOP Faho Deger. Chooe from a varety of the eao' hottet model from Gucc, Prada, Chael, Dor, Ugg Boot, Burberry, D&G, Hey have you heard? Fally, the 2008 Collecto are, ejoy 70% OFF Brad Name Shoe & Boot for Me & Wome from TOP Faho Deger. Chooe from a varety of the eao' hottet model from Gucc, Prada, Chael, Dor, Ugg Boot, Burberry, D&G, Dquared & Dquared & So that the pam mal eder ca ue that bug to chage ome word that alway appear pam, lke VIAGAR V_I_A_G_A_R. The the meage wll clafy a a o-pam. So we have the follow mprovemet. Improvemet: MCCS390 Graduato Project I S SPAM ) > S o _ SPAM ) > S SPAM ) S o _ SPAM ) 頁

12 SPAM Flter Our varato of Nave Bayea algorthm SPAM D) = SPAM )* o SPAM ) + SPAM )* o SPAM ) SPAM ) = SPAM ) + 2 SPAM ) o SPAM )* SPAM ) Although the mprovemet doe t ha rgd mathematcal foudato. The followg expermet how th algorthm ha atfactory accuracy. SPAM ) MCCS390 Graduato Project I 2

13 SPAM Flter Expermet: Dataet: Trag dataet:aroud 80 pam meage ad 80 o-pam meage. Tetg dataet:20 pam meage ad 20 o meage. Balacg: We attempt to ue ame ze of pam ad o pam data et. The followg catter dagram how the clafcato of the tetg dataet (20 pam & 20 o-pam) a update trag et. The accuracy wll become hgh, 00%. MCCS390 Graduato Project I 3

14 SPAM Flter Up-to-date trag et mportat: Trag et ad tetg et mut be collected at the ame tme, or mut up-to-date. If we ue the old trag et to clafy ew meage, the the accuracy wll become lower. The follow catter dagram how the clafcato of the tetg dataet (20 pam & 20 o-pam) a 2 moth ago trag et. The accuracy wll become lower. A you ca ee ome pam meage clafy a o-pam ad alo ome o-pam meage clafy a pam. MCCS390 Graduato Project I 4

15 SPAM Flter Prototype: To how our reearch reult ca be appled ealy, we buld up a mall E-mal reader ad plug our pam-mal flter algorthm to how how our flter ca clafe the mal. MCCS390 Graduato Project I 5

16 SPAM Flter That E-mal reader ca log to our IPM E-mal accout, the how the emal ad ue the clafer proce to meaure the pam probablty. The Learg proce ue for update three Map. MCCS390 Graduato Project I 6

17 SPAM Flter Future work: Chee Segmetato: The dffculty of Chee Segmetato how to determe the bet plttg way Chee, becaue Chee artcle doe t have pace to eparate. (e.g.) 青 川 縣 災 區 再 發 生 強 烈 地 震 eparate to 青 川 縣 災 區 再 發 生 強 烈 地 震 Implemet to SMS: The dffculty of Implemet to SMS format the horter text legth (60 word), becaue the clafer techology of Bayea Theorem eed a great quatty of ample data. MCCS390 Graduato Project I 7

18 SPAM Flter Developmet Evromet: Hardware: Petum 4( 3GHz ), GB RAM, 80GB Hard Dk Operatg Sytem: Mcrooft Wdow XP Profeoal wth Servce Pack 2 Software: J2SE.6 Developmet Kt (JDK) J2EE JavaMal Reource TextPad bt Edto JFromDeger JSmooth Edto Programmg Laguage: J2SE 6.0 (JAVA 2 Stadard Edto) Sytem Requremet: Italled JavaTM 2 SDK, Stadard Edto Vero Ca acce to MPI mal erver va teret. MCCS390 Graduato Project I 8

19 SPAM Flter Cocluo: The maly challege of th project the algorthm aaly ad mprovemet of Nave Bayea ad expermetato. There eed may mathematcal kowledge ad a well aaly capablte. After th project, our aaly capablte mprove very much. Aother challege of th project the programmg; we ue JAVA to program, the developmet tme, we lear more kowledge ad kll JAVA. Th a good experece our career lfe of IT. Th project ot oly mprove our aaly capablte ad kll programmg, the project maagemet ad tme maagemet are epecally mportat of the project. Becaue th project a group team-work, the team-prt ad Team-cooperato are alo mportat. I fact, each dcuo tme, we alo got a great beeft. Fally, we mut to thak very much our Supervor, Phlp Le; Aeor, Adrew Su ad Advor, Jacky Tag.Although our project doe t preet very perfect, we wll more effort. MCCS390 Graduato Project I 9

20 SPAM Flter Job dtrbuto: Marco, Lou Cha Wa Learg Proce Prototype Macro, Leog Weg Hog Clafcato Proce Expermet Work Together Algorthm aaly Improvemet of Nave Bayea Preetato Report MCCS390 Graduato Project I 頁 20

21 SPAM Flter Referece: Nave Bayea Text Clafcato 反 垃 圾 郵 件 的 幾 種 技 術 - 網 管 專 欄, 郵 件 服 務 反 垃 圾 郵 件 防 火 牆 的 核 心 技 術 分 析 及 應 用 反 垃 圾 郵 件 防 火 牆 的 核 心 技 術 分 析 () Dcovery Challege MCCS390 Graduato Project I 2

22 SPAM Flter The Ed. Thak for your atteto! MCCS390 Graduato Project I 頁 22

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,

More information

Swarm Based Truck-Shovel Dispatching System in Open Pit Mine Operations

Swarm Based Truck-Shovel Dispatching System in Open Pit Mine Operations Swarm Baed Truck-Shovel Dpatchg Sytem Ope Pt Me Operato Yaah Br, W. Scott Dubar ad Alla Hall Departmet of Mg ad Meral Proce Egeerg Uverty of Brth Columba, Vacouver, B.C., Caada Emal: [email protected] Abtract

More information

A Parallel Transmission Remote Backup System

A Parallel Transmission Remote Backup System 2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College

More information

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

10.5 Future Value and Present Value of a General Annuity Due

10.5 Future Value and Present Value of a General Annuity Due Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

3.6. Metal-Semiconductor Field Effect Transistor (MESFETs)

3.6. Metal-Semiconductor Field Effect Transistor (MESFETs) .6. Metal-Semcouctor Fel Effect rator (MESFE he Metal-Semcouctor-Fel-Effect-rator (MESFE cot of a couctg chael potoe betwee a ource a ra cotact rego a how the Fgure.6.1. he carrer flow from ource to ra

More information

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,

More information

Green Master based on MapReduce Cluster

Green Master based on MapReduce Cluster Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of

More information

On formula to compute primes and the n th prime

On formula to compute primes and the n th prime Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal

More information

Credit Risk Evaluation of Online Supply Chain Finance Based on Third-party B2B E-commerce Platform: an Exploratory Research Based on China s Practice

Credit Risk Evaluation of Online Supply Chain Finance Based on Third-party B2B E-commerce Platform: an Exploratory Research Based on China s Practice Iteratoal Joural of u- ad e- Servce, Scece ad Techology Vol.8, No.5 (2015, pp.93-104 http://dx.do.org/10.14257/juet.2015.8.5.09 Credt Rk Evaluato of Ole Supply Cha Face Baed o Thrd-party B2B E-commerce

More information

A Spam Message Filtering Method: focus on run time

A Spam Message Filtering Method: focus on run time , pp.29-33 http://dx.doi.org/10.14257/atl.2014.76.08 A Spam Meage Filtering Method: focu on run time Sin-Eon Kim 1, Jung-Tae Jo 2, Sang-Hyun Choi 3 1 Department of Information Security Management 2 Department

More information

Confidence Intervals for Linear Regression Slope

Confidence Intervals for Linear Regression Slope Chapter 856 Cofidece Iterval for Liear Regreio Slope Itroductio Thi routie calculate the ample ize eceary to achieve a pecified ditace from the lope to the cofidece limit at a tated cofidece level for

More information

Data Analysis Toolkit #10: Simple linear regression Page 1

Data Analysis Toolkit #10: Simple linear regression Page 1 Data Aaly Toolkt #0: mple lear regreo Page mple lear regreo the mot commoly ued techque f determg how oe varable of teret the repoe varable affected by chage aother varable the explaaty varable. The term

More information

Study on prediction of network security situation based on fuzzy neutral network

Study on prediction of network security situation based on fuzzy neutral network Avalable ole www.ocpr.com Joural of Chemcal ad Pharmaceutcal Research, 04, 6(6):00-06 Research Artcle ISS : 0975-7384 CODE(USA) : JCPRC5 Study o predcto of etwork securty stuato based o fuzzy eutral etwork

More information

A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS

A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece

More information

The Time Value of Money

The Time Value of Money The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1 akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of

More information

Basic statistics formulas

Basic statistics formulas Wth complmet of tattcmetor.com, the te for ole tattc help Set De Morga Law Bac tattc formula Meaure of Locato Sample mea (AUB) c A c B c Commutatvty & (A B) c A c U B c A U B B U A ad A B B A Aocatvty

More information

MDM 4U PRACTICE EXAMINATION

MDM 4U PRACTICE EXAMINATION MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths

More information

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve

More information

IP Network Topology Link Prediction Based on Improved Local Information Similarity Algorithm

IP Network Topology Link Prediction Based on Improved Local Information Similarity Algorithm Iteratoal Joural of Grd Dstrbuto Computg, pp.141-150 http://dx.do.org/10.14257/jgdc.2015.8.6.14 IP Network Topology Lk Predcto Based o Improved Local Iformato mlarty Algorthm Che Yu* 1, 2 ad Dua Zhem 1

More information

Simple Linear Regression

Simple Linear Regression Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8

More information

Analysis of Two-Echelon Perishable Inventory System with Direct and Retrial demands

Analysis of Two-Echelon Perishable Inventory System with Direct and Retrial demands O Joural of Mathematc (O-JM) e-: 78-578 p-: 9-765X. Volume 0 ue 5 Ver. (ep-oct. 04) 5-57 www.oroural.org aly of Two-chelo erhable vetory ytem wth rect ad etral demad M. amehpad C.eryaamy K. Krha epartmet

More information

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011 Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

How To Value An Annuity

How To Value An Annuity Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%

More information

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R = Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

Quantitative Computer Architecture

Quantitative Computer Architecture Performace Measuremet ad Aalysis i Computer Quatitative Computer Measuremet Model Iovatio Proposed How to measure, aalyze, ad specify computer system performace or My computer is faster tha your computer!

More information

A general sectional volume equation for classical geometries of tree stem

A general sectional volume equation for classical geometries of tree stem Madera y Boque 6 (2), 2:89-94 89 NOTA TÉCNICA A geeral ectoal volume equato for clacal geometre of tree tem Ua ecuacó geeral para el volume de la eccó de la geometría cláca del troco de lo árbole Gldardo

More information

The impact of service-oriented architecture on the scheduling algorithm in cloud computing

The impact of service-oriented architecture on the scheduling algorithm in cloud computing Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg

More information

Supply Chain Management Chapter 5: Application of ILP. Unified optimization methodology. Beun de Haas

Supply Chain Management Chapter 5: Application of ILP. Unified optimization methodology. Beun de Haas Supply Cha Maagemet Chapter 5: Ufed Optmzato Methodology for Operatoal Plag Problem What to do whe ILP take too much computato tme? Applcato of ILP Tmetable Dutch Ralway (NS) Bu ad drver chedulg at Coeo,

More information

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK

Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag

More information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

Report 52 Fixed Maturity EUR Industrial Bond Funds

Report 52 Fixed Maturity EUR Industrial Bond Funds Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:

More information

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,

More information

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl

More information

of the relationship between time and the value of money.

of the relationship between time and the value of money. TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp

More information

On Error Detection with Block Codes

On Error Detection with Block Codes BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,

More information

FINANCIAL MATHEMATICS 12 MARCH 2014

FINANCIAL MATHEMATICS 12 MARCH 2014 FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.

More information

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Credibility Premium Calculation in Motor Third-Party Liability Insurance Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

Static revisited. Odds and ends. Static methods. Static methods 5/2/16. Some features of Java we haven t discussed

Static revisited. Odds and ends. Static methods. Static methods 5/2/16. Some features of Java we haven t discussed Odds ad eds Static revisited Some features of Java we have t discussed Static methods // Example: // Java's built i Math class public class Math { public static it abs(it a) { if (a >= 0) { retur a; else

More information

Impact of Interference on the GPRS Multislot Link Level Performance

Impact of Interference on the GPRS Multislot Link Level Performance Impact of Iterferece o the GPRS Multslot Lk Level Performace Javer Gozalvez ad Joh Dulop Uversty of Strathclyde - Departmet of Electroc ad Electrcal Egeerg - George St - Glasgow G-XW- Scotlad Ph.: + 8

More information

The Digital Signature Scheme MQQ-SIG

The Digital Signature Scheme MQQ-SIG The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

More information

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

Performance of Multiple TFRC in Heterogeneous Wireless Networks

Performance of Multiple TFRC in Heterogeneous Wireless Networks Performance of Multiple TFRC in Heterogeneou Wirele Network 1 Hyeon-Jin Jeong, 2 Seong-Sik Choi 1, Firt Author Computer Engineering Department, Incheon National Univerity, [email protected] *2,Correponding

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Suspicious Transaction Detection for Anti-Money Laundering

Suspicious Transaction Detection for Anti-Money Laundering Vol.8, No. (014), pp.157-166 http://dx.do.org/10.1457/jsa.014.8..16 Suspcous Trasacto Detecto for At-Moey Lauderg Xgrog Luo Vocatoal ad techcal college Esh Esh, Hube, Cha [email protected] Abstract Moey lauderg

More information

Measuring the Quality of Credit Scoring Models

Measuring the Quality of Credit Scoring Models Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6

More information

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh

More information

PERFORMANCE ANALYSIS OF PARALLEL ALGORITHMS

PERFORMANCE ANALYSIS OF PARALLEL ALGORITHMS Software Analye PERFORMANCE ANALYSIS OF PARALLEL ALGORIHMS Felcan ALECU PhD, Unverty Lecturer, Economc Informatc Deartment, Academy of Economc Stude, Bucharet, Romana E-mal: [email protected] Abtract:

More information

(VCP-310) 1-800-418-6789

(VCP-310) 1-800-418-6789 Maual VMware Lesso 1: Uderstadig the VMware Product Lie I this lesso, you will first lear what virtualizatio is. Next, you ll explore the products offered by VMware that provide virtualizatio services.

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

A technical guide to 2014 key stage 2 to key stage 4 value added measures

A technical guide to 2014 key stage 2 to key stage 4 value added measures A technical guide to 2014 key tage 2 to key tage 4 value added meaure CONTENTS Introduction: PAGE NO. What i value added? 2 Change to value added methodology in 2014 4 Interpretation: Interpreting chool

More information

CCH Accountants Starter Pack

CCH Accountants Starter Pack CCH Accoutats Starter Pack We may be a bit smaller, but fudametally we re o differet to ay other accoutig practice. Util ow, smaller firms have faced a stark choice: Buy cheaply, kowig that the practice

More information

TI-89, TI-92 Plus or Voyage 200 for Non-Business Statistics

TI-89, TI-92 Plus or Voyage 200 for Non-Business Statistics Chapter 3 TI-89, TI-9 Plu or Voyage 00 for No-Buie Statitic Eterig Data Pre [APPS], elect FlahApp the pre [ENTER]. Highlight Stat/Lit Editor the pre [ENTER]. Pre [ENTER] agai to elect the mai folder. (Note:

More information

Topic 5: Confidence Intervals (Chapter 9)

Topic 5: Confidence Intervals (Chapter 9) Topic 5: Cofidece Iterval (Chapter 9) 1. Itroductio The two geeral area of tatitical iferece are: 1) etimatio of parameter(), ch. 9 ) hypothei tetig of parameter(), ch. 10 Let X be ome radom variable with

More information

Cluster-Aware Cache for Network Attached Storage *

Cluster-Aware Cache for Network Attached Storage * Cluter-Aware Cache for Network Attached Storage * Bin Cai, Changheng Xie, and Qiang Cao National Storage Sytem Laboratory, Department of Computer Science, Huazhong Univerity of Science and Technology,

More information

Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion

Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion 2011 Iteratoal Coferece o Ecoomcs ad Face Research IPEDR vol.4 (2011 (2011 IACSIT Press, Sgapore Forecastg Tred ad Stoc Prce wth Adaptve Exteded alma Flter Data Fuso Betollah Abar Moghaddam Faculty of

More information

A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS

A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS I Ztou, K Smaïl, S Delge, F Bmbot To cte ths verso: I Ztou, K Smaïl, S Delge, F Bmbot. A COMPARATIVE STUDY BETWEEN POLY- CLASS AND MULTICLASS

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

How To Balance Load On A Weght-Based Metadata Server Cluster

How To Balance Load On A Weght-Based Metadata Server Cluster WLBS: A Weght-based Metadata Server Cluster Load Balacg Strategy J-L Zhag, We Qa, Xag-Hua Xu *, Ja Wa, Yu-Yu Y, Yog-Ja Re School of Computer Scece ad Techology Hagzhou Daz Uversty, Cha * Correspodg author:[email protected]

More information

Report 05 Global Fixed Income

Report 05 Global Fixed Income Report 05 Global Fxed Icome From Dec 1999 to Dec 2014 31/12/1999 31 December 1999 31/12/2014 Rep05, Computed & Prted: 17/06/2015 11:24 New Performace Idcator (01/01/12) 100% Barclays Aggregate Global Credt

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

A particle swarm optimization to vehicle routing problem with fuzzy demands

A particle swarm optimization to vehicle routing problem with fuzzy demands A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg, Ye-me Qa A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg 1,Ye-me Qa 1 School of computer ad formato

More information

ODBC. Getting Started With Sage Timberline Office ODBC

ODBC. Getting Started With Sage Timberline Office ODBC ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.

More information

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has

More information

RUSSIAN ROULETTE AND PARTICLE SPLITTING

RUSSIAN ROULETTE AND PARTICLE SPLITTING RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate

More information

How To Make A Supply Chain System Work

How To Make A Supply Chain System Work Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr

More information

Speeding up k-means Clustering by Bootstrap Averaging

Speeding up k-means Clustering by Bootstrap Averaging Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg

More information

CHAPTER 13. Simple Linear Regression LEARNING OBJECTIVES. USING STATISTICS @ Sunflowers Apparel

CHAPTER 13. Simple Linear Regression LEARNING OBJECTIVES. USING STATISTICS @ Sunflowers Apparel CHAPTER 3 Smple Lear Regresso USING STATISTICS @ Suflowers Apparel 3 TYPES OF REGRESSION MODELS 3 DETERMINING THE SIMPLE LINEAR REGRESSION EQUATION The Least-Squares Method Vsual Exploratos: Explorg Smple

More information

IT Support. 020 8269 6878 n www.premierchoiceinternet.com n [email protected]. 30 Day FREE Trial. IT Support from 8p/user

IT Support. 020 8269 6878 n www.premierchoiceinternet.com n support@premierchoiceinternet.com. 30 Day FREE Trial. IT Support from 8p/user IT Support IT Support Premier Choice Iteret has bee providig reliable, proactive & affordable IT Support solutios to compaies based i Lodo ad the South East of Eglad sice 2002. Our goal is to provide our

More information