Supply Chain Management Chapter 5: Application of ILP. Unified optimization methodology. Beun de Haas
|
|
|
- Mitchell Fields
- 10 years ago
- Views:
Transcription
1 Supply Cha Maagemet Chapter 5: Ufed Optmzato Methodology for Operatoal Plag Problem What to do whe ILP take too much computato tme? Applcato of ILP Tmetable Dutch Ralway (NS) Bu ad drver chedulg at Coeo, GVU, Qbuzz Producto plag at Hoogove Advaced bledg at Shell Plat locato at Iterbrew Cuttg platc at Eo Mobl Crew plag at Amerca Arle Emergg area: Healthcare Lk: Cutomer of AIMMS Ufed optmzato methodology Beu de Haa = Decompoto approach = Colum geerato Fater tha traghtforward ILP, ofte better tha heurtc Poblty to fd very good (but ot eceary optmal) oluto wth qualty meaure May ucceful applcato SCM More advaced Day Moday Tueday Wededay Thurday Frday Job 2 3 Workg tme 6 hour 8 hour 4 hour 8 hour 4 hour Durato Reveue 2 hour 5 3 hour 6 2 hour 4 Day Mo, wed, fr Mo, tue, thu Wed, thu, fr etc......
2 The Beuhaa problem Advaced ILP formulato Beu de Haa a depedet etrepreeur. Clet cotact hm for mall job. For each job j gve: the reward (c j ); the tme t take (a j ); the day o whch they ca be doe Plag perod: day,..., T. Beu ha Q t tme o day t (t =,..., T). Goal. Chooe ad pla the work to ear a much a poble. Formulato wth day pla. A day pla for day t a et of job that Beu ca do o day t. S t the et of feable day pla for day t The reward of day pla j equal to C jt Ue a bary varable: jt = f day pla j from S t the choe day pla for day t (ad 0 otherwe). ILP wth day pla Job at mot oce Dadvatage: olvg ILP may take a log tme Oe pla per day Soluto: rela tegralty cotrat, LP-relaato. Dadvatage: There are o may poble day pla Soluto: Coder oly teretg day pla Colum geerato. Decompoto!!!!!
3 Colum geerato for LP Job at mot oce Oe pla per day. Start wth a mall et of day pla 2. Solve LP-relaato. 3. Fd out f there a ew daypla that ca mprove the oluto (= prcg) 4. No optmum foud 5. Ye add pla to model ad go to 2. Prcg= Lagragea ubproblem Prcg (2) Fdg out f there are day pla to mprove oluto Recall: varable ca mprove oluto f ad oly f reduced cot are potve Prcg problem: Fd day pla wth mamal reduced cot If mamum > 0, add day pla Otherwe top So, fd a `optmal daypla for each day t Y = f job elected, 0 otherwe Reduced cot Day pla ha to ft = c y = π = a y Q t y λ t
4 Prcg problem for gve t Fdg tegral oluto ma ubject to y = a = y (c {0,} Q π t )y Solve LP-relaato = upper boud The: Roudg Solve ILP wth reultg et of colum Brach-ad-prce Decompoto Decompoto Mater IP: Varable: 0/ (or teger) for electo of feable ub pla I prcple huge umber of varable Solve Mater LP: Oly clude retrcted collecto of varable,.e. oly teretg varable Mater LP Shadow prce Feable Subpla Lagragea Subproblem (prcg problem) Soluto procedure:. Start wth feable oluto from Mater LP 2. Solve LP ad fd hadow prce 3. Coder ub problem to fd teretg varable (wth egatve reduced cot for mmzato problem) 4. Go to 2. f teretg colum (wth egatve reduced cot for mmzato problem) were foud Mater IP Feable Pla
5 Local delvery problem Chemcal are traported by truck from depot to 3 cutomer What hould be the route of the truck uch that the cot are mmal? Depot Local delvery problem Mater problem: I every cutomer vted? m.t. = r c a r r r r {0,} for all for all r Deco varable r dcate electo of route r c r : cot of route r a jr = f cutomer route r Local delvery problem (2) Gate agmet at Schphol Subproblem: Route for dvdual truck. Solvg the ub problem: Mamze π c cutomer route route. ILP: 80 flght 2. colum geerato: 560 flght = oe day at Schphol correpod wth mmze reduced cot c π route cutomer route
6 Gate agmet: Wat het probleem? Twee fae aapak We hebbe ee verzamelg vluchte: Aakomt- e vertrektjd Type vlegtug Herkomt e betemmg Evetuele voorkeure va de maatchappj Grodafhadelaar E we hebbe ee verzamelg gate: Mogeljke rego' (Schege/EU/No-EU) Mogeljke vlegtugtype (grootte) Mogeljke grodafhadelare Gateplae: verzamelg vluchte op ee gate. Zoek voor elke groep va `geljke gate ee eve groot aatal gateplae. 2. Koppel de gateplae aa fyeke gate. Gezocht: ee optmale plag Kotefucte Gate agmet at Schphol fae Robuute oploge Varate: (tuetjde) 2 Of oortgeljke fucte Evetueel correcte voor: Vluchte zelfde maatchappj Vluchte zelfde grodafhadelaar Betrouwbaarhed maatchappj Mater problem: Varable are pla for oe gate Each flght o eactly oe gate Flght aged to gate of correct type Other cotrat.. Mamze robute Subproblem: Feable pla for oe gate
7 Kolom geerate fae Rekereultate Model m.t. c a geeft electe va pla aa c : kote va pla a = al vlucht pla = overge beperkge {0,} Ee dagje Schphol: Looptjd LP: ecode Looptjd ILP: ecode Producto chedulg 6 type of tre, plag for 8 week demad are gve lmted mache capacty cot: et up cot ad vetory cot Mater problem: overall mache capacty Producto Schedule Tre.. Producto Schedule Tre 6 Cuttg tock Iro bar of gve legth Order for mall bar of dfferet legth How to cut gve order from mmal umber of bar? Decompoto: Mater LP: producto of all ordered format Lagragea ubproblem: patter for dvdual bar
8 Cutomer order Legth b 9 cm 27 cm 3 cm 35 cm 42 cm 48 cm 60 cm Number m Legte taaf L: meter ILP wth patter Dadvatage: olvg ILP may take a log tme Soluto: rela tegralty cotrat, LP-relaato. Dadvatage: There are o may poble patter Soluto: Coder oly teretg patter: Colum geerato. Colum geerato for LP. Start wth a mall et of patter 2. Solve LP-relaato. 3. Fd out f there a ew patter that ca mprove the oluto 4. No optmum foud 5. Ye add patter to model ad go to 2.
In the UC problem, we went a step further in assuming we could even remove a unit at any time if that would lower cost.
uel Schedulg (Chapter 6 of W&W.0 Itroducto I ecoomc dpatch we aumed the oly lmtato were o the output of the geerator: m g. h aumed that we could et ge to ay value we dered wth the rage, at ay tme, to acheve
Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts
Optmal replacemet ad overhaul decsos wth mperfect mateace ad warraty cotracts R. Pascual Departmet of Mechacal Egeerg, Uversdad de Chle, Caslla 2777, Satago, Chle Phoe: +56-2-6784591 Fax:+56-2-689657 [email protected]
A particle swarm optimization to vehicle routing problem with fuzzy demands
A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg, Ye-me Qa A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg 1,Ye-me Qa 1 School of computer ad formato
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
A PRACTICAL SOFTWARE TOOL FOR GENERATOR MAINTENANCE SCHEDULING AND DISPATCHING
West Ida Joural of Egeerg Vol. 30, No. 2, (Jauary 2008) Techcal aper (Sharma & Bahadoorsgh) 57-63 A RACTICAL SOFTWARE TOOL FOR GENERATOR MAINTENANCE SCHEDULING AND DISATCHING C. Sharma & S. Bahadoorsgh
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
Analysis of Two-Echelon Perishable Inventory System with Direct and Retrial demands
O Joural of Mathematc (O-JM) e-: 78-578 p-: 9-765X. Volume 0 ue 5 Ver. (ep-oct. 04) 5-57 www.oroural.org aly of Two-chelo erhable vetory ytem wth rect ad etral demad M. amehpad C.eryaamy K. Krha epartmet
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes
Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
OPTIMIZATION METHODS FOR BATCH SCHEDULING
OPTIMIZATION METHODS FOR BATCH SCHEDULING Jame Cerdá Isttuto de Desarrollo Tecológco para la Idustra Químca Uversdad Nacoal de Ltoral - CONICET Güemes 3450 3000 Sata Fe - Argeta 1 OUTLINE Problem defto
Integrating Production Scheduling and Maintenance: Practical Implications
Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
How To Make A Supply Chain System Work
Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr
3.6. Metal-Semiconductor Field Effect Transistor (MESFETs)
.6. Metal-Semcouctor Fel Effect rator (MESFE he Metal-Semcouctor-Fel-Effect-rator (MESFE cot of a couctg chael potoe betwee a ource a ra cotact rego a how the Fgure.6.1. he carrer flow from ource to ra
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011
Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
Swarm Based Truck-Shovel Dispatching System in Open Pit Mine Operations
Swarm Baed Truck-Shovel Dpatchg Sytem Ope Pt Me Operato Yaah Br, W. Scott Dubar ad Alla Hall Departmet of Mg ad Meral Proce Egeerg Uverty of Brth Columba, Vacouver, B.C., Caada Emal: [email protected] Abtract
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
Capacitated Production Planning and Inventory Control when Demand is Unpredictable for Most Items: The No B/C Strategy
SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NY 4853-380 TECHNICAL REPORT Jue 200 Capactated Producto Plag ad Ivetory Cotrol whe Demad s Upredctable
Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines
(ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
OPTIMAL KNOWLEDGE FLOW ON THE INTERNET
İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 5 Sayı:0 Güz 006/ s. - OPTIMAL KNOWLEDGE FLOW ON THE INTERNET Bura ORDİN *, Urfat NURİYEV ** ABSTRACT The flow roblem ad the mmum sag tree roblem are both fudametal
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network
Iteratoal Joural of Cotrol ad Automato Vol.7, No.7 (204), pp.-4 http://dx.do.org/0.4257/jca.204.7.7.0 Usg Phase Swappg to Solve Load Phase Balacg by ADSCHNN LV Dstrbuto Network Chu-guo Fe ad Ru Wag College
Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.
Proceedgs of the 21 Wter Smulato Coferece B. Johasso, S. Ja, J. Motoya-Torres, J. Huga, ad E. Yücesa, eds. EMPIRICAL METHODS OR TWO-ECHELON INVENTORY MANAGEMENT WITH SERVICE LEVEL CONSTRAINTS BASED ON
Optimization Model in Human Resource Management for Job Allocation in ICT Project
Optmzato Model Huma Resource Maagemet for Job Allocato ICT Project Optmzato Model Huma Resource Maagemet for Job Allocato ICT Project Saghamtra Mohaty Malaya Kumar Nayak 2 2 Professor ad Head Research
Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation
Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.
UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.
Efficient Traceback of DoS Attacks using Small Worlds in MANET
Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble
A particle Swarm Optimization-based Framework for Agile Software Effort Estimation
The Iteratoal Joural Of Egeerg Ad Scece (IJES) olume 3 Issue 6 Pages 30-36 204 ISSN (e): 239 83 ISSN (p): 239 805 A partcle Swarm Optmzato-based Framework for Agle Software Effort Estmato Maga I, & 2 Blamah
A two-stage stochastic mixed-integer program modelling and hybrid solution approach to portfolio selection problems
A two-stage stochastc mxed-teger program modellg ad hybrd soluto approach to portfolo selecto problems Fag He, Rog Qu The Automated Schedulg, Optmsato ad Plag (ASAP) Group, School of Computer Scece The
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
CSSE463: Image Recognition Day 27
CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)
A Parallel Transmission Remote Backup System
2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College
Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems
Fto: A Fater, Permutable Icremetal Gradet Method or Bg ata Problem Aaro J. eazo Tbéro S. Caetao Jut omke NICTA ad Autrala Natoal Uverty [email protected] [email protected] [email protected]
EBIZ GAME: A SCALABLE ONLINE BUSINESS SIMULATION GAME FOR ENTREPRENEURSHIP TRAINING
EBIZ GAME: A SCALABLE ONLINE BUSINESS SIMULATION GAME FOR ENTREPRENEURSHIP TRAINING Yue Poh LAI Ngee A Polytechc [email protected] Ta Log SIAU Ngee A Polytechc [email protected] ABSTRACT Ths artcle exames how a
CIS603 - Artificial Intelligence. Logistic regression. (some material adopted from notes by M. Hauskrecht) CIS603 - AI. Supervised learning
CIS63 - Artfcal Itellgece Logstc regresso Vasleos Megalookoomou some materal adopted from otes b M. Hauskrecht Supervsed learg Data: D { d d.. d} a set of eamples d < > s put vector ad s desred output
The paper presents Constant Rebalanced Portfolio first introduced by Thomas
Itroducto The paper presets Costat Rebalaced Portfolo frst troduced by Thomas Cover. There are several weakesses of ths approach. Oe s that t s extremely hard to fd the optmal weghts ad the secod weakess
Fundamentals of Mass Transfer
Chapter Fudametals of Mass Trasfer Whe a sgle phase system cotas two or more speces whose cocetratos are ot uform, mass s trasferred to mmze the cocetrato dffereces wth the system. I a mult-phase system
Elementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
Confidence Intervals for Linear Regression Slope
Chapter 856 Cofidece Iterval for Liear Regreio Slope Itroductio Thi routie calculate the ample ize eceary to achieve a pecified ditace from the lope to the cofidece limit at a tated cofidece level for
Study on prediction of network security situation based on fuzzy neutral network
Avalable ole www.ocpr.com Joural of Chemcal ad Pharmaceutcal Research, 04, 6(6):00-06 Research Artcle ISS : 0975-7384 CODE(USA) : JCPRC5 Study o predcto of etwork securty stuato based o fuzzy eutral etwork
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
Data Analysis Toolkit #10: Simple linear regression Page 1
Data Aaly Toolkt #0: mple lear regreo Page mple lear regreo the mot commoly ued techque f determg how oe varable of teret the repoe varable affected by chage aother varable the explaaty varable. The term
ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM
28-30 August, 2013 Sarawak, Malaysa. Uverst Utara Malaysa (http://www.uum.edu.my ) ROULETTE-TOURNAMENT SELECTION FOR SHRIMP DIET FORMULATION PROBLEM Rosshary Abd. Rahma 1 ad Razam Raml 2 1,2 Uverst Utara
Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering
Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software
J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao
Load Balancing Control for Parallel Systems
Proc IEEE Med Symposum o New drectos Cotrol ad Automato, Chaa (Grèce),994, pp66-73 Load Balacg Cotrol for Parallel Systems Jea-Claude Heet LAAS-CNRS, 7 aveue du Coloel Roche, 3077 Toulouse, Frace E-mal
AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM ON CLOUD SERVICE PROVIDER BASED ON GENETIC
Joural of Theoretcal ad Appled Iformato Techology 0 th Aprl 204. Vol. 62 No. 2005-204 JATIT & LLS. All rghts reserved. ISSN: 992-8645 www.jatt.org E-ISSN: 87-395 AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM
TI-83, TI-83 Plus or TI-84 for Non-Business Statistics
TI-83, TI-83 Plu or TI-84 for No-Buie Statitic Chapter 3 Eterig Data Pre [STAT] the firt optio i already highlighted (:Edit) o you ca either pre [ENTER] or. Make ure the curor i i the lit, ot o the lit
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
On Error Detection with Block Codes
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,
*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof [email protected] http://people.virginia.
Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof [email protected] http://people.vrga.edu/~as5k/
Speeding up k-means Clustering by Bootstrap Averaging
Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg
ISyE 512 Chapter 7. Control Charts for Attributes. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison
ISyE 512 Chapter 7 Cotrol Charts for Attrbutes Istructor: Prof. Kabo Lu Departmet of Idustral ad Systems Egeerg UW-Madso Emal: [email protected] Offce: Room 3017 (Mechacal Egeerg Buldg) 1 Lst of Topcs Chapter
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
Lecture 7. Norms and Condition Numbers
Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three
Multiobjective based Event based Project Scheduling using Optimized Neural Network based ACO System
Iteratoal Joural of Computer Applcatos (0975 8887) Volume 119 No.5, Jue 2015 Multobjectve based Evet based Project Schedulg usg Optmzed Neural Network based ACO System Vdya Sagar Poam Research Scholar,
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
Web Service Composition Optimization Based on Improved Artificial Bee Colony Algorithm
JOURNAL OF NETWORKS, VOL. 8, NO. 9, SEPTEMBER 2013 2143 Web Servce Composto Optmzato Based o Improved Artfcal Bee Coloy Algorthm Ju He The key laboratory, The Academy of Equpmet, Beg, Cha Emal: [email protected]
Response surface methodology
CHAPTER 3 Respose surface methodology 3. Itroducto Respose surface methodology (RSM) s a collecto of mathematcal ad statstcal techques for emprcal model buldg. By careful desg of epermets, the objectve
How To Solve The Homewor Problem Beautifully
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
GRADUATION PROJECT REPORT
SPAM Flter School of Publc Admtrato Computer Stude Program GRADUATION PROJECT REPORT 2007-I-A02 SPAM Flter Project group leader: Project group member: Supervor: Aeor: Academc year (emeter): MCCS390 Graduato
CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID
CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat
