Chapter 5. Binary, octal and hexadecimal numbers
|
|
|
- Abigail Leonard
- 10 years ago
- Views:
Transcription
1 Chapter 5. Binary, octal and hexadecimal numbers A place to look for some of this material is the Wikipedia page Another place that is relevant is (which explains many more details thane we will discuss) and the website For ASCII (mentioned briefly below) see However, I hope that the explanations given here are adequate. The material here is probably new to you, but it should not require any prior knowledge. It really starts with primary school mathematics and is all more or less common sense. The rationale for including this material in the course is that the ideas are used all through computing, at least once you look under the cover of a computer. 5.1 Counting. Normally we use decimal or base 10 when we count. What that means is that we count by tens, hundreds = tens of tens, thousands = tens of hundreds, etc. We see that in the SI units we are familiar with in science (kilometres = 10 3 metres, kilogrammes, centimetres = 10 3 metres). We can become so used to it that we don t think about it. When we write the number 5678, we learned in the primary school that the 8 means 8 units, the 7 is 7 tens, while the remaining digits are 6 hundreds = and So the number 5678 means Although base 10 is the most common, we do see some traces of other bases in every day life. For example, we normally buy eggs by dozens, and we can at least imagine shops buying eggs by the gross (meaning a dozen dozen or 12 2 = 144). So we use base 12 to some extent. We can see some evidence of base 60 in angles and in time. In time units, 60 seconds is a minute and 60 minutes (= 60 2 seconds) is an hour. Logically then we should have 60 hours in a day? Since we don t we stop using base 60. In degree measure of angles, we are familiar with 60 minutes in a degree. 5.2 Binary. In binary or base 2 we count by pairs. So we start with zero, then a single unit, but once we get to two units of any size we say that is a pair or a single group of 2. So, when we count in base 2, we find: 1 is still 1 2 becomes a single group of 2 (a single pair) Using positional notation as we do for decimal, we write this as 10. To make sure we are clear which base we are using, we may write a subscript 2 as in (10) 2 3 is (11) 2 = one batch of 2 plus 1 unit. 4 is (100) 2 = one batch of batches of units Using a more succinct format, we can explain how to count in binary as follows:
2 Mathematics 1S11 (Timoney) Decimal # in binary Formula for the binary format 1 (1) (10) (11) (100) (101) (110) (111) (1000) So we can figure out what number we mean when we write something in binary by adding up the formula. Mind you that can get tedious, but the principle is not complicated. At least for small numbers, there is a way to find the binary digits for a given number (i.e., given in base 10) by repeatedly dividing by 2. For very small numbers, we can more or less do it by eye. Say for the number twenty one, we can realise that it is more than 16 = 2 4 and not as big as 32 = 2 5. In fact 21 = = = = (10101) 2 Or we can start at the other end and realise that since 21 is odd its binary digits must end in 1. 21/2 = 10+ remainder 1. To explain how this goes a bit more clearly, suppose we are starting with a positive integer number n (recall that an integer is a whole number, no fractional part). We want to know it in binary and in order to dicuss what we are doing we will write down the units digit as n 0, the next digit from the right (multiples of 2) as n 1, etc. So we suppose the binary representation of the number n is n = (n k n k 1 n 2 n 1 n 0 ) 2 = n k 2 k + n k 1 2 k n n n 0 where the digits n 0, n 1,..., n k are each either 0 or 1 and k is big enough. (In fact we need k to be so big that 2 k n < 2 k+1.) If we divide n by 2 we get quotient = whole number part of n 2 = n k2 k 1 + n k 1 2 k n n 1 and remainder n 0. The remainder is 1 if n is odd and 0 if n is even. Now if we divide again by 2 we get remainder n 1 and new quotient quotient = n k 2 k 2 + n k 1 2 k n 2 Look again at the case n = 21 as an example. We had 21 = 10+ remainder 1. So the last 2 binary digit is 1 = that remainder. Now 10/2 = 5+ no remainder. That makes the digit in the 2 s place 0. 5/2 = 2+ remainder 1. So if we repeatedly divide by 2 and keep track of the remainder each time (even when the remainder is zero) we discover the binary digits one at a time from the units place up. One thing to notice about binary is that we only ever need two digits, 0 and 1. We never need the digit 2 because that always gets carried or moved to the next place to the left.
3 Binary, octal and hexadecimal numbers Octal. In octal or base 8 we count by 8 s. Otherwise the idea is similar. We need 8 digits now: 0, 1, 2, 3, 4, 5, 6 and 7. So now zero is still 0 in octal, 1 is 1, 2 is 2, etc. 7 is still 7 in octal, but eight becomes (10) 8. In base 8 (10) 8 means Using a layout similar to the one used before we can explain how to count in octal as follows: Decimal # in octal Formula for the octal format 1 (1) (2) (7) (10) = 0 9 (11) (12) (20) (21) Hex. Now we have the idea, we can think of counting in other bases, such as base 6 or base 9, but these are not used in practice. What is used is base 16, also called hexadecimal. We can go ahead as we did before, just counting in groups and batches of 16. However, we run into a problem with the notation caused by the fact that the (decimal) number 10, 11, 12 13, 14 and 15 are normally written using two adjacent symbols. If we write 11 in hexadecimal, should we mean ordinary eleven or ? To get around this difficulty we need new symbols for the numbers ten, eleven,..., fifteen. What we do is use letters a, b, c, d, e and f (or sometimes the capital letters A, B, C, D, E and F). Thus the number ten becomes a single digit number (a) 16 in hexadecimal. Eleven becomes (b) 16, and so on. But sixteen becomes (10) 16. Using a layout similar to the one used before we can explain how to count in hex as follows: Decimal # in hex Formula for the hexadecimal format 1 (1) (9) (a) (f) (10) = 0 17 (11) (1a) (20) (a5) (100) Converting Octal or Hex to binary. We did already discuss some conversions of integers between different bases.
4 Mathematics 1S11 (Timoney) There is a method based on repeated division and keeping track of remainders. We can use this to convert from decimal to octal, to hex, or to binary. If we write out the formula corresponding to a number in binary, octal or hex, we can compute the number in decimal by evaluating the formula. These methods involve quite a bit of work, especially if the number is large. However there is a very simple way to convert between octal and binary. It is based on the fact that 8 = 2 3 is a power of 2 and so it is very easy to convert base 8 to base 2. (541) 8 = = ( ) (1 2 2 ) = = ( ) 2 If we look at how this works, it basically means that we can convert from octal to binary by converting each octal digit to binary separately but we must write each digit as a 3 digit binary number. Redoing the above example that way we have 5 = (101) 2 (uses 3 digits anyhow), 4 = (100) 2 (again uses 3 digits) and 1 = (1) 2 = (001) 2 (here we have to force ourselves to use up 3 digits) and we can say (541) 8 = ( ) 2 = ( ) 2 This method works with any number of octal digits and we never have to really convert anything but the 8 digits 0-7 to binary. It is also reversible. We can convert any binary number to octal very quickly if we just group the digits in 3 s starting from the units. For example ( ) 2 = ( ) 2 = (172413) 8 A similar method works for converting between binary and hex, except that now the rule is 4 binary digits for each hex digit. It all works because 16 = 2 4. For example (a539) 16 = ( ) 2 = ( ) 2 Or going in reverse ( ) 2 = ( ) 2 = (f50b) 16 We can use these ideas to convert octal to hex or vice versa by going via binary. We never actually have to convert any number bigger than 15. If we wanted to convert a number such as 5071 to binary, it may be easier to find the octal representation (by repeatedly dividing by 8 and keeping track of all remainders) and then converting
5 Binary, octal and hexadecimal numbers 5 to binary at the end via the 3 binary digits for one octal rule = remainder = 79 + remainder = 9 + remainder = 1 + remainder = 0 + remainder 1 (5071) 10 = (11717) 8 = ( ) 2 = ( ) 2 = ( ) Relation with computers. Although computers are very sophisticated from the outside, with all kinds of flashy buttons, screens and so forth, the basic works are essentially many rows of on/off switches. Clearly a single on/off switch has only 2 possible settings of or states, but a row of 2 such switches has 4 possible states. on on on off off on off off A row of 3 switches has twice as many possible setting because the third switch can be either on or off for each of the 4 possibilities for the first two. So 2 3 possibilities for 3 switches. In general 2 8 = 256 possibilities for 8 switches, 2 n possible settings for a row of n switches. Computers generally work with groups of 32 switches (also called 32 bits, where a bit is the official name for the position that can be either on or off) and sometimes now with groups of 64. With 32 bits we have a total of 2 32 possible settings. How big is 2 32? We could work out with a calculator that it is = but there is a fairly simple trick for finding out approximately how large a power of 2 is. It is based on the fact that 2 10 = 1024 = 10 3 Thus 2 32 = = 4 (2 10 ) 3 = 4 (10 3 ) 3 = You can see that the answer is only approximate, but the method is fairly painless (if you are able to manipulate exponents). 5.7 Integer format storage. Computers use binary to store everything, including numbers. For numbers, the system used for integers (that is whole numbers, with no fractional part) is simpler to explain than the common system for dealing with numbers that may have fractional parts.
6 Mathematics 1S11 (Timoney) In general modern computers will use 32 bits to store each integer. (Sometimes, they use 64 but we will concentrate on a 32 bit system.) How are the bits used? Take a simple example like 9. First write that in binary 9 = (1001) 2 and that only has 4 digits. We could seemingly manage by using only 4 bits (where we make them on, off, off, on) and it seems a waste to use 32 bits. However, if you think about it you can see that we would need to also record how many bits we needed each time. Generally it is simpler to decide to use 32 bits from the start. For this number 9 we can pad it out by putting zeros in front 9 = (1001) 2 = ( ) 2 and then we end up filling our row of 32 bits like this: Bit position: One practical aspect of this system is that it places a limit on the maximum size of the integers we can store. Since we allocate 32 bits we have a total of 2 32 = different settings and so we have room for only that many different integers. So we could fit in all the integers from 0 to , but that is usually not such a good strategy because we may also want to allow room for negative integers. If we don t especially favour positive integers over negative ones, that leaves us with space to store the integers from about 2 31 to To be precise, that would be = numbers if we include zero and so we would have to leave out either ±2 31. Notice that 2 31 = is not by any means a huge number. In a big company, there would be more Euros passing through the accounts than that in a year. In astronomy, the number of kilometres between stars would usually be bigger than that. Computers are not actually limited to dealing with numbers less than , but they often are limited to dealing in this range for exact integer calculations. We will return to another method for dealing with numbers that have fractional parts and it allows for numbers with much larger magnitudes. However, this is done at the expense of less accuracy. When dealing with integers (that are within the range allowed) we can do exact calculations. Returning to integers, we should explain about how to deal with negative integers. One way would be to allocate one bit to be a sign bit. So bit number 1 on could mean a minus sign. In this way we could store 9 = (1001) 2 = ( ) 2 by just turning on the first bit. However, if you ask your calculator to tell you 9 in binary, you will get a different answer. The reason is that computers generally do something more complicated with negative integers. This extra complication is not so important for us, but just briefly the idea is that the method used saves having to ever do subtraction. So 1 is actually stored as all ones: Bit position:
7 Binary, octal and hexadecimal numbers 7 If you add 1 to that in binary, you will have to carry all the time. Eventually you will get zeros in all 32 allowable places and you will have to carry the last 1 past the end. Since, only 32 places are allowed, this final carried 1 just disappears and we get 32 zeros, or 0. In general, to store a negative number we take the binary form of 1 less than the number and then take what is called the ones complement of that. So when 9 is stored we would look at the way we would store +8 and then flip all the 1 s to 0 s and the 0 s to 1 s Bit position: Using this method of storing negative numbers, all subtractions can be performed as though they were additions (using the carrying rules and the possibility that a 1 will get lost past the 32nd position). By the way, the numbering of the bits is not really fixed. We could number them from right to left instead, but this really depends on whether you are looking at the bits from the top or the bottom. In any case, you can t really see bits normally. Simple computer programs that use integers will be limited to the range of integers from 2 31 up to (which is the number that has 31 1 s in binary). However, it is possible to write programs that will deal with a larger range of integers. You can arrange your program to use more than 32 bits to store each integer, for example to use several rows of 32 bits. However, the program will then generally have to be able to implement its own carrying rules and so forth for addition and subtraction of these bigger integers. So you will not simply be able to use the ordinary plus and times that you can use with regular integers. 5.8 Why octal and Hex?. We can now explain why computer people are fond of base 16 or hex. Octal looks easier to read (no need to worry about the new digits a for ten, etc) but in computers we are frequently considering 32 bits at a time. Using the 3 binary for one octal rule, this allows us to write out the 32 bits quickly, but it takes us eleven octal digits. The messy part is that we really don t quite use the eleventh octal digit fully. It can be at most (11) 2 = 3. With hex, we have a 4 binary digits for one hex rule and 32 binary digits or bits exactly uses up 8 hex digits. Computers use binary for everything, not just numbers. For example, text is encoded in binary by numbering all the letters and symbols. The most well used method for doing this is called ASCII (an acronym that stands for American Standard Code for Information Interchange). and it uses 7 binary digits or bits for each letter. You may be surprised that there are 2 7 = 128 letters, as there seem to be only 26 normally. But if you think a little you will see that there are 52 if you count upper and lower case separately. Moreover there are punctuation marks that you will see on your computer keyboard like!,.? / # [ ] { } ( ) * & ˆ % $ and we also need to keep track of the digits 0-9 as symbols (separately to keeping track of the numerical values). Finally the ASCII code allocates numbers or bit patterns to some invisible things like space, tab, new line and in the end 127 is just barely enough. On a UNIX system, you can find out what the ASCII code is by typing the command
8 Mathematics 1S11 (Timoney) man ascii at the command line prompt. Here is what you will see: ASCII(7) FreeBSD Miscellaneous Information Manual ASCII(7) NAME ascii - octal, hexadecimal and decimal ASCII character sets DESCRIPTION The octal set: 000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel 010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si 020 dle 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb 030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us 040 sp 041! 042 " 043 # 044 $ 045 % 046 & ( 051 ) 052 * , / : 073 ; 074 < 075 = 076 > 077? 101 A 102 B 103 C 104 D 105 E 106 F 107 G 110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O 120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W 130 X 131 Y 132 Z 133 [ 134 \ 135 ] 136 ˆ 137 _ a 142 b 143 c 144 d 145 e 146 f 147 g 150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o 160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w 170 x 171 y 172 z 173 { } del The hexadecimal set: 00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel 08 bs 09 ht 0a nl 0b vt 0c np 0d cr 0e so 0f si 10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb 18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us 20 sp 21! 22 " 23 # 24 $ 25 % 26 & ( 29 ) 2a * 2b + 2c, 2d - 2e. 2f / a : 3b ; 3c < 3d = 3e > 3f? 41 A 42 B 43 C 44 D 45 E 46 F 47 G 48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O 50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W 58 X 59 Y 5a Z 5b [ 5c \ 5d ] 5e ˆ 5f _ a 62 b 63 c 64 d 65 e 66 f 67 g 68 h 69 i 6a j 6b k 6c l 6d m 6e n 6f o 70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w 78 x 79 y 7a z 7b { 7c 7d } 7e 7f del The decimal set: 0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel 8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si 16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb 24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us 32 sp 33! 34 " 35 # 36 $ 37 % 38 & ( 41 ) 42 * , / : 59 ; 60 < 61 = 62 > 63? 65 A 66 B 67 C 68 D 69 E 70 F 71 G 72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O 80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W 88 X 89 Y 90 Z 91 [ 92 \ 93 ] 94 ˆ 95 _ a 98 b 99 c 100 d 101 e 102 f 103 g 104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
9 Binary, octal and hexadecimal numbers p 113 q 114 r 115 s 116 t 117 u 118 v 119 w 120 x 121 y 122 z 123 { } del FILES /usr/share/misc/ascii HISTORY An ascii manual page appeared in Version 7 AT&T UNIX. BSD June 5, 1993 Another place to find this information is at I certainly would not try to remember this, but you can see that the symbol A (capital A) is given a code (101) 8 = (41) 16 = (65) 10 and that the rest of the capital letters follow A in the usual order. This means that A uses the 7 bits in ASCII but computers almost invariably allocate 8 bits to store each letter. They sometimes differ about what they do with the wasted 8th bit, but the extra bit allows space for 2 8 = 256 letters while ASCII only specifies 128 different codes. If you think about it you will see that there are no codes for accented letters like á or è (which you might need in Irish or French), no codes for the Greek or Russian letters, no codes for Arabic or Hindu. In fact 8 bits (or 256 total symbols) is nowhere near enough to cope with all the alphabets of the World. That is a reflection of the fact that ASCII goes back to the early days of computers when memory was relatively very scarce compared to now, and also when the computer industry was mostly American. The modern system (not yet universally used) is called UNICODE and it allocates 16 bits for each character. Even with 2 16 = possible codes, there is a difficulty accommodating all the worlds writing systems (including Chinese, Japanese, mathematical symbols, etc). 5.9 Converting fractions to binary. We now look at a way to convert fractions to binary. We already mentioned that in principle every real number, including fractions, can be represented as a binary decimal (or really using a binary point ). We have already looked into whole numbers fairly extensively and what remains to do is to explain a practical way to find the binary digits for a fraction. You see if we start with (say 34 we can say that is We know = (110) 2 and if we could work out how to represent 4 as 0. something in binary then we would 5 have 34 = = (110. something) To work out what something should be we work backwards from the answer. We can t exactly do that without having the answer, but we can proceed as we do in algebra by writing down the unknown digits. Later we will work them out. Say the digits we want are b 1, b 2, b 3,... and so 4 5 = (0.b 1b 2 b 3 b 4 ) 2 We don t know any of b 1, b 2, b 3,... yet but we know they should be base 2 digits and so each one is either 0 or 1. We can write the above equation as a formula and we have 4 5 = b b b b If we multiply both sides by 2, we get 8 5 = b 1 + b b b
10 Mathematics 1S11 (Timoney) In other words multiplying by 2 just moves the binary point and we have 8 5 = (b 1.b 2 b 3 b 4 ) 2 Now if we take the whole number part of both sides we get 1 on the left and b 1 on the right. So we must have b 1 = 1. But if we take the fractional parts of both sides we have 3 5 = (0.b 2b 3 b 4 ) 2 We are now in a similar situation to where we began (but not with the same fraction) and we can repeat the trick we just did. Double both sides again 6 5 = (b 2.b 3 b 4 b 5 ) 2 Take whole number parts of both sides: b 2 = 1. Take fractional parts of both sides. 1 5 = (0.b 3b 4 b 5 ) 2 We can repeat our trick as often as we want to uncover as many of the values b 1, b 2, b 3, etc as we have the patience to discover. What we have is a method, in fact a repetitive method where we repeat similar instructions many times. We call a method like this an algorithm, and this kind of thing is quite easy to programme on a computer because one of the programming instructions in almost any computer language is REPEAT (meaning repeat a certain sequence of steps from where you left off the last time). In this case we can go a few more times through the steps to see how we get on. Double both sides again. 2 5 = (b 3.b 4 b 5 b 6 ) 2 Whole number parts. b 3 = 0. Fractional parts Double both sides again. Whole number parts. b 4 = 0. Fractional parts 2 5 = (0.b 4b 5 b 6 ) = (b 4.b 5 b 6 b 7 ) = (0.b 5b 6 b 7 ) 2 This is getting monotonous, but you see the idea. You can get as many of the b s as you like.
11 Binary, octal and hexadecimal numbers 11 But, if you look more carefully, you will see that it has now reached repetition and not just monotony. We are back to the same fraction as we began with 4. If we compare the last equation 5 to the starting one 4 5 = (0.b 1b 2 b 3 b 4 ) 2 we realise that everything will unfold again exactly as before. We must find b 5 = b 1 = 1, b 6 = b 2 = 1, b 7 = b 3 = 0, b 8 = b 4 = 0, b 9 = b 5 = b 1 and so we have a repeating pattern of digits So we can write the binary expansion of 4 down fully as a repeating pattern 5 and our original number as 4 5 = (0.1100) = ( ) Floating point format storage. In order to cope with numbers that are allowed to have fractional parts, computers use a binary version of the usual decimal point. Perhaps we should call it a binary point as decimal refers to base 10. Recall that what we mean by digits after the decimal point has to do with multiples of 1/10, 1/100 = 1/10 2 = 10 2, etc. So the number means = We use the binary point in the same way with powers of 1/2. So ( ) 2 = As in the familiar decimal system, every number can be written as a binary decimal. (Well that is a contradictory statement. Really we should say we can write every number in binary using a binary point.) As in decimal, there can sometimes be infinitely many digits after the point. What we do next is use a binary version of scientific notation. (You will see the ordinary decimal scientific notation on your calculator at times, when big numbers are written with an E.) The usual decimal scientific notation is like this = We refer to the part (a number between 1 and 10 or between -1 and -10 for negative numbers) as the mantissa. The power (in this case the 4) is called the exponent. Another decimal example is = and here the mantissa is while the exponent is 3.
12 Mathematics 1S11 (Timoney) This is all based on the fact that multiplying or dividing by powers of 10 simply moves the decimal point around. In binary, what happens is that multiplying or dividing by powers of 2 moves the binary point. (101) 2 = (10.1) 2 = = (101) ( ) 2 = ( ) This last is an example of a number in the binary version of scientific notation. The mantissa is ( ) 2 and we can always arrange (no matter what number we are dealing with) to have the mantissa between 1 and 2. In fact always less than 2, and so beginning with 1. something always. For negative numbers we would need a minus sign in front. The exponent in this last example is 3 (the power that goes on the 2). What we do then is write every number in this binary version of scientific notation. That saves us from having to record where to put the binary point, because it is always in the same place. Or really, the exponent tells us how far to move the point from that standard place. Computers then normally allocate a fixed number of bits for storing such numbers. The usual default is to allocate 32 bits in total (though 64 is quite common also). Within the 32 bits they have to store the mantissa and the exponent. Computers do everything in binary. The mantissa is already in binary, but we also need the exponent in binary. So in the last example the mantissa is +( ) 2 while the exponent is 3 = (11) 2. Computers usually allocate 24 bits for storing the mantissa (including its possible sign) and the remaining 8 bits for the exponent. In our little example, 24 bits is plenty for the mantissa and we would need to make it longer to fill up the 24 bits: ( ) 2 will be the same as ( ) 2. However, there are numbers that need more than 24 binary digits in the mantissa, and what we must then do is round off. In fact, we have to chop off the mantissa after 23 binary places (or more usually we will round up or down depending on whether the digit in the next place is 1 or 0). The web site goes into quite a bit of detail about how this is done. What you get on (under floating point) tells you the outcome in examples but there are many refinements used in practice that are not evident from that and that also we won t discuss. The method we have sketched is called single precision floating point storage. Another common method, called double precision, uses 64 bits to store each number, 53 for the mantissa (including one for the sign) and 11 for the exponent Limitations of floating point. Apart from the information about how the computer uses binary to store these floating point numbers 1 we can get an idea of the scope and accuracy that this system allows. The largest possible number we can store has mantissa ( ) 2 (with the maximum 2 possible number of 1 s) and exponent as large as possible. Now ( ) 2 (with 23 1 s after 1 the words indicate that the position of the binary point is movable, controlled by the exponent 2 The maximum in single precision, where we use 23 bits for the mantissa excluding the sign bit, would be 23 1 s but in fact the usual system does not store the 1 before the points as it is always there so we can manage 24 1 s total, 23 places after the point
13 Binary, octal and hexadecimal numbers 13 the point) is just about 2 and the largest possible exponent is = 127. [We are allowed 8 bits for the exponent, which gives us room for 2 8 = 256 different exponents. About half should be negative, and we need room for zero. So that means we can deal with exponents from 128 to +127.] Thus our largest floating point number is about = This is quite a big number and we can estimate it by using the 2 10 = 10 3 idea = = 256 (2 10 ) 12 = 256 (10 3 ) 12 = = This is quite a bit larger than the limit of around we had with integers. Indeed it is large enough for most ordinary purposes. We can also find the smallest positive number that we can store 3. It will have the smallest possible mantissa (1.0) 2 and the most negative possible exponent, 128. So it is = = = = or, getting the same result another way, = = = = 4 (2 10 ) 13 ( ) 13 This is pretty tiny, tiny enough for many purposes. If we use double precision (64 bits per number, requires twice as much computer memory per number) we get an exponent range from 2 10 = 1024 to = The largest possible number is = = 16 (2 10 ) 102 = 16 (10 3 ) 102 = and the smallest is the reciprocal of this. In both single and double precision, we have the same range of sizes for negative numbers as we have for positive numbers. So the limitation on size are not severe limitations, but the key consideration is the limit on the accuracy of the mantissa imposed by the 24 bit limit (or the 53 bit limit for double precision). We will return to this point later on, but the difficulty is essentially not with the smallest number we can store but with the next biggest number greater than 1 we can store. That number has exponent 0 and mantissa ( ) 2 where we put in as many zeros as we can fit before the final 1. Allowing 1 sign bit, we have 23 places in total and so we fit 22 zeros. That means the number is = 1 + = = 1 + = 1 + = (2 10 ) 3 (10 3 ) In this discussion some details are not fully in accordance with everything that goes on in practice, where there is a facility for somewhat smaller posoitive numbers with fewer digits of accuracy in the mantissa. These details are fairly well explained at
14 Mathematics 1S11 (Timoney) (An accurate calculation gives as the next number bigger than 1 that computers can store using the commonly used IEEE standard method.) A consequence of this is that we cannot add a very small number to 1 and get an accurate answer, even though we can keep track of both the 1 and the very small number fine. For example the small number could be 2 24 or 2 75 ), but we would be forced to round 1+ either of those numbers to 1. We can get a similar problem with numbers of different magnitude than 1. If we look at the problem relative to the size of the correct result, we get a concept called relative error for a quantity Relative Errors. The idea is that an error should not be considered in the abstract. [An error of 1 milimetre may seem small, and it would be quite small if the total magnitude of the quantity concerned was 1 kilometre. Even if the total magnitude was 1 metre, 1 milimetre may well be not so significant, depending on the context. But if the measurement is for the diameter of a needle, then a 1 milimetre error could be huge.] If we measure (or compute) a quantity where the true or correct answer is x but we get a slightly different answer x (maybe because of inaccuracies in an experiment or because we made some rounding errors in the calculation) then the error is the difference error = x x = (true value) (approximate value) Normally we don t worry about the sign and only concentrate on the magnitude or absolute value of the error. In order to asses the significance of the error, we have to compare it to the size of the quantity x. The relative error is a more significant thing: relative error = error true value = (true value) (approximate value) true value = x x x It expresses the error as a fraction of the size of the thing we are aiming at. 100 times this give the percentage error Example. Suppose we use 22 7 as an approximation to π. Then the relative error is relative error = (true value) (approximate value) true value = π 22 7 π = or 0.04% Remark. Another way to look at the idea of a relative error will be to consider the number of significant figures in a quantity. What happens with single precision floating point numbers is that we have at most 23 significant binary digits. When translated into decimal, this means 6 or 7 significant digits. That means that a computer program that prints an answer should normally not be trusted completely in the units place. (The 7 may or may not be entirely right and the.89 are almost certainly of no consequence.) That is even in the best possible case. There
15 Binary, octal and hexadecimal numbers 15 may also be more significant errors along the way in a calculation that could affect the answer more drastically. If a computer works in double precision, then there is a chance of more significant digits. In double precision, the next number after 1 is = and we can get about 15 accurate digits (if all goes well) Linear approximation. Here we just recall briefly the linear approximation formula. It applies to functions f = f(x) (of a single variable x) with a derivative f (a) that is defined at least at one point x = a. The graph y = f(x) of such a function has a tangent line at the point on the graph with x = a (which is the point with y = f(a) and so coordinates (a, f(a))). The tangent line is the line with slope f (a) and going through the point (a, f(a)) on the graph. We can write the equation of the tangent line as y = f(a) + f (a)(x a) The linear approximation formula says that the graph y = f(x) will follow the graph of the tangent line as long as we stay close to the point where it is tangent, that is keep x close to a. It says f(x) = f(a) + f (a)(x a) for x near a The advantage is that linear functions are easy to manage, much more easy than general functions. The disadvantage is that it is an approximation Condition Numbers. We can use linear approximation to understand the following problem. Say we measured x but our answer was x and then we compute with that to try to find f(x) (some formula we use on our measurement). If there are no further approximation in the calculation we will end up with f( x) instead of f(x). How good an approximation is f( x) to the correct value f(x)? We assume that x is close to x and so linear approximation should be valid. We use the linear approximation formula f(x) = f(a) + f (a)(x a) x near a with x replaced by x and then a replaced by x f( x) = f(a) + f (a)( x a) f( x) = f(x) + f (x)( x x) x near a 4 A more precise calcualtion than this rough one gives the result
16 Mathematics 1S11 (Timoney) So the final error (true value) (approximate value) = f(x) f( x) = f (x)(x x) Notice that x x is the error in the initial measurement and so we see that the derivative f (x) is a magnifying factor for the error. But we are saying above that relative errors are more significant things than actual errors. So we recast in terms of relative errors. The relative error in the end (for f(x)) is f(x) f( x) f(x) f (x) = (x x) f(x) To be completely logical, we should work with the relative error at the start x x instead of the x actual error x x. We get f(x) f( x) xf (x) x x = f(x) f(x) x or relative error in value for f(x) = xf (x) (relative error in value for x) f(x) Thus the relative error will be magnified or multiplied by the factor xf (x) and this factor is called f(x) the condition number. In summary condition number = xf (x) f(x) 5.17 Examples. (i) Find the condition number for f(x) = 4x 5 at x = 7. xf (x) f(x) = x(20x4 ) 4x 5 So in this case it does happens not to depend on x. = 20x5 4x 5 = 5. (ii) Use the condition number to estimate the error in 1/x if we know x = 4.12 ± If we take f(x) = 1/x we can work out its condition number at x = 4.12: xf (x) = x ( ) 1 1 x 2 x 1 = 1 = 1 f(x) x x This means it does not depend on 4.12 in fact. Now our initial value x = 4.12 ± 0.05 means we have a relative error of (at most) ± = ±0.012
17 Binary, octal and hexadecimal numbers 17 The relative error in f(4.12) = 1/(4.12) is then going to be about the same (because the condition number is 1 and this multiples the original relative error). So we have, using x = 4.12 as our best approximation to the real x, f( x) = 1 x = = and this should have a relative error of about The magnitude of the error is therefore (at worst) about (0.012)( ) = or about So we have the true value of 1 x = ± or, more realistically ± (no point in giving the 718 as they are not at all significant). (iii) f(x) = e x. Condition numbers at x = 10/3 is xf (x)/f(x) = xe x /e x = x = 10/3 = So if we use x = 3.33 instead of x = 10/3 we would have a relative error to begin with 10 3 relative error in x = = (that is an error of 0.1%). If we now compute e 3.33 while we ought to have computed e 10/3 we will have a relative error about 10/3 times larger (the condition number is 10/3, or roughly 3). So we will end up with a 0.3% error. In other words, still quite small. If instead we were working with x = 100/3 and we took x = 33.3, we would have the same initial relative error relative error in x = = but the condition number for e x is now x = 33. The error in using e 33.3 where we should have had e 100/3 will be a relative error about 33 times bigger than the initial one, or = This means a 3.3% error (not very large perhaps, but a lot larger than the very tiny 0.1% we began with. In fact e 33.3 = and 3.3% of that is (iv) For f(x) = x 2 10x + 11, find the condition number at x = 10. Answer: xf (x) f(x) x=10 = = 9. Richard M. Timoney December 7, 2012
Chapter 1. Binary, octal and hexadecimal numbers
Chapter 1. Binary, octal and hexadecimal numbers This material is covered in the books: Nelson Magor Cooke et al, Basic mathematics for electronics (7th edition), Glencoe, Lake Forest, Ill., 1992. [Hamilton
Memory is implemented as an array of electronic switches
Memory Structure Memory is implemented as an array of electronic switches Each switch can be in one of two states 0 or 1, on or off, true or false, purple or gold, sitting or standing BInary digits (bits)
Numeral Systems. The number twenty-five can be represented in many ways: Decimal system (base 10): 25 Roman numerals:
Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger
plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
ASCII Code. Numerous codes were invented, including Émile Baudot's code (known as Baudot
ASCII Code Data coding Morse code was the first code used for long-distance communication. Samuel F.B. Morse invented it in 1844. This code is made up of dots and dashes (a sort of binary code). It was
Encoding Text with a Small Alphabet
Chapter 2 Encoding Text with a Small Alphabet Given the nature of the Internet, we can break the process of understanding how information is transmitted into two components. First, we have to figure out
Chapter 1: Digital Systems and Binary Numbers
Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching
This is great when speed is important and relatively few words are necessary, but Max would be a terrible language for writing a text editor.
Dealing With ASCII ASCII, of course, is the numeric representation of letters used in most computers. In ASCII, there is a number for each character in a message. Max does not use ACSII very much. In the
Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
Symbols in subject lines. An in-depth look at symbols
An in-depth look at symbols What is the advantage of using symbols in subject lines? The age of personal emails has changed significantly due to the social media boom, and instead, people are receving
Levent EREN [email protected] A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC
Levent EREN [email protected] A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n
CSI 333 Lecture 1 Number Systems
CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...
Base Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
2 Number Systems. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:
2 Number Systems 2.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
The string of digits 101101 in the binary number system represents the quantity
Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x
Section 1.4 Place Value Systems of Numeration in Other Bases
Section.4 Place Value Systems of Numeration in Other Bases Other Bases The Hindu-Arabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason
DEBT COLLECTION SYSTEM ACCOUNT SUBMISSION FILE
CAPITAL RESOLVE LTD. DEBT COLLECTION SYSTEM ACCOUNT SUBMISSION FILE (DCS-ASF1107-7a) For further technical support, please contact Clive Hudson (IT Dept.), 01386 421995 13/02/2012 Account Submission File
BAR CODE 39 ELFRING FONTS INC.
ELFRING FONTS INC. BAR CODE 39 This package includes 18 versions of a bar code 39 font in scalable TrueType and PostScript formats, a Windows utility, Bar39.exe, that helps you make bar codes, and Visual
Xi2000 Series Configuration Guide
U.S. Default Settings Sequence Reset Scanner Xi2000 Series Configuration Guide Auto-Sense Mode ON UPC-A Convert to EAN-13 OFF UPC-E Lead Zero ON Save Changes POS-X, Inc. 2130 Grant St. Bellingham, WA 98225
Voyager 9520/40 Voyager GS9590 Eclipse 5145
Voyager 9520/40 Voyager GS9590 Eclipse 5145 Quick Start Guide Aller à www.honeywellaidc.com pour le français. Vai a www.honeywellaidc.com per l'italiano. Gehe zu www.honeywellaidc.com für Deutsch. Ir a
Digital Logic Design. Introduction
Digital Logic Design Introduction A digital computer stores data in terms of digits (numbers) and proceeds in discrete steps from one state to the next. The states of a digital computer typically involve
NUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also
Binary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.
Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Number Systems No course on programming would be complete without a discussion of the Hexadecimal (Hex) number
Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
BARCODE READER V 2.1 EN USER MANUAL
BARCODE READER V 2.1 EN USER MANUAL INSTALLATION OF YOUR DEVICE PS-2 Connection RS-232 Connection (need 5Volts power supply) 1 INSTALLATION OF YOUR DEVICE USB Connection 2 USING THIS MANUAL TO SETUP YOUR
CHAPTER 8 BAR CODE CONTROL
CHAPTER 8 BAR CODE CONTROL CHAPTER 8 BAR CODE CONTROL - 1 CONTENTS 1. INTRODUCTION...3 2. PRINT BAR CODES OR EXPANDED CHARACTERS... 4 3. DEFINITION OF PARAMETERS... 5 3.1. Bar Code Mode... 5 3.2. Bar Code
The ASCII Character Set
The ASCII Character Set The American Standard Code for Information Interchange or ASCII assigns values between 0 and 255 for upper and lower case letters, numeric digits, punctuation marks and other symbols.
Numbering Systems. InThisAppendix...
G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal
URL encoding uses hex code prefixed by %. Quoted Printable encoding uses hex code prefixed by =.
ASCII = American National Standard Code for Information Interchange ANSI X3.4 1986 (R1997) (PDF), ANSI INCITS 4 1986 (R1997) (Printed Edition) Coded Character Set 7 Bit American National Standard Code
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be
Fast Approximation of the Tangent, Hyperbolic Tangent, Exponential and Logarithmic Functions 2007 Ron Doerfler http://www.myreckonings.com June 27, 2007 Abstract There are some of us who enjoy using our
BI-300. Barcode configuration and commands Manual
BI-300 Barcode configuration and commands Manual 1. Introduction This instruction manual is designed to set-up bar code scanner particularly to optimize the function of BI-300 bar code scanner. Terminal
If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material
Binary Representation
Binary Representation The basis of all digital data is binary representation. Binary - means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised For ACCESS TO APPRENTICESHIP
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING For ACCESS TO APPRENTICESHIP MATHEMATICS SKILL OPERATIONS WITH INTEGERS AN ACADEMIC SKILLS MANUAL for The Precision Machining And Tooling Trades
The Subnet Training Guide
The Subnet Training Guide A Step By Step Guide on Understanding and Solving Subnetting Problems by Brendan Choi v25 easysubnetcom The Subnet Training Guide v25 easysubnetcom Chapter 1 Understanding IP
LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3
Data Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
CS321. Introduction to Numerical Methods
CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in
Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)
Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System- A number system defines a set of values to represent quantity. We talk about the number of people
Numeration systems. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Numeration systems This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Activity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.
Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating
Primes. Name Period Number Theory
Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
MATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
Command Emulator STAR Line Mode Command Specifications
Line Thermal Printer Command Emulator STAR Line Mode Command Specifications Revision 0.01 Star Micronics Co., Ltd. Special Products Division Table of Contents 1. Command Emulator 2 1-1) Command List 2
ASCII CODES WITH GREEK CHARACTERS
ASCII CODES WITH GREEK CHARACTERS Dec Hex Char Description 0 0 NUL (Null) 1 1 SOH (Start of Header) 2 2 STX (Start of Text) 3 3 ETX (End of Text) 4 4 EOT (End of Transmission) 5 5 ENQ (Enquiry) 6 6 ACK
Number Representation
Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data
Create!form Barcodes. User Guide
Create!form Barcodes User Guide Barcodes User Guide Version 6.3 Copyright Bottomline Technologies, Inc. 2008. All Rights Reserved Printed in the United States of America Information in this document is
2011, The McGraw-Hill Companies, Inc. Chapter 3
Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through
Accuplacer Arithmetic Study Guide
Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how
A Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
Solution for Homework 2
Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of
Chapter 4. Spreadsheets
Chapter 4. Spreadsheets We ve discussed rather briefly the use of computer algebra in 3.5. The approach of relying on www.wolframalpha.com is a poor subsititute for a fullfeatured computer algebra program
3.2 The Factor Theorem and The Remainder Theorem
3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial
CHAPTER 5 Round-off errors
CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any
ASCII Characters. 146 CHAPTER 3 Information Representation. The sign bit is 1, so the number is negative. Converting to decimal gives
146 CHAPTER 3 Information Representation The sign bit is 1, so the number is negative. Converting to decimal gives 37A (hex) = 134 (dec) Notice that the hexadecimal number is not written with a negative
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
Unsigned Conversions from Decimal or to Decimal and other Number Systems
Page 1 of 5 Unsigned Conversions from Decimal or to Decimal and other Number Systems In all digital design, analysis, troubleshooting, and repair you will be working with binary numbers (or base 2). It
Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit
Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture
The Hexadecimal Number System and Memory Addressing
APPENDIX C The Hexadecimal Number System and Memory Addressing U nderstanding the number system and the coding system that computers use to store data and communicate with each other is fundamental to
Lecture 11: Number Systems
Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number
DNA Data and Program Representation. Alexandre David 1.2.05 [email protected]
DNA Data and Program Representation Alexandre David 1.2.05 [email protected] Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued
Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems
Chapter 7 Lab - Decimal, Binary, Octal, Hexadecimal Numbering Systems This assignment is designed to familiarize you with different numbering systems, specifically: binary, octal, hexadecimal (and decimal)
Preliminary Mathematics
Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Decimals and other fractions
Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very
Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1
Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be
Cyber Security Workshop Encryption Reference Manual
Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics
NUMBER SYSTEMS. 1.1 Introduction
NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.
COLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005
Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division
Positional Numbering System
APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated
6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10
Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you
Binary, Hexadecimal, Octal, and BCD Numbers
23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal
This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers
This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition
Expert Reference Series of White Papers. Simple Tricks To Ace the Subnetting Portion of Any Certification Exam 1-800-COURSES. www.globalknowledge.
Expert Reference Series of White Papers Simple Tricks To Ace the Subnetting Portion of Any Certification Exam 1-800-COURSES www.globalknowledge.com Simple Tricks To Ace the Subnetting Portion of Any Certification
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
CS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011
CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS
Numerical Matrix Analysis
Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research
4.3 TABLE 3 TABLE 4. 1342 five 1 125 3 25 4 5 2 1 125 75 20 2 222.
.3 Conversion Between Number Bases 169.3 Conversion Between Number Bases Although the numeration systems discussed in the opening section were all base ten, other bases have occurred historically. For
1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:
Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of
EE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
ECE 0142 Computer Organization. Lecture 3 Floating Point Representations
ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,
Binary Numbering Systems
Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and
Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK
Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK It has been my pleasure to give two presentations
A Step towards an Easy Interconversion of Various Number Systems
A towards an Easy Interconversion of Various Number Systems Shahid Latif, Rahat Ullah, Hamid Jan Department of Computer Science and Information Technology Sarhad University of Science and Information Technology
A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles
A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...
Representação de Caracteres
Representação de Caracteres IFBA Instituto Federal de Educ. Ciencia e Tec Bahia Curso de Analise e Desenvolvimento de Sistemas Introdução à Ciência da Computação Prof. Msc. Antonio Carlos Souza Coletânea
BA-35 Solar Quick Reference Guide
BA-35 Solar Quick Reference Guide Table of Contents General Information... 2 The Display... 4 Arithmetic Operations... 6 Correcting Errors... 7 Display Formats... 8 Memory Operations... 9 Math Operations...
Digital codes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Digital codes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
