Replacement Generators to Modernize and Uprate Power Trains Limited by the Generator
|
|
|
- Irma Rich
- 9 years ago
- Views:
Transcription
1 Replacement Generators to Modernize and Uprate Power Trains Limited by the Generator Dr. Thorsten Krol (presenter, ), Kai-Uwe Paeselt (author, ), Fabian Bremer (author, ), Maren Wiese (author, 1 Abstract Initial Situation and Solution Aging of Generators Modernization Portfolio Modernization of Main Generator Components as Solution Rotor Rewind Stator Rewind and Restack Replacement of Stator Midsection Generator Replacement as Solution Replacement of Generators up to 300 MVA Replacement of Generators larger 300 MVA Conclusion References Abstract Siemens generators are well known for their long lifetime. They can be used in a power plant for several decades, but aging increases the technical risk of their operation. To be able to reduce the risk and to operate the plant according to the valid requirements, a modernization of the generators might become necessary. The modernization can be done by different approaches. Major solutions that can be performed are the modernization of the limiting components of the generator or the replacement of the entire generator. The best approach for the power plant can be evaluated together with Siemens experts. Based on the fleet experiences Siemens provides the full scope of service, ranging from maintenance to modernizations and upgrades. Rather than a modernization for very old gas- or water-cooled generators with low ratings, it might be more economical for an exchange with a state-of-the-art air-cooled generator, matching or even exceeding the rating of the old unit. Siemens supports the decision making with in depth analysis of the specific situation of the power plant. The exchange is enabled through a modular design concept, which adapts the generator to the existing foundation, as well as to the axis level of the existing power train, so modification of the foundation or turbine interface is unnecessary. In addition, Siemens offers replacement of large generators to increase the efficiency, reliability and availability as well as the output of the power train. While developing such projects, Siemens takes care that the new generator fits in the existing power plant. On customer s request Siemens has proven that it is possible to Page 1 of 12
2 customize the generators in such a way that the new auxiliary systems can be utilized for both generators, the existing and the new one. This enables the possibility to keep the existing generator as a spare. The technology, the possibilities of uprating and the benefits will be explained by examples in theory and reference projects. 2 Initial Situation and Solution As power plants become older and reach their equipment lifetime, or if the operation regime has changed drastically, plant owners are confronted with the question whether to modernize the plant or to replace major components of the plant. Usually, there are many different lifetime extension programs offered by different manufacturers including turbine update, refurbishment or even replacement. 2.1 Aging of Generators Aging is a well expected and normal effect during the life cycle of a generator, but the severity and kind of aging always depends on the generator type and the operating conditions. With the increasing demand for higher efficiency and output, increased requirements are being put on base load power plants. Some power plants originally intended for base load operation are now being used for intermediate and peak load operation. With intermediate and peak load operation, plants have more start/stop cycles than they do in base load. Increased start/stop cycles and operation on turning gear can put additional stresses on generator components, potentially reducing their service life. The major components which can experience problems due to thermal, mechanical and electrical stresses, leading to accelerated life expenditure, are typically the stator and rotor windings, stator core, rotor body and retaining rings. The number and kind of starts, shutdowns and fault conditions of the generator can cause material fatigue in the various rotor components, resulting in severe damage in the long run. In the rotor end-winding areas, thermal expansion and the influence of centrifugal forces may cause displacement of winding parts or insulation damage, which can cause earth faults, interturn faults or excessive temperature rises [1]. The longer a generator has been in service, the higher the probability that the soundness of the insulation has been compromised by mechanical stress or heat related damage. Figure 1: Abrasion of the rotor insulation Page 2 of 12
3 The rotor body is a sturdy component which is less susceptible to damage. Nevertheless, it can be damaged by overheating from negative sequence currents or asynchronous operation. When the rotor is energized from standstill, very high currents flow in both the rotor surface and in the slot wedges. These currents may cause melting of the slot wedges or create cracks in the rotor body, and may circulate through the shrink-fit areas of the retaining rings [1]. Furthermore, the high electromagnetic flux and currents created inside a generator can lead to end-turn basket vibration. High vibration levels may loosen the stator winding and slot wedges, weaken insulation and ultimately crack conductors and cause forced outages. Loose and broken laminations at the stepped core end can cause damage to the stator bar insulation and can lead to formation of friction dust and stator earth faults. Figure 2: Friction dust due to looseness of end-winding structure Especially for old paper insulated stator cores, the aging process is enforced by operational stresses. Abrasion of the paper insulation increases the electrical conductivity between laminations which can cause formation of hot spots inside the stator core. In the worst case, those hot spots can result in internal core burning and melting. Figure 3: Thermograph of stator core and localization of hot spots (in red) Page 3 of 12
4 2.2 Modernization Portfolio Siemens offers various condition related and preventive measures to keep generators in reliable condition, to extend their lifetime and output, to avoid potential system downtime and costly repairs, and to minimize outage duration. These include inspection, repair, modernization and replacement of generators, stators, rotors, exciters and auxiliary systems. Based on fast, reliable and cost effective on-site inspections during minor, intermediate and major generator overhauls, Siemens helps you to decide which service would be the best for the affected generator components. This could be a stator repair and uprate ranging from a stator rewind with advanced design features, a fast stator rewind and core repair to a new stator midsection or core restacking, e.g. using the well-proven donut concept. For the rotor, Siemens offers inspections including electrical testing and non-destructive examination (NDE), spare rotors, rotor rewinds with old or new copper, and fast rotor rewinds to support short outages. Other rotor services include short and long ring modifications, new gas baffles, exchange of retaining rings, improved slot liners, new J-Leads or an improved rotor end-winding and pole cross-over design. Siemens also offers modernization services for generator auxiliary systems and exciter systems. These include an improved seal oil skid equipped with the latest instrumentation, filtration and cooling, services for gas supply and stator water cooling systems, the axial split seal ring holder or our COOLGEN evaporative cooler for air-cooled generators. Increased costs and extended delivery time for spare parts and services for legacy excitation systems of generators give economic reason for their modernization. For example, the replacement of original analogue excitation systems with digital state-of-the-art systems reduces operational costs and at the same time increases the availability. Besides exciter replacement, Siemens offers exciter inspections, exciter rewinds, refurbishments and spare exciter rotors. In each case it must be determined which solution would be the most economic and efficient measure. For very old generators a modernization or replacement of single components can be more expensive than a complete generator replacement. For this case Siemens has developed two generator replacement solutions which are introduced in section 4. 3 Modernization of Main Generator Components as Solution One option to modernize turbo generators is to modernize or replace the main components of the generator. In this section three representative modernization solutions for main generator components are introduced. 3.1 Rotor Rewind If a rotor winding has been destroyed as result of a failure, or the deterioration is widespread, then a full rewind including mechanical and electrical testing, non-destructive examination (NDE) of the rotor body and retaining rings, and rewind with new or refurbished copper may be the best option, permitting the owner to have the winding returned to "as new" condition. A rotor rewind includes the replacement of turn-to-turn and ground wall insulation to "reset" the life clock of the insulation system. Reliability is increased because new materials are used in the insulation system which is more durable than the materials in the original design. With a rewind of the rotor plant owners can benefit from several new design features such as the enhanced retaining ring shrink-fit seal, nonmagnetic 18Mn-18Cr retaining rings, redesigned J-straps, the corner brazed, rectangular end-winding and an improved slot side angle material. Page 4 of 12
5 Siemens uses class F material for the rotor turn-to-turn insulation based on its excellent wear characteristics and high friction factor. The excellent wear characteristics lead to prolonged rotor life; the high friction factor minimizes relative slippage of the coil turns, allowing the entire coil stack to act as a unit rather than as individual turns. The combination of Teflon backed by glass epoxy insulation provides dimensional stability under high loads and at maximum rotor temperature. As availability and reliability are very important indicators for product quality, it is essential that repair times are reduced to avoid long outages. The Siemens generator manufacturing plant Mülheim has demonstrated its proficiency with reduced repair times with the successful implementation of a fast rotor rewind in record time. Within only 20 days, beginning from the receipt of the rotor in the factory and ending with the delivery, a rotor rewind with new copper was implemented for a 153 MVA hydrogen-cooled generator. This greatly reduced factory processing time could only be achieved with comprehensive planning including an efficient spare parts strategy, and by providing sufficient manufacturing resources. Furthermore, there had to be a special focus on reducing any risks concerning the time schedule and the expected findings during project handling. The manufacturing plant Mülheim with its many decades of generator manufacturing, engineering and project experience offers the best conditions for these challenging tasks. With the fast rotor rewind Siemens Energy offers plant owners a solution which helps to avoid unnecessary power plant outage and production downtimes. However, for each customer it must be individually determined which exact scope of work can be implemented in the available time slot depending on the generator type. In general, a rotor rewind offers the following potential advantages: Improvement of operational flexibility (not only base load operation) Higher availability and reliability due to new design features and materials Extended lifetime 3.2 Stator Rewind and Restack Siemens offers a broad selection of stator repair services which can be performed conveniently on site, ranging from small winding and core repairs to a complete or partial core restack and rewind. With a stator rewind with an advanced RIGI-Flex stator winding the power plant owner can benefit from: Higher Reliability Reduction of maintenance efforts for the stator winding Improvement of the vibration behavior of the end-windings Reduction of thermo-mechanical stresses Increasing of the robustness of the end-winding structure Reduction of maintenance efforts for the stator winding Extension of unit lifetime The advanced stator end-winding design can be applied to most of the Siemens stators with direct cooling, and to some of those manufactured by other OEMs. Installation of this advanced design technology requires a rewind which can be performed on site or in one of the Siemens facilities around the globe, generally during a major overhaul. The complete advanced stator end-winding design features consist of: Page 5 of 12
6 Axially free and tangentially flexible end-winding structure Homogeneous structure with matched materials Tighter parallel rings decoupled from coil basket Low-tuned end-winding structure Protected sliding surfaces at support plate Matched insulation materials Withstand short circuit conditions For core refurbishment, e.g. due to hot spots inside the stator core, Siemens has developed an on-site core restack with bonded lamination packs which reduces the core stacking time. These so-called donuts are compressed stacks of laminations which are vacuum pressure impregnated and thermally cured. The donuts are electrically tested prior to installation in the unit, which reduces the possibility of lamination shorts during core assembly. A core restack with donuts can either be performed with the stator frame in vertical or in horizontal position on the foundation. In Figure 4, the restack concept using donuts in horizontal position is shown. This new method for stator core replacement on-site with the stator frame in horizontal position has several benefits during the outage including: Shorter outage duration than restack with individual laminations where the frame is typically lifted into the vertical position No need to disconnect the stator auxiliaries like iso-phase bus No need to lift the stator frame from the foundation No need to realign stator frame No cost associated with heavy lifting Less internal labor costs No safety concerns associated with lifting the stator frame At American Electric Power s, 493 MVA, Conesville Unit 6, Siemens replaced the stator core using donuts for the first time at a power plant site. The outage was in April and May 2005; the total time required to replace the core iron was 16 days, which is 38 days less compared to a former restack of Conesville 5, a sister unit of Conesville 6, where the entire stator core was replaced in 2003 by hand stacking individual laminations which took 54 days. Instead of the 110,000 individual lamination stacking interfaces, Conesville 6 has only 35 bonded core pack stacking interfaces [2]. Page 6 of 12
7 Figure 4: Stator core restack with donuts in horizontal position on foundation 3.3 Replacement of Stator Midsection Another option instead of stator restack and rewind is the replacement of the entire stator midsection. The new stator midsection includes a new stator frame, stator core, winding and terminal box. The main advantage of a new modernized stator midsection is that it is manufactured in the manufacturing plant. Thus, after transportation to the plant it allows a fast implementation and a shorter plant downtime during replacement. New generator midsections are manufactured using state of the art technology that is currently being incorporated in the latest line of new Siemens generators, including new stator windings and support system using the latest RIGI-Flex design. The stator core incorporates new class F insulation materials as well as new axial bolting for improved long term core tightness. The replacement of the stator midsection has been successfully realized for a power plant which was looking for a repair due to findings in the stator end-winding region. The referenced power plant consists of 6 power trains in service for 15 to 20 years with hydrogen-cooled generators. All power trains in the plant were of similar design. The scope was to deliver a spare stator midsection as a risk mitigation measure for future operation and to rewind the stators on the foundation. The customer required that the generator should be back on the grid after the normal major outage of maximum 3 months duration. The refurbishment of all midsections should be executed within 51 months and the major work be performed by local personnel. The units were rewound by Siemens using a swap concept where a modernized stator midsection was delivered from the manufacturing plant Mülheim. The modernized midsection was exchanged during the first regular major outage with the midsection from the first unit. The unit returned to commercial operation while the used stator midsection was rewound. Due to limited time between the following major outages a new design to connect the top and bottom layer bars was developed. Using the new connection technology the time required for a stator rewind was reduced to only 2 months. The entire stator rewind of all 6 units was executed successfully in 40 months, which was about 12 months earlier than the customers required date. 4 Generator Replacement as Solution Modernization or replacement of the stator or rotor is one option but there are also cases where it is more efficient to replace the entire generator. A generator replacement might be unavoidable, when: the generator is damaged and a repair is impossible modifying main generator components does not provide the necessary power output after turbine refurbishment Page 7 of 12
8 the generator maintenance and operating costs for a new generator justify the replacement the generator lifetime shall be extended to 20 years and more the generator maintenance requires a long downtime of the plant the original supplier is out of business spare parts are no longer available In these cases plant owner are confronted with the challenge to replace the generator without modifying the foundation, as modifications of the foundation carry the highest risk and also the highest costs in a generator replacement job. As investigations have shown that in the above mentioned cases, a modernization or exchange of individual components and a reproduction of the original machine is economically and technically inappropriate, Sie- mens has developed a generator replacement or so-called footprint concept. The replacement generators are taken from the Siemens type series of generators of proven and reliable design and will be fitted into an enclosure and base frame, which will fit into the existing foundation. The idea may sound simple, but there are many conditions that have to be checked and calculated to ensure that the new machine will fit into the power train and will run smoothly for the next 25 years. To find a matching generator from the Siemens type series fulfilling the electrical requirements such as reactance, voltage, stator current or short circuit parameters of the old generator, the plant owner needs to provide all technical data, foundation drawings, grid requirements and interface connections of the existing generator. With these data Siemens is able to choose the matching generator from the type series which will fit into the electrical system (see Figure 5). The parameters from the reference generator will be handed over to the plant owner to agree on the matching replacement concept. In the unlikely case no reference generator exists to meet the necessary electrical parameters, they can be reached by modifying a standard generator in close cooperation with the plant owner. MVA MVA Air-cooled Industrial SGen-100A Air-cooled SGen-100A SGen-1000A Hydrogencooled SGen-2000H Hydrogen/ Water-cooled SGen-3000W SGen-4000W 2-pole SGen-3000W 1400 MVA 4-pole SGen-4000W 2200 MVA Figure 5: Portfolio of existing generator designs from Siemens Page 8 of 12
9 As the next step, the geometrical boundaries need to be checked to fit the reference generator to the existing foundation and power train and, if possible, with the piping. Reference drawings of the geometry of the open- ing in the foundation as well and maximum foundation loads at various locations need to be submitted if available. Otherwise a measurement program needs to be set up during a regular outage where the power train, the foundation etc. can be measured utilizing modern laser technology equipment. In order to fit into the existing foundation, the following geometrical interfaces of the reference generator are customized: Re-calculation of rotor coupling and shaft to fit the turbine sets. The axis height of the power train needs to be aligned to the power train and the coupling needs to be fit to the turbine side. Customization of base frame to fit existing foundation. The base frame to foundation connection needs to be adapted to fit to the existing foundation. Pedestal or plug-in type bearings Placement of the bushings Brushless or static excitation Position of cooler The adopted base frame is calculated with modern CAE methods to ensure the same mechanical behavior as there would be in a non-customized generator from the type series. In order to perform the calculation, the design and calculation teams are working together with 3D state-of-the-art drawing and structural analysis software. The designed and modified parts are directly imported into the calculation software, where a dynamic mesh is created of the part. Natural frequencies are carefully calculated to ensure that customer requirements and/or international standards and best industry practice are met during operation, start up and run down (see Figure 6). Figure 6: Calculation of natural frequencies of stator midsection Once the necessary modifications are designed, the generator is released for manufacturing and will be manufactured in the same generator plant as the Siemens new application generators. The same quality procedures, measurements and tests are performed and the replacement generator is of identical quality and performance as a complete off the shelf product. Special tests, such as a complete performance test can be carried out in order to verify the calculated values. Bump tests will verify the natural frequencies of the Page 9 of 12
10 casing and ensure that no resonant frequency is excited during the operation. Customers can arrange wit- points to be informed about the status of their new ness generator. Figure 7: Customized reference generator which fits into existing foundation 4.1 Replacement of Generators up to 300 MVA There are several possible replacement possibilities, but one major market is the replacement of Siemens OEM and other OEM generators using a standard air-cooled generator instead of a hydrogen-cooled generator. Due to recent developments with respect to higher efficiencies and using modern technology, today s air-cooled generators reach power outputs of about 300MW - the same power output and efficiency as hydrogen-cooled generators of years ago. Compared to a hydrogen-cooled generator, the new aircooled generator has much less operating equipment and auxiliaries. This results in lower operating costs and decreased risk. Especially in the eastern European countries (former RGW) there are still a number of 200 MW class hydrogen-cooled generators, which are more than 25 years in operation. These generators have reached or exceeded their expected design life. For these generators (e.g. TWW200) Siemens has the right solution, experience and reference for an air-cooled replacement generator. One of these 200 MW class replacement jobs that Siemens has already successfully delivered was a re- placement of four 200 MW hydrogen-cooled generators of non Siemens design in the Czech Republic. The customer did not want to perform modifications on the existing foundations but was interested in the replacement of his generators to gain the advantages of the modern state-of-the-art air-cooled Siemens technology. In this case, the original generator manufacturer went out of business, so the customer could not get a 1:1 rebuilding. Siemens was therefore contracted to replace the hydrogen-cooled generator with an air-cooled generator from the Siemens type series. The first of the four replacement generators was delivered within 16 month after the purchase order was placed. A quicker delivery would have been possible, but there was no need due to the long lead time for the turbine replacement. Today, all 4 generators are delivered. One is already in operation. Replacing an old hydrogen-cooled generator with a standard air-cooled generator offers the following potential advantages: Page 10 of 12
11 Generator substitution takes place using a modular design that is adapted to the respective installation (shaft height, anchoring, flange connection, ventilation etc.) resulting in short downtime If required the nominal output of the generator can be increased, especially when considering a fu- is reset ture power enhancement of the entire machine unit Increased operational safety and availability as the lifetime off all components No risk of unplanned findings or damage during modernization Reduced life cycle cost and increased safety due to less auxiliaries Longer service life 4.2 Replacement of Generators larger 300 MVA Larger water- or hydrogen-cooled generators with an output of more than 300 MVA cannot be replaced with standard air-cooled generators. These generators have often been customized and cannot be replaced with a standard generator. An individual engineering study will be implemented by Siemens experts in order to identify the matching replacement generator. Due to the latest developments and increasing efficiency in the last years it is possible to replace some wa- air-cooled generators for the same power ter-cooled generators by hydrogen-cooled generators, and to replace smaller hydrogen-cooled generators by range. In the following an example is given for a customized replacement of the entire generator including auxilia- ries. The requested service was to uprate an existing generator operating since 1974 in a nuclear power plant in Sweden. Siemens was contracted to replace the non-siemens 600 MW water-cooled generator including a new excitation system. One of the main reasons for generator replacement was a capacity enhancement prior to a steam turbine modernization. The new generator should allow an uprate of 24% as well as the modernization of the auxiliaries in order to fulfill the international requirements including ATEX. After clarifying the technical boundary conditions, four possible replacement generators were identified that would best fit into the foundation and fulfill the technical requirements. Siemens determined together with the customer which of the options would best fit the boundary conditions and which option should be implemented. The upgrade work included: 850 MVA generator with advanced stator end-winding design New excitation system Auxiliary systems (seal oil system, hydrogen system, stator cooling water system) Generator instrumentation and control system Since the upgrade was completed and the unit returned tomer with the following benefits: The generator was completely developed, manufactured and shop tested in about 25 months after order entry. It was shipped to site a few weeks before the outage started and arrived on time. The new generator and the auxiliaries were installed during the planned outage. The customer took over the generator 5 weeks after the outage started and was very satisfied with the improved generator efficiency as well as the prepara- tion and performance of site personnel. Since commercial operation the customer is still very satisfied with the higher rating and the unit is operating without major issues. to operation, the modernization provides the cus- Page 11 of 12
12 Increased generator efficiency and availability Higher capacity to withstand transients Higher performance and output No foundation works required since the generator was custom-tailored Operable old generator, which can be used as a spare Custom-tailored auxiliary systems which can be utilized for both generators, old and new 5 Conclusion In conclusion, it is worth thinking about a replacement generator instead of repairing the old one. A comprehensive modernization of very old generators can be more expensive than the replacement with a new stateof the-art generator, as the modernization of single generator components may include a cost-intensive redesign. If plant owners decide to replace the generator they will benefit from state-of-the-art technology, an ensured spare parts supply, a lower insurance premium and comprehensive and customized service contracts including most recently information on product updates. However, a generator replacement always requires an experienced partner with a proven design that is flexible enough to be adapted to the existing foundation and interfaces. The concept of replacement using footprint generators is limited to those generators which can be seen as standard generators. Generators with higher output in the range of fossil applications have been customized in most cases, so an individual study to identify the matching generator and boundaries to the auxiliaries is necessary. Whether you are considering a generator modernization or replacement - Siemens provides any service in any location and supports plant owners all over the world in finding the right solution. 6 References [1] Turbine Generator Life Extension and Upgrading, International conference on residual life of power plant equipment - prediction and extension, Dieter Lambrecht, Wolfgang Schier, Rainer Gern, Siemens AG, 1989 [2] Conesville 6 Generator Stator Core Replacement using Bonded Core Packs, CIGRE Study Committee A1 and EPFL Joint Colloquium On Large Electrical Machines, James A. Cook, James R. Michalec, 2005 Page 12 of 12
Reducing Maintenance Costs Replacement of Small Fossil Generators in Russia
siemens.com/energy Reducing Maintenance Costs Replacement of Small Fossil Generators in Russia Russia Power 2014 4-6 March, 2014 Moscow, Russia Authors: Fabian Bremer Maren Stockhausen Dusan Jovic Siemens
Turbo generators Best quality for thermal power plants
Turbo generators Best quality for thermal power plants www.andritz.com ANDRITZ HYDRO Turbo generators International technology Group ANDRITZ is a globally leading supplier of plants, equipment, and services
CONTINUOUS AUTOMATED FLUX MONITORING FOR TURBINE GENERATOR ROTOR CONDITION ASSESSMENT
CONTINUOUS AUTOMATED FLUX MONITORING FOR TURBINE GENERATOR ROTOR CONDITION ASSESSMENT Abstract J. Kapler, S. Campbell, M. Credland Iris Power Engineering Inc. Toronto, Canada Flux monitoring via permanently
Generators TEM. for small hydroelectric power stations. Electric Machines
Generators for small hydroelectric power stations TEM Electric Machines Advanced solutions for the cleanest energy Reputable manufacturer of generators for small hydroelectric power stations TED Electric
Power Plant Electrical Distribution Systems
PDH Course E184 Power Plant Electrical Distribution Systems Gary W Castleberry, PE 2008 PDH Center 2410 Dakota Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcenter.com
GE Power Conversion. Generators. 2,500 to 80,000 kva Up to 22,000 Volts
GE Power Conversion Generators 2,500 to 80,000 kva Up to 22,000 Volts 2 GE I Power Conversion GE has been setting the standard in generator manufacturing for over 130 years. GE created and implemented
Shaft grounding. Carbon brushes for shaft grounding are used in turbo-generators, in distinct AC- and DC motors and as a special application in Ships.
"Modern AC-Motors don't need carbon brushes and are maintenance free " Until some years ago this thrilling statement could be heard from motor OEM's. Nowadays SCHUNK supplies carbon brushes and brush holders
February 2013. Service Division. Unrestricted Siemens AG 2013. All rights reserved.
February 2013 Service Division 170 180 20 siemens.com/energy Energy Service Division Market and Locations Market Growing market for efficiency Ageing fleet with potential for modernization & upgrade services
GE Generator Rotor Design, Operational Issues, and Refurbishment Options
g GER-4212 GE Power Systems GE Generator Rotor Design, Operational Issues, and Refurbishment Options Ronald J. Zawoysky Karl C. Tornroos GE Power Systems Schenectady, NY Contents Overview....................................................................1
The Problem Solving of Exhaust Frame Air Cooling System Pressure Low in GE Frame 9 Gas Turbine
The Problem Solving of Exhaust Frame Air Cooling System Pressure Low in GE Frame 9 Gas Turbine Author: Nattapon Pinitchan, Kanyarat Tankong, EGAT (Bangpakong Power Plant), Thailand 1 of 10 ABSTRACT EGAT's
Power transformers. Generator step-up and system intertie power transformers Securing high-quality AC transmission
Power transformers Generator step-up and system intertie power transformers Securing high-quality AC transmission Generator step-up transformers Built to withstand continuous full load Generator step-up
The stable way. Synchronous condenser solutions. siemens.com/energy/facts
The stable way Synchronous condenser solutions siemens.com/energy/facts Bringing grids in line with new requirements Global climate change poses new challenges for power generation and transmission. Innovative
Powerformer chosen for Swedish combined heat and power plant
Powerformer chosen for Swedish combined heat and power plant Powerformer, a radically new type of generator developed by ABB, has been chosen for a combined heat and power plant in Eskilstuna, Sweden.
Brochure. Generators for wind power Proven generators reliable power
Brochure Generators for wind power Proven generators reliable power We provide motors, generators and mechanical power transmission products, services and expertise to save energy and improve customers
Calculation of Temperature in a Large Turbine Generator with Multilayer Roebel Transposition Coils
Calculation of Temperature in a Large Turbine Generator with Multilayer Roebel Transposition Coils Kenichi Hattori *, Kazuhiko Takahashi, Kazumasa Ide, Keiji Kobashi, Hiroshi Okabe, and Takashi Watanabe
Basics of Electricity
Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components
Micalastic insulation for high voltage hydro generators
Micalastic insulation for high voltage hydro generators Voith Hydro is a global leader in hydro power equipment and services for both new and modernization. For more than 140 years, our name has been synonymous
A S Y N C H R O N O U S M O T O R S
ASYNCHRONOUS M O T O R S S E R I E S INDAR ASYNCHRONOUS MOTORS S E R I E S WHO WE ARE Indar Electric s trajectory is endorsed by the construction of thousands of motors for the different industrial sectors.
Service Life of Stator Winding Insulation as an Important Quality Feature of Large Hydro Generators
------------------------------ Operating Experience ----------------------------- Service Life of Stator Winding Insulation as an Important Quality Feature of Large Hydro Generators Wolf-Dietrich Blecken,
EVANS ENTErprises, Inc.
EVANS ENTErprises, Inc. Since 1954 THE LEADER IN ELECTRO-MECHANICAL SALES, SERVICE AND INTERGRATION Our Mission Our purpose at Evans Enterprises is to serve customers by providing increased value of product
Pump Skid Fabrication for Magnetic Coupling. Rick Soltis Chief Mechanic City of Bedford
Pump Skid Fabrication for Magnetic Coupling Rick Soltis Chief Mechanic City of Bedford Contents Magnetic Couplings What They Are, How They Work, Where They re Used Fabrication and Manufacturing of Pump
WHAT IS INFRARED (IR) THERMOGRAPHY
WHAT IS INFRARED (IR) THERMOGRAPHY IR Thermography is the technique of producing pictures called from the invisible thermal radiation that objects emit. This is a non-contact means of identifying electrical
Siemens Steam Turbine-Generator SST-5000 Series. for combined cycle and subcritical steam applications. Answers for energy.
Siemens Steam Turbine-Generator SST-5000 Series for combined cycle and subcritical steam applications Answers for energy. SST-5000 series steam turbine-generator For combined cycle and subcritical steam
SEWER CHEWER Wastewater / Sludge Grinder Submersible Gearmotor
INSTALLATION, OPERATION AND MAINTENANCE MANUAL For SEWER CHEWER Wastewater / Sludge Grinder Submersible Gearmotor Yeomans Chicago Corporation 3905 Enterprise Court P.O. Box 6620 Aurora, IL 60598-0620 Phone:
A Practical Guide to Maximizing Machine Uptime
A Practical Guide to Maximizing Machine Uptime Every day, maintenance professionals across the world face the challenge of pushing maximum machine potential while at the same time, keeping repairs at a
Reliability. The Essentials of Eliminating Downtime of your Electric Motor. Asset Management? Or, Maintenance Management, Re-branded?
for maintenance reliability and asset management professionals feb/march 14 Reliability The Essentials of Eliminating Downtime of your Electric Motor Asset Management? Or, Maintenance Management, Re-branded?
Wound Rotor Induction Motors 4-12 poles, up to 8000 kw, 11500 HP
Wound Rotor Induction Motors 4-12 poles, up to 8000 kw, 11500 HP ABB The Preferred Partner Egypt Cement Corporation, a major cement manufacturer, has chosen ABB wound rotor motors for all key applications
Company Profile. New and overhauled Power Plants for sale
1 Company Profile New and overhauled Power Plants for sale - Combined Cycle - Gas & Steam Turbines - Gas & Diesel Engines - Wind Turbines & Green Energy - Coal fired Power & Waste to Energy - Biomass &
ABB PSPS Erich Steinmann; Generator control-2013
ABB PSPS Erich Steinmann; Generator control-2013 GENERATOR CONTROL THE MODULAR SOLUTION FOR GENERATORS To make sure that power is efficiently converted into electric energy, it is necessary to supervise
Whitepaper. Modular Substation Cable Termination Design. Author: Allan Bozek P.Eng, MBA, EngWorks Inc, Calgary, Canada
Whitepaper Modular Substation Cable Termination Design Author: Allan Bozek P.Eng, MBA, EngWorks Inc, Calgary, Canada Abstract The methods for cable penetrations into modular industrial substations are
Power-factor testing of rotating machinery is another valuable test
Feature Power-Factor Testing of Stator Winding Insulation: Understanding the Test Technique and Interpretation of Results Power-factor testing of rotating machinery is another valuable test technique providing
Hydraulic Control Technology for Wind Turbine Generators
Industrial Hydraulics Electric Drives and Controls Linear Motion and Assembly Technologies Pneumatics Service Automation Mobile Hydraulics Hydraulic Control Technology for Wind Turbine Generators Extra
SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION
SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION Introduction Howard W. Penrose, Ph.D., CMRP Vice President, Engineering and Reliability Services Dreisilker Electric Motors, Inc.
Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie
Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie Motivation The AHPV from VDS 1.0 used an expensive, NGM electric hub motor, costing roughly $8000. (picture on right)
ORC TURBOGENERATOR TYPE CHP - Organic Rankine Cycle Turbogenerator fed by thermal oil, for the combined production of electric energy and heat -
Doc. : 08C00031_e Date : 10.02.2009 Page : 1 / 9 ORC TURBOGENERATOR TYPE CHP - Organic Rankine Cycle Turbogenerator fed by thermal oil, for the combined production of electric - (Preliminary) Doc. : 08C00031_e
Testing Capabilities. Worldwide Designers & Manufacturers of Air Moving Equipment
Testing Capabilities Twin Twin City City Fan Fan Companies, Companies, Ltd. Ltd. Worldwide Designers & Manufacturers of Air Moving Equipment TestingCapabilities Twin City Fan Companies, Ltd. In today s
Oil and Coolant Circulating Heating System. Model - OCSM
Oil and Coolant Circulating Heating System Model - OCSM Installation & Operation Manual 216280-000 REV 2 Identifying Your System The HOTSTART heating system is designed to heat fluids for use in marine
MiCAFIL. 1 RIP Technology. Bushings. Z. Zic 09/2003
MiCAFIL 1 RIP Technology Z. Zic 09/2003 )XQFWLRQRI+LJK9ROWDJH%XVKLQJ Uncontrolled (natural) electrical field Capacity-controlled electrical field %XVKLQJV0DLQ,QVXODWLRQ6\VWHPV 7\SH 0DLQ,QVXODWLRQ +RXVLQJFRYHU
ROTATING MACHINES. Alignment & Positioning of. Fast, easy and accurate alignment of rotating machines, pumps, drives, foundations, etc.
Alignment & Positioning of ROTATING MACHINES Fast, easy and accurate alignment of rotating machines, pumps, drives, foundations, etc. To compete in today s marketplace, you have to outperform your competitors
EXPERIENCE AND BENEFIT OF USING EL-CID FOR TURBINE-GENERATORS
EXPERIENCE AND BENEFIT OF USING EL-CID FOR TURBINE-GENERATORS Electric Power Research Institute Motor & Generator Predictive Maintenance & Refurbishment Conference Orlando, Florida November 28-30, 1995
BASIC AC ELECTRICAL GENERATORS
BASIC AC ELECTRICAL GENERATORS FREE DOWNLOAD (This page left blank intentionally) TABLE OF CONTENTS Introduction... 1 Generator Types... 4 Rotating Armature Generator... 4 Rotating Field Generator... 5
Raising the waters. Lift irrigation is getting a boost from ABB s synchronous motors
Raising the waters Lift irrigation is getting a boost from ABB s synchronous motors JARI LINDSTRÖM, TAPIO RAUHALA, MAGNUS REJSTRÖM In India, the scarcity of water is unfortunately a harsh reality. Still,
Sulzer Turbo Services
Sulzer Turbo Services Start-Up Services Sulzer Turbo Services Worldwide repair and testing facilities Continuous Training Field Service Engineering LTSA s Our largest facility, located in La Porte, TX
Wet Stator Units for Oil and Gas Upgrade and support services
Wet Stator Units for Oil and Gas Upgrade and support services Electro-submersible Pump Maintenance Sulzer has the in-house capability to provide specialist service support to the upstream oil and gas industry
Which switchboards equip your building facilities for the future?
Media Release SMB Electric Group October 2014 Which switchboards equip your building facilities for the future? From factories to shopping centres, from data centres to high-rise buildings, flexible switchboards
ALIGNMENT. Pump and Driver Alignment
ALIGNMENT Pump and Driver Alignment Alignment Subject: Pump and Driver Alignment In the pump business alignment means that the centerline of the pump is aligned with the centerline of the driver. Although
Enhance Power Equipment Reliability with Predictive Maintenance Technologies
Enhance Power Equipment Reliability with Predictive Maintenance Technologies November 2012/1910DB1208 by S. Frank Waterer, Electrical Engineerinig, Fellow Schneider Electric USA, Inc. Make the most of
. Failure. Analysis... Report...
. Failure. Analysis... Report..... for (Generation Company) (Station) Purchase Order Number XXXX (Dated XX/XX/XXXX) Report N-XXXX-FA, Revision 0 Schulz Electric Company Job Number N-XXXX Motor ID Number
The Intelligent AX1 Switchgear for Medium Voltage
The Intelligent AX1 Switchgear for Medium Voltage Leif Lundin, Manager of Research and Development, Division Medium Voltage and Compact Substations, ABB Distribution, Sweden Abstract The newly launched
Linac RF Commissioning with the SNS HPRF Systems
Linac RF Commissioning with the SNS HPRF Systems 4 th CWHAP Workshop May 3, 2006 M. McCarthy, R. Fuja, P. Gurd, T. Hardek, Y. Kang SNS RF Group The SNS RF Group The mission of the RF Group is to ensure
Turbine Optimization Programs to Extend Outage Periods and Manage Equipment Breakdown Risk
Turbine Optimization Programs to Extend Outage Periods and Manage Equipment Breakdown Risk by John A. Latcovich, Jr. Fleet Manager, Rotating Equipment The Hartford Steam Boiler Inspection and Insurance
ARCO Electric Products Installation and Maintenance Manual Low Voltage Automatic Power Factor Correction Capacitor Systems 2013
ARCO Electric Products Installation and Maintenance Manual Low Voltage Automatic Power Factor Correction Capacitor Systems 2013 READ CAREFULLY These instructions are intended to cover good practices in
Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392
1 Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading By Ramandeep Kaur Aujla S.NO 250447392 ES 586b: Theory and applications of protective relays Department of
due to uncertainty. This, in turn, has a direct impact on equipment availability and maintenance costs. Unfortunately, due to misconceptions and
due to uncertainty. This, in turn, has a direct impact on equipment availability and maintenance costs. Unfortunately, due to misconceptions and pressure from plant operators to get "back on line", it
AC Electric Motors best practice
If you want to learn more about best practice machinery maintenance, or world class mechanical equipment maintenance and installation practices, follow the link to our Online Store and see the Training
Chen. Vibration Motor. Application note
Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table
Operataing Manual. Single stage radial Fan. Model MKV/TKV
01.2011 Operataing Manual Single stage radial Fan Model MKV/TKV REITZ-SCHWEIZ VENTILATOR AG Zentweg 11 CH-3006 Bern Telefon +41 (0) 31 / 938 85-85 Telefax +41 (0) 31 / 938 85-86 Internet: www.reitz-schweiz.ch
Specifying higher-quality durable power tools
Case study Specifying higher-quality durable power tools June 2011 A case study of three cordless drills to illustrate and encourage specifications for durability and repair, with design principles that
Brochure. Electric generators to power the world
Brochure Electric generators to power the world We provide motors and generators, services and expertise to save energy and improve customers processes over the total life cycle of our products, and beyond.
GE Energy. Solutions
GE Energy Wind Service Solutions Speed, competency and technology... Faster return to service GE s wind turbine fleet is one of the fastest growing and most reliable in the world. Building on a strong
Power Island. Industrial Power Plants. www.siemens.com / energy
Power Island Industrial Power Plants www.siemens.com / energy Flexible combined-cycle power plants With today s increasing demands for flexible power plants, intensified by the increased amount of electricity
The SGT5-8000H proven in commercial operation
www.siemens.com/energy The SGT5-8000H proven in commercial operation Answers for energy. 2 375 MW Output of the Siemens Gas Turbine SGT5-8000H.* * Gross: ISO ambient conditions 375 MW Rated output of 375
Houston Service Center Medium Voltage Service and Aftermarket Solutions
Houston Service Center Medium Voltage Service and Aftermarket Solutions Table of contents Introduction...3 Breaker refurbishment...4 Protective relay & control service and support...5 Power Service and
Steam Power Plants as Partners for Renewable Energy Systems
Steam Power Plants as Partners for Renewable Energy Systems Hans-Joachim Meier Head of VGB Competence Centre 4 Environmental Technology, Chemistry, Safety and Health VGB PowerTech e.v., Essen, Germany
Mechanical and electrical rebuilding of a turbine generator for phase-shift operation
www.siemens.com/energy Mechanical and electrical rebuilding of a turbine generator for phase-shift operation POWER-GEN Europe 2013 Vienna, Austria June 04-06, 2013 Authors: Detlef Frerichs Anastassios
in-service inspections www.sgs.com
in-service inspections www.sgs.com Minimising down -time for wind turbines One of the major concerns in investing in wind farm projects is related to turbine availability, which represents the risk of
Single-Phase AC Synchronous Generator
ST Series Single-Phase AC Synchronous Generator Instructions for Operation and Maintenance English to English translation by R.G. Keen, May 2004. ST Series of Single-Phase AC Synchronous Generators Description
Operational Flexibility Enhancements of Combined Cycle Power Plants. Dr. Norbert Henkel, Erich Schmid and Edwin Gobrecht
Operational Flexibility Enhancements of Combined Cycle Power Plants Dr. Norbert Henkel, Erich Schmid and Edwin Gobrecht Siemens AG, Energy Sector Germany POWER-GEN Asia 2008 Kuala Lumpur, Malaysia October
Low Profile Unit Cooler
Super-Flo Now available with EC Motors High Efficiency / High Reliability Low Profile Unit Cooler Publication No. 411.4 November, 2008 S A N I T A T I O N F O U N D A T I O N A L N A T I O N Air Defrost
GEFL3688B. GE Power Generation. James J. Gibney, III GE industrial & Power Systems Schenectady, NY
GEFL3688B GE Power Generation GE Generators - An Overview James J. Gibney, III GE industrial & Power Systems Schenectady, NY GE GENERATORS J. J. Gibney, III GE Industrial & Power Systems Schenectady,
13 common causes of motor failure
13 common causes of motor failure Application Note What to look for and how to improve asset uptime Motors are used everywhere in industrial environments and they are becoming increasingly complex and
525-MVA Generator-motor and Thyristor Starter Put into Service at the Tokyo Electric Power Co., Inc. s Kannagawa Hydroelectric Power Station
525-MVA Generator-motor and Thyristor Starter Put into Service at the Tokyo Electric Power Co., Inc. s Kannagawa Hydroelectric Power Station 114 525-MVA Generator-motor and Thyristor Starter Put into Service
60.12. Depend-O-Lok FxE Expansion Coupling. System No. Submitted By Spec Sect Para Location Date Approved Date. DEPEND-O-LOK FxE EXPANSION COUPLING
60.1 D-O-L FxE expansion couplings are a bolted, split-sleeve design that provides for expansion and contraction at the coupled joint. These couplings are furnished with restraint rings that, when affixed
ELECTROPUTERE ROTATING ELECTRICAL MACHINES DIVISION
ELECTROPUTERE ROTATING ELECTRICAL MACHINES DIVISION SC ELECTROPUTERE SA SC ELECTROPUTERE SA 1. Vision, Mission, Values SC ELECTROPUTERE SA 2. LOCATION Craiova: Located in the South West of the country,
SYLLABUS For BASIC TRADE COURSE (360 Hours) On REFRIGERATION AND AIR CONDITIONING
SYLLABUS For BASIC TRADE COURSE (360 Hours) On REFRIGERATION AND AIR CONDITIONING INDEX 1. Introduction 3 2. Objectives 3 3. Employment Opportunity 4 4. Course Structure 4 5. Entry Qualification 4 6. List
Geareducer Solutions NEW, REBUILD AND REPAIR OPTIONS FOR EXTENDING THE LIFE OF YOUR COOLING TOWER
Geareducer Solutions NEW, REBUILD AND REPAIR OPTIONS FOR EXTENDING THE LIFE OF YOUR COOLING TOWER 2 PROVEN HISTORY SPX Cooling Technologies, Inc. designs and manufactures Marley Geareducers for cooling
S Y N C H R O N O U S G E N E R A T O R S
S E R I E S SYNCHRONOUS G E N E R A T O R S INDAR SYNCHRONOUS GENERATORS S E R I E S BZK INDAR ELECTRIC INDAR, EXPERIENCE AND COOPERATION INDAR Electric develops and manufactures electrical rotating machines
Intelligent maintenance decisions with ABB TrafoAssetManagement TM proactive services
Intelligent maintenance decisions with ABB TrafoAssetManagement TM proactive services Paul Ammann, Pierre Lorin, Anders Grano ABB Power Products - Transformer Service ABSTRACT Transformers are indispensable
TYPE APPROVAL CERTIFICATION SCHEME MASS PRODUCED DIESEL ENGINES
1. Introduction TYPE APPROVAL CERTIFICATION SCHEME MASS PRODUCED DIESEL ENGINES 1.1 This scheme details the tests and inspection of diesel engines manufactured by mass production system for use in marine
Extend the Life of Existing Switchgear
Extend the Life of Existing Switchgear January 2011/1910DB1002 by Hal Theobald, Product Manager Schneider Electric USA, Inc. Make the most of your energy SM Summary Introduction... p 3 Maintenance Requirements...
6.3 Structured identification of business improvement opportunities using Life Cycle Assessment: A case study in the gas turbine industry
6.3 Structured identification of business improvement opportunities using Life Cycle Assessment: A case study in the gas turbine industry P. Martínez-Caballero 1, B. Basdere 1, J. Richter 1, F. Parthey
ENERGY CONVENTIONAL THERMAL POWER ELECTRICAL, MECHANICAL & SEALING SOLUTIONS
ENERGY CONVENTIONAL THERMAL POWER ELECTRICAL, MECHANICAL & SEALING SOLUTIONS MERSEN A world leader committed to Energy A world leading supplier of mechanical, sealing, power and signal transfer solutions,
GE Oil & Gas. Air cooled heat exchangers Robust and reliable for all loads and applications
GE Oil & Gas Air cooled heat exchangers Robust and reliable for all loads and applications What it is Air cooled heat exchangers are commonly used in industrial applications where a reliable source of
TECHNICAL INFORMATION Bulletin
Peerless Pump Company 2005 Dr. M.L. King Jr. Street, P.O. Box 7026, Indianapolis, IN 46207-7026, USA Telephone: (317) 925-9661 Fax: (317) 924-7338 www.peerlesspump.com www.epumpdoctor.com TECHNICAL INFORMATION
Advanced NDT Methods for Efficient Service Performance
siemens.com/energy Advanced NDT Methods for Efficient Service Performance Power-Gen India & Central Asia 5-7 May, 2014 New Delhi, India Authors: Hans Rauschenbach Michael Clossen Siemens AG Energy Sector
Welcome to Linear Controls Quarterly Training
Welcome to Linear Controls Quarterly Training Introduction to Power Generation Objectives Supply attendees with basic knowledge of power generators and voltage regulators and provide the fundamentals of
Lead & Magnet Wire Connection Methods Using the Tin Fusing Method Joyal A Division of AWE, Inc.
Lead & Magnet Wire Connection Methods Using the Tin Fusing Method Joyal A Division of AWE, Inc. Abstract The technology for connecting lead and magnet wires for electric motors and electro mechanical devices
Embedded Parts Introduction - Anchors
In the plant construction or process plants such as chemical, petrochemical, gas or power plants various disciplines are brought into contact and built on each other. Civil, mechanical, electro technical
The new Gas Turbine Portfolio to meet the market requirements for Distributed Generation
PowerGen Europe, 9-11 June 2015 The new Gas Turbine Portfolio to meet the market requirements for Distributed Generation Nicholas Muntz, Dr. Thorsten Krol Security classification Siemens AG 2015 All rights
Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models
Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models Dave Staton, Douglas Hawkins and Mircea Popescu Motor Design Ltd., Ellesmere, Shropshire,
TRANSFORMERS AFTERMARKET SPARES, SERVICE & REPAIR
TRANSFORMERS SPARES, SERVICE & REPAIR 02 TRANSFORMERS ENERGY SOLUTIONS FOR THE GLOBAL POWER INDUSTRY BRUSH Transformers is globally renowned for the quality of its products, innovation and service. Our
Unified requirements for systems with voltages above 1 kv up to 15 kv
(1991) (Rev.1 May 2001) (Rev.2 July 2003) (Rev.3 Feb 2015) Unified requirements for systems with voltages above 1 kv up to 15 kv 1. General 1.1 Field of application The following requirements apply to
Emergency Power System Services Industrial UPS, Batteries, Chargers, Inverters and Static Switches
Emergency Power System Services Industrial UPS, Batteries, Chargers, Inverters and Static Switches Downtime Is Not An Option The industrial uninterruptible power supply (UPS) is the foundation of your
FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES
BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained
Select Radiators Installation Guide
Select Radiators Installation Guide Table of Contents Informational Symbols...3 Before You Begin...4 Select Rough-In... 5 Connection Installation...6 Optional Piping Arrangements...7 Conventional Wall
FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES
BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained
MOBILE FIRE - RESCUE DEPARTMENT FIRE CODE ADMINISTRATION
MOBILE FIRE - RESCUE DEPARTMENT FIRE CODE ADMINISTRATION Fire Pump Plan Review 2009 International Fire Code and NFPA 20 Date of Review / / BLD201 - Project Address: Project Name: Contractor s Business
