Investigations on Slags under Gasification Process Conditions
|
|
|
- Jerome Sullivan
- 10 years ago
- Views:
Transcription
1 Zentrum für Innovationskompetenz: Virtual High Temperature Conversion Investigations on Slags under Gasification Process Conditions Daniel Schwitalla, Arne Bronsch, Stefan Guhl 6th International Freiberg Conference, Dresden Radebeul TU Bergakademie Freiberg - Institute of Energy Process Engineering and Chemical Engineering Freiberg - Germany-Tel Fax [email protected] - Web
2 Outline 1. Motivation 2. Relevant Properties for Modeling Slag Behavior 3. Heat Conductivity 4. Viscosity 1. Experimental Setup 2. Calibration and Validation of Measurements 3. Extended Modeling approach 5. Surface Tension 1. Experimental Setup 2. Measurement Evaluation 6. Outlook 2
3 Motivation Virtual High Temperature Conversion - Strategy Substance Properties Experimental Acquisition Database Extraction Equilibrium Calculations Process Data & Experimental Measurement Data Validation Virtualization Process model Mathematical Models Example Presentation Subgrid model for slag behaviour at entrained flow gasifier walls VTC IPP Group 3
4 Properties relevant for modelling slag behavior Viscosity Rotational Viscosimeter (searle-type) (Baehr HTviscometer) Rotational Viscosimeter (searle-type) (AntonPaar MCR 302) Surface Tension Sessile Drop (Fraunhofer ISC Tommiplus, TOM-AC) Maximum Bubble Pressure (Fraunhofer ISC Tommiplus+ MBP-Module) Density Diffusivity Heat Capacity Measurement of Hydrostatic Pressure (Fraunhofer ISC Tommiplus + MBP-Module) Laser Flash (Department of Thermal Engineering TU Freiberg) Differential Scanning Calorimetry (Setaram MHTC 96) 4
5 Heat Conductivity [W/(m*K) Heat Conductivity Laser Flash + Calorimetry + MBP Determine Diffusivity (Laser Flash) 2,5 2 1,5 Density (Lange et al*) λ = a ρ c p 1 0,5 Heat Capacity (Mills et al**) T [ C] Measurements of the institute of thermal engineering and the applied models yield realistic values*** * Lange: Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties ** Mills: Estimation of Physicochemical Properties of Coal Slags and Ashes, from ACS symposium series 301: Mineral Matter in Coal an Ash, 1984 ***Slag Atlas 2nd ed. (2008); SCI Glass Database 5
6 Viscosity Bähr Viscometer Anton Paar MCR 302 Type Rotating (searle) Rotating (searle) Material PtRh (80/20) PtRh (80/20) T-Range C C p O2 Range bar bar Temperature Mesurement Type B Accuracy: +/- 1,5 4,25 C Type B Accuracy: +/- 1,5 4,25 C* + Inductivity compensation Atmosphere CO:CO 2 / Air/ N 2 CO:CO 2 / Air/ N 2 Heater High Frequency Inductive Heater Separated MoSi 2 Resistive Heater Calibration Standard Oil, Standard Glass Standard Oil Torque 1 50 mnm mnm 6
7 Viscosity Measurement Principle n, M 1. Ash and slag coal 2. Mill to below 63 µm for homogeinity and XRF 3. Calculate p o2 for maximum FeO-Content using FACTSage 4. Create gas-atmosphere for calculated p o2 (to simulate gasification atmosphere) 5. Continuously measure torque and turn speed to calculate viscosity 6. Repeat measurement with different shear rates τ = r i 2 2π l cyl 1,1 M C* γ = 2π 2r a 2 r a 2 r i 2 n η = τ γ 7 * Calibration Coefficient determined from Standard Glass and Silicon Oil; additional validation of viscosity measurements was achieved in ring-test
8 Viscosity [Pas] Viscosity Measurement Validation Temperature [ C] VTC_a VTC_b VTC_c Siemens_a Siemens_b Siemens_c Siemens_d IEST_a IEST_b IEST_c IEST_d A ring-test was performed* at: CIC Virtuhcon Siemens Gasification Test Center Institute of Iron and Steel Freiberg Test conditions: Reducing atmosphere* Different shear rates Maximum Deviation is 20 % within accepted Limit** * Gas atmosphere was reducing (CO:CO 2 ; Ar:H 2 ) ** Slag Atlas 2nd ed. (2008) 8
9 Viscosity Slag Viscosity Toolbox* Database with measurements of 770 slags and h(t), 4550 data points from literature Own measurements included: 38 samples 186 measurements (various shear rates, atmospheres) 12 slag viscosity models and Einstein-Roscoe Equation, link to FactSage for Solid Volume Fraction Application for prediction of h(t) for a given slag composition: Input: slag composition, T-range search for referenced slag system in Database test of implemented models with reference slag system Output: prediction of slag viscosity with recommended model 9 * Duchesne MA, Bronsch AM, Hughes RW, Masset PJ. Slag viscosity modeling toolbox. Fuel 2013.
10 Viscosity Modeling approach - Example Classical Model Fails for non-newtonian slag behavior Corundum, Anortite, Tridymite/Christobalite systems were selected for model development Calculate Solid Volume Fraction with FACTSage Classical Model + ER Model Classical Model + Modified ER Model Improved Applicability for nonnewtonian region Einstein-Roscoe-Equation* η = η liq 1 a f 2,5 a = f(shear rate; species) 10 * Roscoe R: The viscosity of suspensions of rigid spheres 1952
11 AALE Viscosity Modeling approach Model development I. Select Particle-Slag-System from the Slag Viscosity Toolbox* II. Perform viscosity measurements on selected slag systems and shear rates III. Comparison of modeled and measured viscosity data by the Slag Viscosity Toolbox* IV. Select best fitting classical viscosity model and apply ER V. Adjust a-factor to model-selected particle system VI. Validation of adjusted a-factors with referenced systems. AALE = 1 n n i=1 log 10 η pi log 10 η mi AALE Average Absolute Logarithmic Error n number of data records η pi predicted viscosity value for T i η mi measured viscosity value for T i 11 * Duchesne MA, Bronsch AM, Hughes RW, Masset PJ. Slag viscosity modeling toolbox. Fuel 2012.
12 Viscosity in Pa s Viscosity in Pa s Sol. Vol. Frac. f Viscosity Modeling approach - Example , , , , , , T in C SR=20.2 1/s Streeter T in C Streeter SR=20.2 +RE, SR=20.2 1/s a = /s Streeter Streeter Streeter Solid +RE, Vol-fract a = 1.2 Streeter Solid Vol-fract +RE, a = 1.35 Solid Vol-fract SR=6.7 1/s SR=13.5 1/s SR=20.2 1/S * currently modelled for solid fractions of anortite, corundum, christobalite/tridymite Classical Model Calculate Solid Volume Fraction with FACTSage * Classical Model + ER Model Classical Model + modified ER model Einstein-Roscoe-Equation** η = η liq 1 a f 2,5 a = f(shear rate; species) 12 ** Roscoe R: The viscosity of suspensions of rigid spheres 1952
13 Surface Tension TOMAC TOMMI T-Range C C Temperature Mesurement Type B Thermocouple Accuracy: +/- 1,5 4,25 C Type B Thermocouple Accuracy: +/- 1,5 4,25 C Atmosphere N 2 ; Ar; Ar/H 2 (95/5) Air Heater Graphite Electrodes Separated MoSi 2 Resistive Heater Measurement Principle Sessile Drop Maximum Bubble Pressure 13
14 Surface Tension Maximum Bubble Pressure 1. Ash and slag the coal 2. Calculate liquid volume in the crucible according to Lange et al 3. Adjust gas flow and immersion depth accordingly 4. Detect surface inside crucible 5. Continuously measure pressure necessary for gas flow at 3 immersion depths 6. Derive density and surface tension from measured pressure curves ACSF1 - Composition 0 Al2O3 CaO Fe2O3 SiO2 14
15 Maximum Bubble Pressure [Pa] Surface Tension Maximum Bubble pressure Method Determine Maximum pressure Derive density from different depths of immersion ACSF1_MBP ACSF1_5mm ACSF1_10mm ACSF1_15mm Calculate Maximum bubble pressure ρ 5 10mm = MP 10mm MP 5mm g 0,01m 0,005m p σ = MP ρgh immersion 3395 kg m 3 * Apply Schrödingers Correction/assume hemispherical bubble Hemisphere Schrödinger σ = p σ r cap 2 σ = p σ r cap r cap ρ g p σ 1 6 r cap ρ g p σ 2 0,4783 J m 2 ** 0,8455 J m 2 *within 20% of slag atlas & Lange et al; **validated with sessile drop method 15
16 Outlook Expand viscosity measurement database to improve viscosity model Validate Viscosity Model for Leucite particles Perform High Temperature XRD to confirm FactSage results used in the calculation of the Solid Volume Fraction Evaluate possible supercooling effects inside gasifiers through viscosity measurement at different cooling rates Improve MBP measurement system to improve dependability of derived values for coal ash slags 16
17 Acknowledgment This research has been funded by the Federal Ministry of Education and Research of Germany in the framework of Virtuhcon (Project Number 03Z2FN12). TU Bergakademie Freiberg Institute of Energy Process Engineering and Chemical Engineering Freiberg - Germany Tel Fax [email protected] Web 17
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
XFA 600 Thermal Diffusivity Thermal Conductivity
XFA 600 Thermal Diffusivity Thermal Conductivity Thermal Diffusivity, Thermal Conductivity Information of the thermo physical properties of materials and heat transfer optimization of final products is
Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace
China Steel Technical Report, No. 21, pp. 21-28, (2008) J. S. Shiau and S. H. Liu 21 Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace JIA-SHYAN SHIAU and SHIH-HSIEN LIU Steel and
CE 204 FLUID MECHANICS
CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:
1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.
Chapter 5: Diffusion. 5.1 Steady-State Diffusion
: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process
Thermal diffusivity and conductivity - an introduction to theory and practice
Thermal diffusivity and conductivity - an introduction to theory and practice Utrecht, 02 October 2014 Dr. Hans-W. Marx Linseis Messgeräte GmbH Vielitzer Str. 43 D-95100 Selb / GERMANY www.linseis.com
Simulation of a base case for future IGCC concepts with CO 2 capture
Simulation of a base case for future IGCC concepts with CO 2 capture Christian Kunze, Hartmut Spliethoff Institute for Energy Systems TU München for 4 th Clean Coal Technology Conference 2009 18 20 May,
Effect of Magnesium and Aluminum Oxides on Fluidity of Final Blast Furnace Slag and Its Application
Materials Transactions, Vol. 53, No. 8 (2012) pp. 1449 to 1455 2012 The Japan Institute of Metals Effect of Magnesium and Aluminum Oxides on Fluidity of Final Blast Furnace Slag and Its Application Jia-Shyan
Determination of the heat storage capacity of PCM and PCM objects as a function of temperature
Determination of the heat storage capacity of PCM and PCM objects as a function of temperature E. Günther, S. Hiebler, H. Mehling ZAE Bayern, Walther-Meißner-Str. 6, 85748 Garching, Germany Outline Introduction
Lecture 24 - Surface tension, viscous flow, thermodynamics
Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
DETERMINATION OF THE HEAT STORAGE CAPACITY OF PCM AND PCM-OBJECTS AS A FUNCTION OF TEMPERATURE. E. Günther, S. Hiebler, H. Mehling
DETERMINATION OF THE HEAT STORAGE CAPACITY OF PCM AND PCM-OBJECTS AS A FUNCTION OF TEMPERATURE E. Günther, S. Hiebler, H. Mehling Bavarian Center for Applied Energy Research (ZAE Bayern) Walther-Meißner-Str.
Basic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)
Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact
Notes on Polymer Rheology Outline
1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity
HFM Heat Flow Meter Thermal Conductivity Analyzer
HFM Heat Flow Meter Thermal Conductivity Analyzer Introduction An insulating material is a material with low thermal conductivity, which in the construction industry, equipment manufacturing, or the production
RecoPhos Bench Scale Reactor
RecoPhos Bench Scale Reactor Design and Modelling Andreas Schönberg, Daniel Hariri RecoPhos Demonstration Event February 24th 2015 Content Basic of Development Setup and Design Modelling and Simulation
!"#$ Reservoir Fluid Properties. State of the Art and Outlook for Future Development. Dr. Muhammad Al-Marhoun
Society of Petroleum Engineers SPE 2001 2002 Distinguished Lecturer Program 4 July 2002 Reservoir Fluid Properties State of the Art and Outlook for Future Development Dr. Muhammad Al-Marhoun King Fahd
Solution for Homework #1
Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen
DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment
DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired
Table of content. L81/RITA high speed Thermo Balance. Quattro Dilatometer. L75/1250/B/S Macro Dilatometer. New air cooled furnace program
THERMAL TRENDS 2 Table of content L75/SDC simultaneous-dilatometer/calorimeter L75/SDD simultaneous Dilatometer/DTA L81/RITA high speed Thermo Balance Quattro Dilatometer L75/1250/B/S Macro Dilatometer
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
Thermal Flow Sensor Die
Microsystems, Inc. Thermal Flow Sensor Die Description Posifa s Thermal Flow Sensor Die measures the flow of a liquid or gaseous medium across the surface of the die using the Thermotransfer (Calorimetric)
SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT
Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,
Lecture 9, Thermal Notes, 3.054
Lecture 9, Thermal Notes, 3.054 Thermal Properties of Foams Closed cell foams widely used for thermal insulation Only materials with lower conductivity are aerogels (tend to be brittle and weak) and vacuum
Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:
I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)
Technical Specification for Model RSK2503 (Z)-06A IR Belt Solar Cell Firing Furnace
Technical Specification for Model RSK2503 (Z)-06A IR Belt Solar Cell Firing Furnace TECHNICAL SPECIFICATION Model RSK 2503(Z)-06A IR Belt Solar Cell Firing Furnace Temperature Range 1. Max Temperature.
FXA 2008. Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ
UNIT G484 Module 3 4.3.3 Thermal Properties of Materials 1 Candidates should be able to : Define and apply the concept of specific heat capacity. Select and apply the equation : E = mcδθ The MASS (m) of
Coal waste slurries as a fuel for integrated gasification combined cycle plants
Coal waste slurries as a fuel for integrated gasification combined cycle plants Marcin A. Lutynski 1,a, and Aleksander Lutynski 2 1 Silesian University of Technology, Faculty of Mining and Geology, ul.
Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi
J Therm Anal Calorim DOI 10.1007/s10973-011-1760-x Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi Junghoon Cha Jungki Seo Sumin Kim
Chapter 12 - Liquids and Solids
Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative
European COMSOL Conference, Hannover, Germany 04.-06.11.2008
Zentrum für BrennstoffzellenTechnik Presented at the COMSOL Conference 28 Hannover European COMSOL Conference, Hannover, Germany 4.-6.11.28 Modeling Polybenzimidazole/Phosphoric Acid Membrane Behaviour
Determination of Viscosity Using A Brookfield Viscometer for Conditioning Polymers
LUBRIZOL TEST PROCEDURE TP-N01004 Edition: December 2, 2013 Previous Editions: August 10, 2000 / November 1, 2011 Determination of Viscosity Using A Brookfield Scope A material's flow property is an important
1.3 Properties of Coal
1.3 Properties of Classification is classified into three major types namely anthracite, bituminous, and lignite. However there is no clear demarcation between them and coal is also further classified
Modelling the Drying of Porous Coal Particles in Superheated Steam
B. A. OLUFEMI and I. F. UDEFIAGBON, Modelling the Drying of Porous Coal, Chem. Biochem. Eng. Q. 24 (1) 29 34 (2010) 29 Modelling the Drying of Porous Coal Particles in Superheated Steam B. A. Olufemi *
Numerical analysis of size reduction of municipal solid waste particles on the traveling grate of a waste-to-energy combustion chamber
Numerical analysis of size reduction of municipal solid waste particles on the traveling grate of a waste-to-energy combustion chamber Masato Nakamura, Marco J. Castaldi, and Nickolas J. Themelis Earth
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
Measuring Extruders and Extrusiograph. ... where quality is measured.
Measuring s and... where quality is measured. Measuring s and Just Plug & Play The Plasti-Corder Lab-Station and Plastograph EC plus are the basic units for application oriented investigations or processing
Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation
Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation Sapienza Università di Roma, September 14, 2009 M. T. HORSCH,
Thermal conductivity of polyurethane foam - best performance
10th International Symposium on District Heating and Cooling September 3-5, 2006 Tuesday, 5 September 2006 Sektion 6 a Heat distribution pipe properties Thermal conductivity of polyurethane foam - best
Steady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
Study on Drag Coefficient for the Flow Past a Cylinder
International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 5, Number 4 (2014), pp. 301-306 Research India Publications http://www.ripublication.com/ijcer.htm Study on Drag Coefficient for
Viscosity. Desmond Schipper Andrew R. Barron. 1 Introduction
OpenStax-CNX module: m50215 1 Viscosity Desmond Schipper Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module discusses
Coal Properties, Sampling & Ash Characteristics by Rod Hatt Coal Combustion, Inc. Versailles, KY 859-873-0188
Coal Properties, Sampling & Ash Characteristics by Rod Hatt Coal Combustion, Inc. Versailles, KY 859-873-0188 Introduction The Powder River Coal is classified as sub-bituminous ranked coal. Coal rank is
Chapter 7 : Simple Mixtures
Chapter 7 : Simple Mixtures Using the concept of chemical potential to describe the physical properties of a mixture. Outline 1)Partial Molar Quantities 2)Thermodynamics of Mixing 3)Chemical Potentials
Improving the yield of soybean oil extraction process by using of microwave system
Improving the yield of soybean oil extraction process by using of microwave system M. Ghazvehi, M. Nasiri* School of Chemical, Gas and Petroleum Engineering, Semnan University,Semnan, Iran The increasing
Introduction to Computational Fluid Dynamics (CFD) for Combustion. www.reaction-eng.com (801) 364-6925
Introduction to Computational Fluid Dynamics (CFD) for Combustion www.reaction-eng.com (801) 364-6925 What is CFD? CFD stands for Computational Fluid Dynamics CFD uses computers to represent (or model)
Fluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
A New Technique Provides Faster Particle Size Analysis at a Lower Cost Compared to Conventional Methods
A New Technique Provides Faster Particle Size Analysis at a Lower Cost Compared to Conventional Methods Howard Sanders and Akshaya Jena Porous Material Inc. Ithaca, NY The technique described here calculates
RHEOLOGY RHEOLOGY Science describing the flow and deformation of matter under stress. Rheo = the flow Viscosity (η) is the resistance of a fluid material to flow under stress. The higher the viscosity,
States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.
CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas
INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky
INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in
THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT
THE THERMAL FLOW METER, A GAS METER FOR ENERGY MEASUREMENT Kazuto Otakane, Tokyo Gas Co., Ltd Katsuhito Sakai, Tokyo Gas Co., Ltd Minoru Seto, Tokyo Gas Co., Ltd 1. INTRODUCTION Tokyo Gas s new gas meter,
Formation of solids from solutions and melts
Formation of solids from solutions and melts Solids from a liquid phase. 1. The liquid has the same composition as the solid. Formed from the melt without any chemical transformation. Crystallization and
IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER 265 996 3, CAS NUMBER 65996 65 8] IRON ORE PELLETS
IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER 265 996 3, CAS NUMBER 65996 65 8] IRON ORE PELLETS INTRODUCTION Each REACH registrant is required to file its
FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
DSC Differential Scanning Calorimeter
DSC Differential Scanning Calorimeter Introduction The Differential Scanning Calorimetry (DSC) is the most popular thermal analysis technique to measure endothermic and exothermic transitions as a function
جامعة البلقاء التطبيقية
AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First
Radial-axial Radial mixing is based on the premise that the fluids to be mixed enter the mixer in the correct proportions simultaneously
Brochure E-0501 1 Introduction. Static mixers are used for a wide range of applications including mixing, heat exchange and dispersion, due to numerous unique innovations our products are especially suitable
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
G8 GALILEO. Innovation with Integrity. High-End Melt-extraction Analyzer. Inert Gas Method
G8 GALILEO High-End Melt-extraction Analyzer Innovation with Integrity Inert Gas Method Determination of O, N and H The market demands Metals, minerals, and inorganic compound markets demand high-quality
Viscoelasticity of Polymer Fluids.
Viscoelasticity of Polymer Fluids. Main Properties of Polymer Fluids. Entangled polymer fluids are polymer melts and concentrated or semidilute (above the concentration c) solutions. In these systems polymer
Effect of design parameters on temperature rise of windings of dry type electrical transformer
Effect of design parameters on temperature rise of windings of dry type electrical transformer Vikas Kumar a, *, T. Vijay Kumar b, K.B. Dora c a Centre for Development of Advanced Computing, Pune University
RESPONSE TIME INDEX OF SPRINKLERS
, Number l, p.1-6, 29 RESPONSE TIME INDEX OF SPRINKLERS C.K. Sze Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT The Plunge test would be carried
Thermodynamics worked examples
An Introduction to Mechanical Engineering Part hermodynamics worked examles. What is the absolute ressure, in SI units, of a fluid at a gauge ressure of. bar if atmosheric ressure is.0 bar? Absolute ressure
Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
Viscosity experiments: physical controls and implications for volcanic hazards. Ben Edwards Dept of Geology, Dickinson College
Viscosity experiments: physical controls and implications for volcanic hazards Student Name: Ben Edwards Dept of Geology, Dickinson College OBJECTIVES OF LAB Learn about the rheological property called
Solidification, Crystallization & Glass Transition
Solidification, Crystallization & Glass Transition Cooling the Melt solidification Crystallization versus Formation of Glass Parameters related to the formaton of glass Effect of cooling rate Glass transition
Determination of Thermal Conductivity of Coarse and Fine Sand Soils
Proceedings World Geothermal Congress Bali, Indonesia, - April Determination of Thermal Conductivity of Coarse and Fine Sand Soils Indra Noer Hamdhan 1 and Barry G. Clarke 2 1 Bandung National of Institute
LASER CUTTING OF STAINLESS STEEL
LASER CUTTING OF STAINLESS STEEL Laser inert gas cutting is the most applicable process type used for cutting of stainless steel. Laser oxygen cutting is also applied in cases where the cut face oxidation
DUST EMISSION MONITORING SYSTEM
Applications Measurement of dust concentration in dry or moist, steamsaturated and corrosive stack gases Monitoring of municipal and hazardous waste and sewage sludge incinerators Monitoring of power plants
NUMERICAL SIMULATION OF BIOHEAT TRANSFER PROCESS IN THE HUMAN EYE USING FINITE ELEMENT METHOD
Scientific Research of the Institute of Mathematics and Computer Science NUMERICAL SIMULATION OF BIOHEAT TRANSFER PROCESS IN THE HUMAN EYE USING FINITE ELEMENT METHOD Marek Paruch Department for Strength
Experiment 446.1 SURFACE TENSION OF LIQUIDS. Experiment 1, page 1 Version of June 17, 2016
Experiment 1, page 1 Version of June 17, 2016 Experiment 446.1 SURFACE TENSION OF LIQUIDS Theory To create a surface requires work that changes the Gibbs energy, G, of a thermodynamic system. dg = SdT
Group A/B Dust Explosion Classification Chilworth Hazard and Risk Profile (CHARP) - Standard package of tests
Item Description Item Remarks Explosion severity analysis (20L sphere): Triplicate test Explosion severity analysis (20L sphere): Single series screening test Explosion severity analysis (20L sphere):
The thickness, friction and wear of lubricant films
The thickness, friction and wear of lubricant films Hugh Spikes SAE Powertrain & Fluid Systems Conference & Exhibition, San Antonio, TX October 25 th 2005 Why care about the thickness of lubricant films?
Improved fluid control by proper non-newtonian flow modeling
Tekna Flow Assurance 2015, Larvik Improved fluid control by proper non-newtonian flow modeling Stein Tore Johansen, SINTEF Sjur Mo, SINTEF A general wall friction model for a non-newtonian fluid has been
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Flow Sensors. - mass flow rate - volume flow rate - velocity. - stream line parabolic velocity profile - turbulent vortices. Methods of measurement
Flow Sensors Flow - mass flow rate - volume flow rate - velocity Types of flow - stream line parabolic velocity profile - turbulent vortices Methods of measurement - direct: positive displacement (batch
Frost Damage of Roof Tiles in Relatively Warm Areas in Japan
Frost Damage of Roof Tiles in Relatively Warm Areas in Japan Influence of Surface Finish on Water Penetration Chiemi IBA Hokkaido Research Organization, Japan Shuichi HOKOI Kyoto University, Japan INTRODUCTION
Clinker grinding test in a laboratory ball mill using clinker burning with pet-coke and coal
International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 9 (September 214), PP.3-34 Clinker grinding test in a laboratory ball mill using
VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.
VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus
Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)
Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium
A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting
TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure
Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas
1 Igneous Geochemistry What is magma phases, compositions, properties Major igneous processes Making magma how and where Major-element variations Classification using a whole-rock analysis Fractional crystallization
Chapter 8 Maxwell relations and measurable properties
Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate
A software for calculation of optimum conditions for cotton, viscose, polyester and wool based yarn bobbins in a hot-air bobbin dryer
A software for calculation of optimum conditions for cotton, viscose, polyester and wool based yarn bobbins in a hot-air bobbin dryer H. Kuşçu, K. Kahveci, U. Akyol and A. Cihan Abstract In this study,
DETERMINATION METHODS OF EMISSIVITIES FOR GAS OR OIL FUEL FLAME AND FURNACE INNER WALL SURFACE (PART 2)
Thermotechnique et thermoénergétique DETERMINATION METHODS OF EMISSIVITIES FOR GAS OR OIL FUEL FLAME AND FURNACE INNER WALL SURFACE (PART 2) VICTOR VICTOR GHIEA (GHIA) Key words: Wall surface emissions,
SOLIDIFICATION. (a)formation of stable nuclei. Growth of a stable nucleus. (c) Grain structure
SOLIDIFICATION Most metals are melted and then cast into semifinished or finished shape. Solidification of a metal can be divided into the following steps: Formation of a stable nucleus Growth of a stable
4. Introduction to Heat & Mass Transfer
4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity
ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.
ORGANIC LABORATORY TECHNIQUES 10 10.1 DISTILLATION NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. The most common methods of distillation are simple distillation
Soil Suction. Total Suction
Soil Suction Total Suction Total soil suction is defined in terms of the free energy or the relative vapor pressure (relative humidity) of the soil moisture. Ψ = v RT ln v w 0ω v u v 0 ( u ) u = partial
109 Adopted: 27.07.95
109 Adopted: 27.07.95 OECD GUIDELINE FOR THE TESTING OF CHEMICALS Adopted by the Council on 27 th July 1995 Density of Liquids and Solids INTRODUCTION 1. This guideline is a revised version of the original
Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline
Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics
VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy
30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough
Numerical modelling of shear connection between concrete slab and sheeting deck
7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Molar Mass of Polyvinyl Alcohol by Viscosity
Molar Mass of Polyvinyl Alcohol by Viscosity Introduction Polyvinyl Alcohol (PVOH) is a linear polymer (i. e., it has little branching) of Ethanol monomer units: -CH 2 -CHOH- Unlike most high molar mass
A CASE STUDY: PERFORMANCE AND ACCEPTANCE TEST OF A POWER AND DESALINATION PLANT. Keywords : Power Plant, Boiler Capacity, Electrical Power
A CASE STUDY: PERFORMANCE AND ACCEPTANCE TEST OF A POWER AND DESALINATION PLANT Atef M Al Baghdadi Water and Electricity Authority Abu Dhabi, U.A.E Keywords : Power Plant, Boiler Capacity, Electrical Power
