CrIS L1B Project Status
|
|
|
- Arleen Cole
- 10 years ago
- Views:
Transcription
1 CrIS L1B Project Status Graeme Martin 1, Hank Revercomb 1, Larrabee Strow 2, Dave Tobin 1, Howard Moteller 2, Liam Gumley 1, Ray Garcia 1, Greg Quinn 1, Joe Taylor 1, Coda Phillips 1, Bob Knuteson 1, Jessica Braun 1 1 University of Wisconsin Madison, Space Science & Engineering Center 2 University of Maryland Baltimore County, Atmospheric Spectroscopy Laboratory NASA Sounder Science Team Meeting October 16, 2015
2 Project Overview NASA-funded effort to write software to generate a climate quality CrIS L1B product Equivalent to IDPS SDR but some differences in algorithms and underlying science Different software from IDPS Some team members are also involved in CrIS Cal/Val effort headed by NOAA STAR Applying lessons learned from Cal/Val One year in to a 5-year project CrIS L1B Project Status 2
3 Project Overview (2) Software will be improved, new versions will be released Want feedback from users on products Source code and documentation will be publicly available With each new software release will reprocess mission dataset Plan to eventually release both normal spectral resolution (NSR) and full spectral resolution (FSR) datasets Planned start of NSR dataset: Apr 2012 Start date of FSR is TBD CrIS L1B Project Status 3
4 First Year Progress Science Identified high priority algorithm improvements Algorithm development and testing Data formats Developed common CrIS / ATMS L1B file format in collaboration with JPL Determined L1B granulation scheme Participated in EDOS L0 format definition and testing Software Developed new Level 1A and Geo software Adapted CCAST software as Calibration module Sample data Released to Sounder Science teams CrIS L1B Project Status 4
5 Future Software Deliveries Version 1.0 beta, target date Nov 18, 2015 Will be delivered to the Sounder SIPS They will integrate to the DAAC Version 1.0 beta2? Version 1.0 final, early 2016 NSR mission product will be generated and made available Periodic software releases thereafter CrIS L1B Project Status 5
6 Software Design Modular components connected by glue code Want to minimize expense of research to operations Calibration module: leverage existing code and compiled Matlab New modules and glue code written in Python First correctness, then performance optimization Initially files as internal interfaces Command-line callable, CentOS-6 compatible CrIS L1B Project Status 6
7 Data flow Inputs are EDOS L0 data and ancil files needed for Geo Outputs are L1A and L1B granules in NetCDF format CrIS L1B Project Status 7
8 Granulation Comparison IDPS L1B granule size seconds 6 minutes granules / day about 2700 exactly 240 scans/granule usually 4, sometimes 3 45 granules/file 15 (aggregated) 1 granulation type instrument-based UTC-based IDPS SDR file (15 granules) L1B file (1 granule) CrIS L1B Project Status 8
9 Data Product L1A and L1B data product files are NetCDF4 Geo is in both the L1A and L1B file Initially same Geo fields as SDRs, later version will add information derived from static databases, e.g. mean elevation, land fraction, sun glint distance Later version will include terrain correction L1B File format was designed in collaboration with JPL and is common with ATMS Quality flags are TBD, will be somewhat different from IDPS CrIS L1B Project Status 9
10 Metadata Metadata is compliant with CF and ACDD standards where possible Fill values and units are described in metadata Example: Long wave radiance CrIS L1B Project Status 10
11 Accessing L1B data Many desktop data inspection and visualization tools support NetCDF4 (e.g. Panoply, HDFView) NetCDF4 libraries exist for most languages (Python, Fortran, C, Matlab, IDL) Libraries come with command line tools for inspecting and manipulating NetCDF Example: opening a file and reading a variable in Python import netcdf4 as nc4 ncf = nc4.dataset(filename, 'r') rad_lw = ncf.variables['rad_lw'] atrack, xtrack, fov = 0, 0, 0 spectrum = rad_lw[atrack, xtrack, fov, :].squeeze() CrIS L1B Project Status 11
12 Key Products in the L1B file Radiance spectra Geo products Wavelengths associated with each band NeDN Observation times in both UTC and TAI format Auxiliary outputs including imaginary spectra are located in a separate group CrIS L1B Project Status 12
13 Comparison of SDR and L1B files IDPS L1B File type HDF5 NetCDF4 Geolocation in a separate file included in the same file Terrain-corrected Geo? no will be added after version 1.0 Wavelengths included? Missing data representation no Multiple values in -999.x range yes Single value near data max or min CrIS L1B Project Status 13
14 Sample data Released sample L1b datasets Two days of Normal spectra resolution data and 3 days of full spectral resolution NSR: May 7-8, 2014 FSR: February 17-19, 2015 Data was generated with a pre-release software prototype Wanted to give users some data to work with before the first release, and get feedback Data was distributed to science teams, but can be made available to other users. Contact [email protected]. Sample Data Users Guide CrIS L1B Project Status 14
15 Science and ATBD Plan to release a delta ATBD with software describing differences compared to IDPS software Science changes will include New calibration equation Spectral ringing correction Polarization correction Shortwave nonlinearity correction (possible) Low responsivity calibration Self-apodization corrections Spectral calibration and neon lamp tracking Radiometric uncertainty estimates Geolocation CrIS L1B Project Status 15
16 Product Evaluation and Monitoring Inter-FOV comparison CrIS QA Monitoring tool Glance: a general purpose dataset comparison tool CrIS L1B Project Status 16
17 SDRs from IDPS L1B sample data imaginary real CrIS L1B Project Status 17
18 Img module Indices of VIIRS pixels collocated within CrIS footprint Statistics derived from VIIRS L1 and L2 products Useful for interpreting CrIS data Provides continuity with similar AIRS and IASI products Year 3 activity CrIS L1B Project Status 18
19 CrISXBCAL module Produces CrIS calibration subset files, to be used for Long-term validation / trending Neon lamp calibration Includes Clear scenes Small random subset Data over specific ground sites (e.g. ARM) Deep convective clouds Year 3 activity CrIS L1B Project Status 19
20 Thank you! Contact: CrIS L1B Project Status 20
VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping
NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement
The STAR Algorithm Integration Team (AIT) Research to Operations Process
The STAR Algorithm Integration Team (AIT) Research to Operations Process Presented by Tom King 1 The Problem Scientists write code that needs to go to operations, but:» Many scientists often prefer interpreted
NOAA Direct Broadcast Real-Time Network: Current Status and Plans for Delivering Sounder Data to DRARS
NOAA Direct Broadcast Real-Time Network: Current Status and Plans for Delivering Sounder Data to DRARS Liam Gumley (NOAA DB Demonstration Technical Manager), Bruce Flynn, Heath Skarlupka, David Santek,
STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product
STAR Algorithm and Data Products (ADP) Beta Review Suomi NPP Surface Reflectance IP ARP Product Alexei Lyapustin Surface Reflectance Cal Val Team 11/26/2012 STAR ADP Surface Reflectance ARP Team Member
McIDAS-V: An open source data analysis and visualization tool for multiand hyperspectral satellite data ITSC-XVI, Angra do Reis, Brazil, 7 May 2008
McIDAS-V: An open source data analysis and visualization tool for multiand hyperspectral satellite data ITSC-XVI, Angra do Reis, Brazil, 7 May 2008 Tom Achtor, Tom Rink, Tom Whittaker, Dave Parker, Gail
Joint Polar Satellite System (JPSS) Algorithm Specification Volume II: Data Dictionary for the Ozone Total Column. Block 2.0.0
GSFC JPSS CMO August 04, 2015 Released Joint Polar Satellite System (JPSS) Ground Project Code 474 Joint Polar Satellite System (JPSS) Algorithm Specification Volume II: Data Dictionary for the Ozone Total
Validating MOPITT Cloud Detection Techniques with MAS Images
Validating MOPITT Cloud Detection Techniques with MAS Images Daniel Ziskin, Juying Warner, Paul Bailey, John Gille National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 ABSTRACT The
V6 AIRS Spectral Calibra2on
V6 AIRS Spectral Calibra2on Evan Manning Bob Deen Yibo Jiang George Aumann Denis EllioA Jet Propulsion Laboratory California Ins2tute of Technology 5/4/09 1 Spectral Calibra2on Primer AIRS measures radiance
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D
SYNERGISTIC USE OF IMAGER WINDOW OBSERVATIONS FOR CLOUD- CLEARING OF SOUNDER OBSERVATION FOR INSAT-3D ABSTRACT: Jyotirmayee Satapathy*, P.K. Thapliyal, M.V. Shukla, C. M. Kishtawal Atmospheric and Oceanic
Data Processing Developments at DFD/DLR. Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge
Data Processing Developments at DFD/DLR Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge EUFAR Joint Expert Working Group Meeting Edinburgh, April 14th 2011 Conclusions
An Introduction to the MTG-IRS Mission
An Introduction to the MTG-IRS Mission Stefano Gigli, EUMETSAT IRS-NWC Workshop, Eumetsat HQ, 25-0713 Summary 1. Products and Performance 2. Design Overview 3. L1 Data Organisation 2 Part 1 1. Products
Obtaining and Processing MODIS Data
Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,
McIDAS-V - A powerful data analysis and visualization tool for multi and hyperspectral environmental satellite data
McIDAS-V - A powerful data analysis and visualization tool for multi and hyperspectral environmental satellite data Thomas Achtor, Thomas Rink, Thomas Whittaker, David Parker and David Santek Space Science
ECMWF Aerosol and Cloud Detection Software. User Guide. version 1.2 20/01/2015. Reima Eresmaa ECMWF
ECMWF Aerosol and Cloud User Guide version 1.2 20/01/2015 Reima Eresmaa ECMWF This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction
University of Wisconsin- Madison: Supporting Global Direct Broadcast Applications
University of Wisconsin- Madison: Supporting Global Direct Broadcast Applications Kathleen Strabala, Liam Gumley, Allen Huang UW-Madison, Space Science and Engineering Center (SSEC) Lots of Others James
IRS Level 2 Processing Concept Status
IRS Level 2 Processing Concept Status Stephen Tjemkes, Jochen Grandell and Xavier Calbet 6th MTG Mission Team Meeting 17 18 June 2008, Estec, Noordwijk Page 1 Content Introduction Level 2 Processing Concept
Launch-Ready Operations Code Chain ESDT ShortNames, LongNames, and Generating PGE or Ingest Source
Launch-Ready Operations Code Chain ESDT ShortNames, LongNames, and Generating PGE or Ingest Source Generating PGE Name/Description or Ingest Source Product ESDT ShortName Product ESDT LongName NPP_VMAE_L1
NASA's Strategy and Activities in Server Side Analytics
NASA's Strategy and Activities in Server Side Analytics Tsengdar Lee, Ph.D. High-end Computing Program Manager NASA Headquarters Presented at the ESGF/UVCDAT Conference Lawrence Livermore National Laboratory
LANDSAT 8 Level 1 Product Performance
Réf: IDEAS-TN-10-QualityReport LANDSAT 8 Level 1 Product Performance Quality Report Month/Year: January 2016 Date: 26/01/2016 Issue/Rev:1/9 1. Scope of this document On May 30, 2013, data from the Landsat
Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES
Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES The NORMAP Project team has prepared this document to present functionality of the NORMAP portal.
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1
Denis Botambekov 1, Andrew Heidinger 2, Andi Walther 1, and Nick Bearson 1 1 - CIMSS / SSEC / University of Wisconsin Madison, WI, USA 2 NOAA / NESDIS / STAR @ University of Wisconsin Madison, WI, USA
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
Sky Monitoring Techniques using Thermal Infrared Sensors. sabino piazzolla Optical Communications Group JPL
Sky Monitoring Techniques using Thermal Infrared Sensors sabino piazzolla Optical Communications Group JPL Atmospheric Monitoring The atmospheric channel has a great impact on the channel capacity at optical
MOD09 (Surface Reflectance) User s Guide
MOD09 (Surface ) User s Guide MODIS Land Surface Science Computing Facility Principal Investigator: Dr. Eric F. Vermote Web site: http://modis-sr.ltdri.org Correspondence e-mail address: [email protected]
GLOBAL FORUM London, October 24 & 25, 2012
GLOBAL FORUM London, October 24 & 25, 2012-1 - Global Observations of Gas Flares Improving Global Observations of Gas Flares With Data From the Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS)
NetCDF and HDF Data in ArcGIS
2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop NetCDF and HDF Data in ArcGIS Nawajish Noman Kevin Butler Esri UC2013. Technical Workshop. Outline NetCDF
Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture
Labs in Bologna & Potenza Menzel Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Figure 1: High resolution atmospheric absorption spectrum and comparative blackbody
The USGS Landsat Big Data Challenge
The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS [email protected] U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation
The Arctic Observing Network and its Data Management Challenges Florence Fetterer (NSIDC/CIRES/CU), James A. Moore (NCAR/EOL), and the CADIS team
The Arctic Observing Network and its Data Management Challenges Florence Fetterer (NSIDC/CIRES/CU), James A. Moore (NCAR/EOL), and the CADIS team Photo courtesy Andrew Mahoney NSF Vision What is AON? a
Measurements Of Pollution In The Troposphere (MOPITT) NASA Langley ASDC Data Collection Guide
Measurements Of Pollution In The Troposphere (MOPITT) NASA Langley ASDC Data Collection Guide Summary: The MOPITT data sets are designed to measure carbon monoxide (CO) and methane (CH 4 ) concentrations
Towards agreed data quality layers for airborne hyperspectral imagery
Towards agreed data quality layers for airborne hyperspectral imagery M. Bachmann, DLR M. Bachmann, DLR, S. Adar, TAU; E. Ben-Dor, TAU; J. Biesemans, VITO; X. Briottet, ONERA; M. Grant, PML; J. Hanus,
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
Update on EUMETSAT ocean colour services. Ewa J. Kwiatkowska
Update on EUMETSAT ocean colour services Ewa J. Kwiatkowska 1 st International Ocean Colour Science meeting, 6 8 May, 2013 EUMETSAT space data provider for operational oceanography Operational data provider
Reprojecting MODIS Images
Reprojecting MODIS Images Why Reprojection? Reasons why reprojection is desirable: 1. Removes Bowtie Artifacts 2. Allows geographic overlays (e.g. coastline, city locations) 3. Makes pretty pictures for
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
FRESCO. Product Specification Document FRESCO. Authors : P. Wang, R.J. van der A (KNMI) REF : TEM/PSD2/003 ISSUE : 3.0 DATE : 30.05.
PAGE : 1/11 TITLE: Product Specification Authors : P. Wang, R.J. van der A (KNMI) PAGE : 2/11 DOCUMENT STATUS SHEET Issue Date Modified Items / Reason for Change 0.9 19.01.06 First Version 1.0 22.01.06
Tools for Viewing and Quality Checking ARM Data
Tools for Viewing and Quality Checking ARM Data S. Bottone and S. Moore Mission Research Corporation Santa Barbara, California Introduction Mission Research Corporation (MRC) is developing software tools
Advanced Image Management using the Mosaic Dataset
Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Advanced Image Management using the Mosaic Dataset Vinay Viswambharan, Mike Muller Agenda ArcGIS Image Management
Ocean Colour experience SeaWiFS / MODIS / VIIRS
Ocean Colour experience SeaWiFS / MODIS / VIIRS Bryan Franz and the NASA Ocean Biology Processing Group presented by Ewa Kwiatkowska, EUMETSAT Sentinel-3 Cal/Val Meeting 20-22 March 2012 Goal Provide a
SAMPLE MIDTERM QUESTIONS
Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7
Software requirements * :
Title: Product Type: Developer: Target audience: Format: Software requirements * : Data: Estimated time to complete: Fire Mapping using ASTER Part I: The ASTER instrument and fire damage assessment Part
Ocean Level-3 Standard Mapped Image Products June 4, 2010
Ocean Level-3 Standard Mapped Image Products June 4, 2010 1.0 Introduction This document describes the specifications of Ocean Level-3 standard mapped archive products that are produced and distributed
STAR JPSS Algorithms Integration Team Configuration Management Plan Version 1.2
STAR JPSS Algorithms Integration Team Version 1.2 NOAA Center for Weather and Climate Prediction (NCWCP) NOAA/NESDIS/STAR 5830 University Research Ct College Park, MD 20740 Revisions Version Description
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman, Richard Frey, Kathleen Strabala, Yinghui Liu, Liam Gumley, Bryan Baum,
LSA SAF products: files and formats
LSA SAF products: files and formats Carla Barroso, IPMA Application of Remote Sensing Data for Drought Monitoring Introduction to Eumetsat LANDSAF Products 11-15 November Slovenia OUTLINE Where to get
2. VIIRS SDR Tuple and 2Dhistogram MIIC Server-side Filtering. 3. L2 CERES SSF OPeNDAP dds structure (dim_alias and fixed_dim)
MIIC Server-side Filtering Outline 1. DEMO Web User Interface (leftover from last meeting) 2. VIIRS SDR Tuple and 2Dhistogram MIIC Server-side Filtering 3. L2 CERES SSF OPeNDAP dds structure (dim_alias
Long Term Preservation of Earth Observation Data
Long Term Preservation of Earth Observation Data QA4EO Workshop RAL, October 18-20 th 2011 Mirko Albani and Bojan Bojkov* (ESA/ESRIN) Page 1 Outline Earth Observation data preservation: the need and the
Joint Polar Satellite System (JPSS)
Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman 1, Kathleen Strabala 1, Paul Menzel 1,2, Richard Frey 1, Chris Moeller 1,
CALIBRATION OF SCIAMACHY IN-FLIGHT MEASURED IRRADIANCES AND RADIANCES FIRST RESULTS OF LEVEL 1 VALIDATION (CASIMIR, ENVISAT AOID 406)
CALIBRATION OF SCIAMACHY IN-FLIGHT MEASURED IRRADIANCES AND RADIANCES FIRST RESULTS OF LEVEL 1 VALIDATION (CASIMIR, ENVISAT AOID 406) J. Skupin, S. Noël, M. W. Wuttke, H. Bovensmann and J. P. Burrows Institute
Review for Introduction to Remote Sensing: Science Concepts and Technology
Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director [email protected] Funded by National Science Foundation Advanced Technological Education program [DUE
Satellite'&'NASA'Data'Intro'
Satellite'&'NASA'Data'Intro' Research'vs.'Opera8ons' NASA':'Research'satellites' ' ' NOAA/DoD:'Opera8onal'Satellites' NOAA'Polar'Program:'NOAA>16,17,18,19,NPP' Geosta8onary:'GOES>east,'GOES>West' DMSP'series:'SSM/I,'SSMIS'
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH 2
ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH Atmospherically Correcting Multispectral Data Using FLAASH 2 Files Used in this Tutorial 2 Opening the Raw Landsat Image
A Web-Based Library and Algorithm System for Satellite and Airborne Image Products
DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. A Web-Based Library and Algorithm System for Satellite and Airborne Image Products W. Paul Bissett Florida Environmental
Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model
ANL/ALCF/ESP-13/1 Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model ALCF-2 Early Science Program Technical Report Argonne Leadership Computing Facility About Argonne
Steve Ansari *, Stephen Del Greco, Brian Nelson, and Helen Frederick NOAA National Climatic Data Center, Asheville, North Carolina 2.
11.4 THE SEVERE WEATHER DATA INVENTORY (SWDI): SPATIAL QUERY TOOLS, WEB SERVICES AND DATA PORTALS AT NOAA S NATIONAL CLIMATIC DATA CENTER (NCDC) Steve Ansari *, Stephen Del Greco, Brian Nelson, and Helen
ACOS Level 2 Standard Product Data User s Guide, v3.3
National Aeronautics and Space Administration Goddard Earth Science Data Information and Services Center (GES DISC) ACOS Level 2 Standard Product Data User s Guide, v3.3 Revision Date: Revision G, June
High Resolution Information from Seven Years of ASTER Data
High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer
Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France
How to Use the NOAA Enterprise Cloud Mask (ECM) Andrew Heidinger, Tom Kopp, Denis Botambekov and William Straka JPSS Cloud Team August 29, 2015
How to Use the NOAA Enterprise Cloud Mask (ECM) Andrew Heidinger, Tom Kopp, Denis Botambekov and William Straka JPSS Cloud Team August 29, 2015 Outline Describe ECM and its differences to VCM Describe
ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data using FLAASH 2
ENVI Classic Tutorial: Atmospherically Correcting Hyperspectral Data Using FLAASH Atmospherically Correcting Hyperspectral Data using FLAASH 2 Files Used in This Tutorial 2 Opening the Uncorrected AVIRIS
How to calculate reflectance and temperature using ASTER data
How to calculate reflectance and temperature using ASTER data Prepared by Abduwasit Ghulam Center for Environmental Sciences at Saint Louis University September, 2009 This instructions walk you through
Data processing (3) Cloud and Aerosol Imager (CAI)
Data processing (3) Cloud and Aerosol Imager (CAI) 1) Nobuyuki Kikuchi, 2) Haruma Ishida, 2) Takashi Nakajima, 3) Satoru Fukuda, 3) Nick Schutgens, 3) Teruyuki Nakajima 1) National Institute for Environmental
CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler [email protected]
CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler [email protected] Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric
Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione
Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione U.S. Permanent Representative with the WMO Deputy Director, NOAA s s National Weather Service WMO Executive Council 65
NCDC s SATELLITE DATA, PRODUCTS, and SERVICES
**** NCDC s SATELLITE DATA, PRODUCTS, and SERVICES Satellite data and derived products from NOAA s satellite systems are available through the National Climatic Data Center. The two primary systems are
GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog Corey Calvert, UW/CIMSS Mike Pavolonis, NOAA/NESDIS/STAR
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
StormSurgeViz: A Visualization and Analysis Application for Distributed ADCIRC-based Coastal Storm Surge, Inundation, and Wave Modeling
: A Visualization and Analysis Application for Distributed ADCIRC-based Coastal Storm Surge, Inundation, and Wave Modeling Brian Blanton Renaissance Computing Institute University of North Carolina at
CloudSat Standard Data Products Handbook
CloudSat Project A NASA Earth System Science Pathfinder Mission CloudSat Standard Data Products Handbook Revised: April 25 th, 2008 Cooperative Institute for Research in the Atmosphere Colorado State University
VisCMD: Visualizing Cloud Modeling Data
CPSC-533C Information Visualization Project Report VisCMD: Visualizing Cloud Modeling Data Quanzhen Geng (#63546014) and Jing Li (#90814013) Email: [email protected] [email protected] (Master of Software
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
McIDAS-V Tutorial Displaying Polar Satellite Imagery updated September 2015 (software version 1.5)
McIDAS-V Tutorial Displaying Polar Satellite Imagery updated September 2015 (software version 1.5) McIDAS-V is a free, open source, visualization and data analysis software package that is the next generation
VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities
1 VCS REDD Methodology Module Methods for monitoring forest cover changes in REDD project activities Version 1.0 May 2009 I. SCOPE, APPLICABILITY, DATA REQUIREMENT AND OUTPUT PARAMETERS Scope This module
ADAGUC & PyTROLL. Maarten Plieger Ernst de Vreede. Application of polar orbiter products in weather forecasting Using open source tools and standards
Application of polar orbiter products in weather forecasting Using open source tools and standards ADAGUC & PyTROLL Maarten Plieger Ernst de Vreede Royal Netherlands Meteorological Institute (KNMI) R&D
Remote Sensing Method in Implementing REDD+
Remote Sensing Method in Implementing REDD+ FRIM-FFPRI Research on Development of Carbon Monitoring Methodology for REDD+ in Malaysia Remote Sensing Component Mohd Azahari Faidi, Hamdan Omar, Khali Aziz
Big Data and Cloud Computing for GHRSST
Big Data and Cloud Computing for GHRSST Jean-Francois Piollé ([email protected]) Frédéric Paul, Olivier Archer CERSAT / Institut Français de Recherche pour l Exploitation de la Mer Facing data deluge
Release 7 SDP Toolkit Users Guide for the EOSDIS Evolution and Development Contract
333-EED-001 EOSDIS Evolution and Development Contract Release 7 SDP Toolkit Users Guide for the EOSDIS Evolution and Development Contract Revision - August 2010 Raytheon Company Riverdale, Maryland This
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
