Adding Big Earth Data Analytics to GEOSS

Size: px
Start display at page:

Download "Adding Big Earth Data Analytics to GEOSS"

Transcription

1 Research funded through EU FP EarthServer European Scalable Earth Science Service Environment Adding Big Earth Data Analytics to GEOSS GEO IX Plenary Foz do Iguacu, 2012-nov-20 Peter Baumann, Stefano Nativi Jacobs University Germany, CNR Italy [gamingfeeds.com] 1

2 Features & Coverages The basis of all: geographic feature = abstraction of a real world phenomenon [OGC, ISO] associated with a location relative to Earth Special kind of feature: coverage Typical representative: raster image...but there is more! Typically, Big Data are coverages 3

3 Big Data : The 4 Vs Volume Velocity Variety Veracity [M. Stonebraker and IBM] 4

4 Raster Data Volume Social Networks Incidence matrix of size 10^8 x 10^8...now do linear algebra! Satellite Imagery HPC ngeo plannings: 10^12 images under ESA custody Even with multi-terabyte local disk sub-systems and multi-petabyte archives, I/O can become a bottleneck in HPC. -- Jeanette Jenness, LLNL, ASCI-Project, 1998 Users download 10x more data than needed -- Kerstin Kleese van Dam,

5 Raster Data Velocity NASA MODIS instrument on board of AQUA & TERRA ~ 1 TB per day LOFAR: distributed sensor array farms for radio astronomy 3 GB per second per station sustained, consolidated into 2 3 PB per year M. Stonebraker: drinking from the firehose 6

6 Raster Data Variety Sensor, image, model, & statistics data Life Science: Pharma/chem, healthcare / bio research, bio statistics, genetics,... Geo: Geodesy, geology, hydrology, oceanography, meteorology, earth system,... Engineering & research: Simulation & experimental data in automotive/shipbuilding/ aerospace industry, turbines, process industry, astronomy, high energy physics,... Management/Controlling: Decision Support, OLAP, Data Warehousing, census, statistics in industry and public administration,... Multimedia: e-learning, distance learning, prepress,... 80% of all data have some spatial connotation [C&P Hane, 1992] 7

7 Raster Data Variety: Coverages n-d "space/time-varying phenomenon" [ISO 19123, OGC r2] «FeatureType» Abstract Coverage Grid Coverage MultiSolid Coverage MultiSurface Coverage MultiCurve Coverage MultiPoint Coverage Referenceable GridCoverage Rectified GridCoverage 8

8 Raster Data Veracity Both measured and computed data need to carry quality information as part of provenance Sometimes established (costly!) procedures for error estimation, sometimes not Ex: Satellite image processing, from L0 to L2 Many quality criteria determined, but hardwired error propagation by far not always customary What to do with this information? Complicates life of data consumer dramatically! [l2gen, bitmask for ocean color] 9

9 Let s Take a Closer Look... Remember? Users download 10x more data than needed [Kerstin Kleese van Dam, 2002] t Divergent access patterns for ingest and retrieval Server must mediate between access patterns 10

10 Use Case: Satellite ImageTime Series [Diedrich et al 2001] 11

11 The rasdaman Raster Analytics Server Raster DBMS for massive n-d raster data rasql = SQL with integrated raster processing select img.green[x0:x1,y0:y1] > 130 from Tile-based architecture LandsatArchive as img n-d array set of n-d tiles Extensive optimization, hw/sw parallelization In operational use dozen-terabyte objects Analytics queries in 50 ms on laptop 12

12 Query Processing in a Federation Heterogeneous federation / cloud Can optimize for data location, transport volume, node load,... Work in progress array A select encode( (A.nir - A.red) / (A.nir +A.red), array-compressed ) from A [Owonibi 2012] select encode( ( (A.nir - A.red) / (A.nir + A.red) - (B.nir - B.red) / (B.nir + B.red) ), HDF5 ) from A, B Array B select encode( (B.nir - B.red) / (B.nir + B.red), array-compressed ) from B 13

13 What Raster Analytics Offers Raster Query Language: ad-hoc navigation, extraction, aggregation, analytics Time series Image processing Summary data Sensor fusion & pattern mining 14

14 Ex: Climate Data Service [MEEO 2012] 15

15 3D Clients: Experiments Problem: coupling DB / visualization Approach: deliver RGBA image to X3D client, transparency as height Feed directly into client GPU select encode( { red: (char) s.b7[x0:x1,x0:x1], green: (char) s.b5[x0:x1,x0:x1], blue: (char) s.b0[x0:x1,x0:x1], alpha: (char) scale( d, 20 ) }, "png" ) from SatImage as s, DEM as d [JacobsU, Fraunhofer 2012] 16

16 EarthServer: Big Earth Data Analytics Scalable On-Demand Analytics & Fusion for all Earth Sciences 11 partners (lead: JacobsU), 7 mus$ budget, 2011-sep aug-31 6 * 100+ TB databases for all Earth sciences + planetary science Advisory board: OGC, ESA, IEEE 17

17 Web Coverage Service (WCS) Core: Simple access to multi-dimensional coverages subset = trim slice WCS Extensions for additional functionality facets encodings, band extraction, scaling, reprojection, interpolation, query language, data upload,

18 Integration of OGC WCS and SWE SWE O&M and SOS (+ friends): specialized for sensor acquisition, some complexity upstream acquisition GMLCOV and WCS (+WCPS): simple, uniform schema for all coverages; scalable; versatile processing downstream services O&M + SensorML coverage server GMLCOV + WCS Semantic Web 19

19 Conclusion: Agile Analytics Propose EarthServer platform, rasdaman, as contribution to CGI Flexible ad-hoc processing & filtering Working in situ on existing archives; no copying! Integrated n-d coverage data / metadata search Smooth integration with GEOSS Broker Scalable n-d interfaces using OGC standards WMS, WCS suite including WCPS, WPS nd visual coverage client toolkit 1D diagrams, 2D maps, 3D data cubes, 3D timeseries sets,... Dynamically composed from query results 20

320473 Databases & Web Applications Lab 320454 Big Data Project A

320473 Databases & Web Applications Lab 320454 Big Data Project A 320473 Databases & Web Applications Lab 320454 Big Data Project A Instructor: Peter Baumann email: [email protected] tel: -3178 office: room 88, Research 1 320302 Databases & Web Applications

More information

Agile Retrieval of Big Data with. EarthServer. ECMWF Visualization Week, Reading, 2015-sep-29

Agile Retrieval of Big Data with. EarthServer. ECMWF Visualization Week, Reading, 2015-sep-29 Agile Retrieval of Big Data with EarthServer ECMWF Visualization Week, Reading, 2015-sep-29 Peter Baumann Jacobs University rasdaman GmbH [email protected] [co-funded by EU through EarthServer, PublicaMundi]

More information

WCS as a Download Service for Big (and Small) Data

WCS as a Download Service for Big (and Small) Data WCS as a Download Service for Big (and Small) Data INSPIRE 2013 Florence, Italy, 2013-jun-25 Peter Baumann 1, Stephan Meissl 2, Alan Beccati 1 1 Jacobs University rasdaman GmbH, Bremen, Germany 2 EOX GmbH,

More information

Agile Analytics on Extreme-Size Earth Science Data

Agile Analytics on Extreme-Size Earth Science Data Agile Analytics on Extreme-Size Earth Science Data COPERNICUS Big Data Workshop Brussels / BE, 2014-mar-14 Peter Baumann Jacobs University rasdaman GmbH [email protected] What are the Big

More information

On the Efficient Evaluation of Array Joins

On the Efficient Evaluation of Array Joins [co-funded by EU through H2020 EarthServer -2] On the Efficient Evaluation of Array Joins Big Data in the Geosciences Workshop IEEE Big Data, Santa Clara, US, 2015-oct-29 Peter Baumann, Vlad Merticariu

More information

Handling Heterogeneous EO Datasets via the Web Coverage Processing Service

Handling Heterogeneous EO Datasets via the Web Coverage Processing Service Handling Heterogeneous EO Datasets via the Web Coverage Processing Service Piero Campalani a*, Simone Mantovani b, Alan Beccati a, a a a Jacobs University Bremen (DE) / b MEEO Srl (IT) * {[email protected]

More information

A Big Picture for Big Data

A Big Picture for Big Data Supported by EU FP7 SCIDIP-ES, EU FP7 EarthServer A Big Picture for Big Data FOSS4G-Europe, Bremen, 2014-07-15 Peter Baumann Jacobs University rasdaman GmbH [email protected] Our Stds Involvement

More information

Use of OGC Sensor Web Enablement Standards in the Meteorology Domain. in partnership with

Use of OGC Sensor Web Enablement Standards in the Meteorology Domain. in partnership with Use of OGC Sensor Web Enablement Standards in the Meteorology Domain in partnership with Outline Introduction to OGC Sensor Web Enablement Standards Web services Metadata encodings SWE as front end of

More information

Big Data Volume & velocity data management with ERDAS APOLLO. Alain Kabamba Hexagon Geospatial

Big Data Volume & velocity data management with ERDAS APOLLO. Alain Kabamba Hexagon Geospatial Big Data Volume & velocity data management with ERDAS APOLLO Alain Kabamba Hexagon Geospatial Intergraph is Part of the Hexagon Family Hexagon is dedicated to delivering actionable information through

More information

PART 1. Representations of atmospheric phenomena

PART 1. Representations of atmospheric phenomena PART 1 Representations of atmospheric phenomena Atmospheric data meet all of the criteria for big data : they are large (high volume), generated or captured frequently (high velocity), and represent a

More information

Open Source Visualisation with ADAGUC Web Map Services

Open Source Visualisation with ADAGUC Web Map Services Open Source Visualisation with ADAGUC Web Map Services Maarten Plieger Ernst de Vreede John van de Vegte, Wim Som de Cerff, Raymond Sluiter, Ian van der Neut, Jan Willem Noteboom 1 ADAGUC project Cooperative

More information

RDA PROPOSAL FOR Array Database Working Group (AD-WG) Peter Baumann, Jacobs University

RDA PROPOSAL FOR Array Database Working Group (AD-WG) Peter Baumann, Jacobs University RDA PROPOSAL FOR Array Database Working Group (AD-WG) Peter Baumann, Jacobs University Co-Chairs Two or three co-chairs (tbd) will be elected from the member body, by simple majority within AD-WG and considering

More information

Sextant. Spatial Data Infrastructure for Marine Environment. C. Satra Le Bris, E. Quimbert, M. Treguer

Sextant. Spatial Data Infrastructure for Marine Environment. C. Satra Le Bris, E. Quimbert, M. Treguer Sextant On-Line information system for marine geographical information E. Quimbert, M. Bellouis, F. Lecuy, M. Treguer Centre de Bretagne BP 70, Plouzané 29280 France E-mail: [email protected] Sextant

More information

INTEROPERABLE IMAGE DATA ACCESS THROUGH ARCGIS SERVER

INTEROPERABLE IMAGE DATA ACCESS THROUGH ARCGIS SERVER INTEROPERABLE IMAGE DATA ACCESS THROUGH ARCGIS SERVER Qian Liu Environmental Systems Research Institute 380 New York Street Redlands, CA92373, U.S.A - [email protected] KEY WORDS: OGC, Standard, Interoperability,

More information

VITO Centre of Image Processing

VITO Centre of Image Processing 07/11/2013 VITO Centre of Image Processing Towards an Improved Scientific Exploitation of EO Data Sources in Support of Vegetation Monitoring Erwin Goor, VITO nv Outline» Introduction» The role & and objectives

More information

Web-based spatio-temporal visualization and analysis of the Siberian Earth System Science Cluster (SIB-ESS-C)

Web-based spatio-temporal visualization and analysis of the Siberian Earth System Science Cluster (SIB-ESS-C) Web-based spatio-temporal visualization and analysis of the Siberian Earth System Science Cluster (SIB-ESS-C) Roman Gerlach Supervisor: Prof. C. Schmullius (Dept. of Geography, Friedrich-Schiller-University

More information

HPC technology and future architecture

HPC technology and future architecture HPC technology and future architecture Visual Analysis for Extremely Large-Scale Scientific Computing KGT2 Internal Meeting INRIA France Benoit Lange [email protected] Toàn Nguyên [email protected]

More information

Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo

Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information

<Insert Picture Here> Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases

<Insert Picture Here> Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases Xavier Lopez, Director, Product Management 3D Data Management Technology Drivers: Challenges & Benefits

More information

Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum

Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms

More information

Cloud-based Geospatial Data services and analysis

Cloud-based Geospatial Data services and analysis Cloud-based Geospatial Data services and analysis Xuezhi Wang Scientific Data Center Computer Network Information Center Chinese Academy of Sciences 2014-08-25 Outlines 1 Introduction of Geospatial Data

More information

BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON

BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing

More information

AUTOMATIC AND MANUAL DATA MANAGEMENT - WMS DATA COLLECTION, PROCESSING AND REPRESENTATION

AUTOMATIC AND MANUAL DATA MANAGEMENT - WMS DATA COLLECTION, PROCESSING AND REPRESENTATION AUTOMATIC AND MANUAL DATA MANAGEMENT - WMS DATA COLLECTION, PROCESSING AND REPRESENTATION MAIN FEATURES OF DATA MANAGMENT SOFTWARE WMS (WebMonitoringSystem) Visualization and automatic conversion of data;

More information

A standards-based open source processing chain for ocean modeling in the GEOSS Architecture Implementation Pilot Phase 8 (AIP-8)

A standards-based open source processing chain for ocean modeling in the GEOSS Architecture Implementation Pilot Phase 8 (AIP-8) NATO Science & Technology Organization Centre for Maritime Research and Experimentation (STO-CMRE) Viale San Bartolomeo, 400 19126 La Spezia, Italy A standards-based open source processing chain for ocean

More information

Linking Sensor Web Enablement and Web Processing Technology for Health-Environment Studies

Linking Sensor Web Enablement and Web Processing Technology for Health-Environment Studies Linking Sensor Web Enablement and Web Processing Technology for Health-Environment Studies Simon Jirka 1, Stefan Wiemann 2, Johannes Brauner 2, and Eike Hinderk Jürrens 1 1 52 North Initiative for Geospatial

More information

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

More information

NetCDF and HDF Data in ArcGIS

NetCDF and HDF Data in ArcGIS 2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop NetCDF and HDF Data in ArcGIS Nawajish Noman Kevin Butler Esri UC2013. Technical Workshop. Outline NetCDF

More information

AN OPENGIS WEB MAP SERVER FOR THE ESA MULTI-MISSION CATALOGUE

AN OPENGIS WEB MAP SERVER FOR THE ESA MULTI-MISSION CATALOGUE AN OPENGIS WEB MAP SERVER FOR THE ESA MULTI-MISSION CATALOGUE T. Westin a, *, C. Caspar b, L. Edgardh a, L. Schylberg c a Spacemetric AB, Tingsv 19, 19161 Sollentuna, Sweden - [email protected] b ESA Esrin,

More information

The four (five) Sensors

The four (five) Sensors The four (five) Sensors SWE based sensor integration in the German Indonesian Tsunami Early Warning and Mitigation System project (GITEWS) Rainer Häner, GeoForschungsZentrum Potsdam Content GITEWS: A short

More information

Advanced Image Management using the Mosaic Dataset

Advanced Image Management using the Mosaic Dataset Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Advanced Image Management using the Mosaic Dataset Vinay Viswambharan, Mike Muller Agenda ArcGIS Image Management

More information

GeoKettle: A powerful open source spatial ETL tool

GeoKettle: A powerful open source spatial ETL tool GeoKettle: A powerful open source spatial ETL tool FOSS4G 2010 Dr. Thierry Badard, CTO Spatialytics inc. Quebec, Canada [email protected] Barcelona, Spain Sept 9th, 2010 What is GeoKettle? It is

More information

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of

More information

NASA s Big Data Challenges in Climate Science

NASA s Big Data Challenges in Climate Science NASA s Big Data Challenges in Climate Science Tsengdar Lee, Ph.D. High-end Computing Program Manager NASA Headquarters Presented at IEEE Big Data 2014 Workshop October 29, 2014 1 2 7-km GEOS-5 Nature Run

More information

CLOUD BASED N-DIMENSIONAL WEATHER FORECAST VISUALIZATION TOOL WITH IMAGE ANALYSIS CAPABILITIES

CLOUD BASED N-DIMENSIONAL WEATHER FORECAST VISUALIZATION TOOL WITH IMAGE ANALYSIS CAPABILITIES CLOUD BASED N-DIMENSIONAL WEATHER FORECAST VISUALIZATION TOOL WITH IMAGE ANALYSIS CAPABILITIES M. Laka-Iñurrategi a, I. Alberdi a, K. Alonso b, M. Quartulli a a Vicomteh-IK4, Mikeletegi pasealekua 57,

More information

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing

More information

IBM Netezza High Capacity Appliance

IBM Netezza High Capacity Appliance IBM Netezza High Capacity Appliance Petascale Data Archival, Analysis and Disaster Recovery Solutions IBM Netezza High Capacity Appliance Highlights: Allows querying and analysis of deep archival data

More information

Reprojecting MODIS Images

Reprojecting MODIS Images Reprojecting MODIS Images Why Reprojection? Reasons why reprojection is desirable: 1. Removes Bowtie Artifacts 2. Allows geographic overlays (e.g. coastline, city locations) 3. Makes pretty pictures for

More information

GLOBAL DATA SPATIALLY INTERRELATE SYSTEM FOR SCIENTIFIC BIG DATA SPATIAL-SEAMLESS SHARING

GLOBAL DATA SPATIALLY INTERRELATE SYSTEM FOR SCIENTIFIC BIG DATA SPATIAL-SEAMLESS SHARING GLOBAL DATA SPATIALLY INTERRELATE SYSTEM FOR SCIENTIFIC BIG DATA SPATIAL-SEAMLESS SHARING Jieqing Yu a, Lixin WU b, a, c*, Yizhou Yang c, Xie Lei d, Wang He d a School of Environment Science and Spatial

More information

European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project

European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project Janet Delve, University of Portsmouth Kuldar Aas, National Archives of Estonia Rainer Schmidt, Austrian Institute

More information

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1 Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics

More information

Luncheon Webinar Series May 13, 2013

Luncheon Webinar Series May 13, 2013 Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration

More information

Prognoz Payment System Data Analysis. Description of the solution

Prognoz Payment System Data Analysis. Description of the solution Description of the solution Prognoz, 2015 Content 1. Goals and Tasks. 3 2. Proposed Architecture... 4 3. Functionality... 5 3.1 Payment system operation analysis... 5 3.2 Cash flow monitoring and analysis

More information

OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA

OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,

More information

The ORIENTGATE data platform

The ORIENTGATE data platform Seminar on Proposed and Revised set of indicators June 4-5, 2014 - Belgrade (Serbia) The ORIENTGATE data platform WP2, Action 2.4 Alessandra Nuzzo, Sandro Fiore, Giovanni Aloisio Scientific Computing and

More information

Data Warehouse: Introduction

Data Warehouse: Introduction Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,

More information

Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University. Xu Liang ** University of California, Berkeley

Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University. Xu Liang ** University of California, Berkeley P1.1 AN INTEGRATED DATA MANAGEMENT, RETRIEVAL AND VISUALIZATION SYSTEM FOR EARTH SCIENCE DATASETS Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University Xu Liang ** University

More information

Inge Os Sales Consulting Manager Oracle Norway

Inge Os Sales Consulting Manager Oracle Norway Inge Os Sales Consulting Manager Oracle Norway Agenda Oracle Fusion Middelware Oracle Database 11GR2 Oracle Database Machine Oracle & Sun Agenda Oracle Fusion Middelware Oracle Database 11GR2 Oracle Database

More information

SeaCloudDM: Massive Heterogeneous Sensor Data Management in the Internet of Things

SeaCloudDM: Massive Heterogeneous Sensor Data Management in the Internet of Things SeaCloudDM: Massive Heterogeneous Sensor Data Management in the Internet of Things Jiajie Xu Institute of Software, Chinese Academy of Sciences (ISCAS) 2012-05-15 Outline 1. Challenges in IoT Data Management

More information

A quick overview of geographic information systems (GIS) Uwe Deichmann, DECRG <[email protected]>

A quick overview of geographic information systems (GIS) Uwe Deichmann, DECRG <udeichmann@worldbank.org> A quick overview of geographic information systems (GIS) Uwe Deichmann, DECRG Why is GIS important? A very large share of all types of information has a spatial component ( 80

More information

Big Data Explained. An introduction to Big Data Science.

Big Data Explained. An introduction to Big Data Science. Big Data Explained An introduction to Big Data Science. 1 Presentation Agenda What is Big Data Why learn Big Data Who is it for How to start learning Big Data When to learn it Objective and Benefits of

More information

NASA Earth System Science: Structure and data centers

NASA Earth System Science: Structure and data centers SUPPLEMENT MATERIALS NASA Earth System Science: Structure and data centers NASA http://nasa.gov/ NASA Mission Directorates Aeronautics Research Exploration Systems Science http://nasascience.nasa.gov/

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 15 - Data Warehousing: Cubes

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 15 - Data Warehousing: Cubes CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 15 - Data Warehousing: Cubes Final Exam Overview Open books and open notes No laptops and no other mobile devices

More information

OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP

OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key

More information

Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies

Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data: Global Digital Data Growth Growing leaps and bounds by 40+% Year over Year! 2009 =.8 Zetabytes =.08

More information

Integrating Ingres in the Information System: An Open Source Approach

Integrating Ingres in the Information System: An Open Source Approach Integrating Ingres in the Information System: WHITE PAPER Table of Contents Ingres, a Business Open Source Database that needs Integration... 3 Scenario 1: Data Migration... 4 Scenario 2: e-business Application

More information

SURFsara Data Services

SURFsara Data Services SURFsara Data Services SUPPORTING DATA-INTENSIVE SCIENCES Mark van de Sanden The world of the many Many different users (well organised (international) user communities, research groups, universities,

More information

RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE

RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE WANG Jizhou, LI Chengming Institute of GIS, Chinese Academy of Surveying and Mapping No.16, Road Beitaiping, District Haidian, Beijing, P.R.China,

More information

Smart Cities require Geospatial Data Providing services to citizens, enterprises, visitors...

Smart Cities require Geospatial Data Providing services to citizens, enterprises, visitors... Cloud-based Spatial Data Infrastructures for Smart Cities Geospatial World Forum 2015 Hans Viehmann Product Manager EMEA ORACLE Corporation Smart Cities require Geospatial Data Providing services to citizens,

More information

Developing Business Intelligence and Data Visualization Applications with Web Maps

Developing Business Intelligence and Data Visualization Applications with Web Maps Developing Business Intelligence and Data Visualization Applications with Web Maps Introduction Business Intelligence (BI) means different things to different organizations and users. BI often refers to

More information

GEOG 482/582 : GIS Data Management. Lesson 10: Enterprise GIS Data Management Strategies GEOG 482/582 / My Course / University of Washington

GEOG 482/582 : GIS Data Management. Lesson 10: Enterprise GIS Data Management Strategies GEOG 482/582 / My Course / University of Washington GEOG 482/582 : GIS Data Management Lesson 10: Enterprise GIS Data Management Strategies Overview Learning Objective Questions: 1. What are challenges for multi-user database environments? 2. What is Enterprise

More information

VISUAL INSPECTION OF EO DATA AND PRODUCTS - OVERVIEW

VISUAL INSPECTION OF EO DATA AND PRODUCTS - OVERVIEW WMS services from the EUMETSAT real-time Image Gallery Uwe Voges (1), Michael Schick (2), Udo Einspanier (1) (1) con terra GmbH Martin-Luther-King-Weg 24, 48155, Münster, Germany EMail: (U.Voges U.Einspanier)@conterra.de

More information

M2074 - Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000 5 Day Course

M2074 - Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000 5 Day Course Module 1: Introduction to Data Warehousing and OLAP Introducing Data Warehousing Defining OLAP Solutions Understanding Data Warehouse Design Understanding OLAP Models Applying OLAP Cubes At the end of

More information

Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence

Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Appliances and DW Architectures John O Brien President and Executive Architect Zukeran Technologies 1 TDWI 1 Agenda What

More information

GIS Databases With focused on ArcSDE

GIS Databases With focused on ArcSDE Linköpings universitet / IDA / Div. for human-centered systems GIS Databases With focused on ArcSDE Imad Abugessaisa [email protected] 20071004 1 GIS and SDBMS Geographical data is spatial data whose

More information

ArcGIS. Server. A Complete and Integrated Server GIS

ArcGIS. Server. A Complete and Integrated Server GIS ArcGIS Server A Complete and Integrated Server GIS ArcGIS Server A Complete and Integrated Server GIS ArcGIS Server enables you to distribute maps, models, and tools to others within your organization

More information

Obtaining and Processing MODIS Data

Obtaining and Processing MODIS Data Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,

More information

Chapter 5. Warehousing, Data Acquisition, Data. Visualization

Chapter 5. Warehousing, Data Acquisition, Data. Visualization Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives

More information

AN INTEGRATION APPROACH FOR THE STATISTICAL INFORMATION SYSTEM OF ISTAT USING SDMX STANDARDS

AN INTEGRATION APPROACH FOR THE STATISTICAL INFORMATION SYSTEM OF ISTAT USING SDMX STANDARDS Distr. GENERAL Working Paper No.2 26 April 2007 ENGLISH ONLY UNITED NATIONS STATISTICAL COMMISSION and ECONOMIC COMMISSION FOR EUROPE CONFERENCE OF EUROPEAN STATISTICIANS EUROPEAN COMMISSION STATISTICAL

More information

Jozef Matula. Visualisation Team Leader IBL Software Engineering. 13 th ECMWF MetOps Workshop, 31 th Oct - 4 th Nov 2011, Reading, United Kingdom

Jozef Matula. Visualisation Team Leader IBL Software Engineering. 13 th ECMWF MetOps Workshop, 31 th Oct - 4 th Nov 2011, Reading, United Kingdom Visual Weather web services Jozef Matula Visualisation Team Leader IBL Software Engineering Outline Visual Weather in a nutshell. Path from Visual Weather (as meteorological workstation) to Web Server

More information

White Paper. How Streaming Data Analytics Enables Real-Time Decisions

White Paper. How Streaming Data Analytics Enables Real-Time Decisions White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream

More information

Big Data in the context of Preservation and Value Adding

Big Data in the context of Preservation and Value Adding Big Data in the context of Preservation and Value Adding R. Leone, R. Cosac, I. Maggio, D. Iozzino ESRIN 06/11/2013 ESA UNCLASSIFIED Big Data Background ESA/ESRIN organized a 'Big Data from Space' event

More information

SuperGIS Server 3.2 Standard Edition Specification

SuperGIS Server 3.2 Standard Edition Specification SuperGIS Server 3.2 Standard Edition Specification 20140826 Specification 1. All of the services support SOAP (Simple Object Access Protocol). 2. Use map file created by SuperGIS Desktop as map services

More information

Data Warehousing and OLAP Technology for Knowledge Discovery

Data Warehousing and OLAP Technology for Knowledge Discovery 542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories

More information

BUILDING BLOCKS OF DATAWAREHOUSE. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT

BUILDING BLOCKS OF DATAWAREHOUSE. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT BUILDING BLOCKS OF DATAWAREHOUSE G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT 1 Data Warehouse Subject Oriented Organized around major subjects, such as customer, product, sales. Focusing on

More information

The distribution of marine OpenData via distributed data networks and Web APIs. The example of ERDDAP, the message broker and data mediator from NOAA

The distribution of marine OpenData via distributed data networks and Web APIs. The example of ERDDAP, the message broker and data mediator from NOAA The distribution of marine OpenData via distributed data networks and Web APIs. The example of ERDDAP, the message broker and data mediator from NOAA Dr. Conor Delaney 9 April 2014 GeoMaritime, London

More information

Supercomputing and Big Data: Where are the Real Boundaries and Opportunities for Synergy?

Supercomputing and Big Data: Where are the Real Boundaries and Opportunities for Synergy? HPC2012 Workshop Cetraro, Italy Supercomputing and Big Data: Where are the Real Boundaries and Opportunities for Synergy? Bill Blake CTO Cray, Inc. The Big Data Challenge Supercomputing minimizes data

More information

DATA WAREHOUSING AND OLAP TECHNOLOGY

DATA WAREHOUSING AND OLAP TECHNOLOGY DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are

More information

BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research &

BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & Innovation 04-08-2011 to the EC 8 th February, Luxembourg Your Atos business Research technologists. and Innovation

More information

TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira

TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira GEOSS Users & Architecture Workshop XXIV: Water Security & Governance - Accra Ghana / October 2008 INPE National Institute

More information