Data Warehouse: Introduction
|
|
|
- Julie Baldwin
- 10 years ago
- Views:
Transcription
1 Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group, base and data mining group, Decision support systems Introduction Huge operational databases are available in most companies these databases may provide a large wealth of useful information Decision support systems provide means for in depth analysis of a company s business faster and better decisions INTRODUCTION - 1 INTRODUCTION - 2 base and data mining group, Strategic decision support Demand evolution analysis and forecast Critical business areas identification Budgeting and management transparency reporting, practices against frauds and money laundering Identification and implementation of winning strategies cost reduction and profit increase Business Intelligence base and data mining group, BI provides support to strategic decision support in companies Objective: transforming company data into actionable information at different detail s for analysis applications Users may have heterogeneous needs BI requires an appropriate hardware and software infrastructure INTRODUCTION - 3 INTRODUCTION - 4 Applications base and data mining group, Manifacturing companies: order management, client support Distribution: user profile, stock management Financial services: buyer behavior (credit cards) Insurance: claim analysis, fraud detection Telecommunication: call analysis, churning, fraud detection Public service: usage analysis Health: service analysis and evaluation base and data mining group, base devoted to decision support, which is kept separate from company operational databases which is devoted to a specific subject Integrated and consistent time dependent, non volatile used for decision support in a company W. H. Inmon, Building the data warehouse, 1992 INTRODUCTION - 5 INTRODUCTION - 6 Pag. 1
2 Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Why separate data? base and data mining group, base and data mining group, Performance complex queries reduce performance of operational transaction management different access methods at the physical management missing information (e.g., history) data consolidation data quality (inconsistency problems) structure and data analysis INTRODUCTION - 7 INTRODUCTION - 8 base and data mining group, Multidimensional representation base and data mining group, Multidimensional representation are represented as an (hyper)cube with three or more dimensions Measures on which analysis is performed: cells at dimension intersection for tracking sales in a supermarket chain: dimensions: product, shop, time measures: sold quantity, sold amount,... INTRODUCTION - 9 date INTRODUCTION - 10 shop SupShop MilkTTT product From Golfarelli, Rizzi, warehouse, teoria e pratica della progettazione, McGraw Hill 2006 base and data mining group, Relational representation: star model Numerical measures stored in the fact table attribute domain is numeric Dimensions describe the context of each measure in the fact table characterized by many descriptive attributes Example for tracking sales in a supermarket chain base and data mining group, Shop Sale Product Date INTRODUCTION - 11 INTRODUCTION - 12 Pag. 2
3 Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of size base and data mining group, Time dimension: 2 years x 365 days Shop dimension: 300 shops Product dimension: products, of which sold every day in every shop Number of rows in the fact table: 730 x 300 x 3000 = 657 millions Size of the fact table 21GB analysis base and data mining group, OLAP analysis: complex aggregate function computation support to different types of aggregate functions (e.g., moving average, top ten) analysis by means of data mining techniques various analysis types significant algorithmic contribution INTRODUCTION - 13 INTRODUCTION - 14 analysis base and data mining group, Presentation separate activity: data returned by a query may be rendered by means of different presentation Motivation search exploration by means of progressive, incremental refinements (e.g., drill down) architectures base and data mining group, INTRODUCTION - 15 INTRODUCTION - 16 base and data mining group, architectures Separation between transactional computing and data analysis avoid one architectures Architectures characterized by two or more s separate to a different extent data incoming into the data warehouse from analyzed data more scalable base and data mining group, : architecture (External) data sources ETL marts INTRODUCTION - 17 INTRODUCTION - 18 Pag. 3
4 Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group, and data mart Company data warehouse: it contains all the information on the company business extensive functional modelling process design and implementation require a long time mart: departimental information subset focused on a given subject twoarchitectures dependent, fed by the company data warehouse independent, fed directly by the sources faster implementation requires careful design, to avoid subsequent data mart integration problems base and data mining group, Servers for Warehouses ROLAP (Relational OLAP) server extended relational DBMS compact representation for sparse data SQL extensions for aggregate computation specialized access methods which implement efficient OLAP data access MOLAP (Multidimensional OLAP) server data represented in proprietary (multidimensional) matrix format sparse data require compression special OLAP primitives HOLAP (Hybrid OLAP) server INTRODUCTION - 19 INTRODUCTION - 20 base and data mining group, Extraction, Transformation and Loading (ETL) Prepares data to be loaded into the data warehouse data extraction from (OLTP and external) sources data cleaning data transformation data loading Performed when the DW is first loaded during periodical DW refresh ETL process base and data mining group, extraction: data acquisition from sources cleaning: techniques for improving data quality (correctness and consistency) transformation: data conversion from operational format to data warehouse format loading: update propagation to the data warehouse INTRODUCTION - 21 INTRODUCTION - 22 INTRODUCTION - 23 base and data mining group, metadata = data about data Different types of metadata: for data transformation and loading: describe data sources and needed transformation operations Useful using a common notation to represent data sources and data after transformation CWMI (Common Warehouse Initiative): standard proposed by OMG to exchange data between DW and repository of metadata in heterogenous and distributed environments for data management: describe the structure of the data in the data warehouse also for materialized view for query management: data on query structure and to monitor query execution SQL code for the query execution plan memory and CPU usage Two architecture sources (operational and esternal) Source ETL marts From Golfarelli, Rizzi,, teoria e pratica della progettazione, McGraw Hill 2006 INTRODUCTION - 24 base and data mining group, analysis Pag. 4
5 Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Two architecture features INTRODUCTION - 25 base and data mining group, Decoupling between source and DW data management of external (not OLTP) data sources (e.g., text files) data modelling suited for OLAP analysis physical design tailored for OLAP load Easy management of different temporal granularity of operational and analytical data Partitioning between transactional and analytical load On the fly data transformation and cleaning (ETL) ETL sources (operational and external) Source Three architecture Staging area ETL Loading marts From Golfarelli, Rizzi,, teoria e pratica della progettazione, McGraw Hill 2006 INTRODUCTION - 26 base and data mining group, analysis Three architecture features base and data mining group, Staging area: buffer area allowing the separation between ET management and data warehouse loading complex transformation and cleaning operations are eased provides an integrated model of business data, still close to OLTP representation sometime denoted as Operational Store (ODS) Introduces further redundancy more disk space is required for data storage INTRODUCTION - 27 Pag. 5
Data warehouse Architectures and processes
Database and data mining group, Data warehouse Architectures and processes DATA WAREHOUSE: ARCHITECTURES AND PROCESSES - 1 Database and data mining group, Data warehouse architectures Separation between
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application
Data warehouse design
DataBase and Data Mining Group of DataBase and Data Mining Group of DataBase and Data Mining Group of Database and data mining group, Data warehouse design DATA WAREHOUSE: DESIGN - 1 Risk factors Database
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Part 22. Data Warehousing
Part 22 Data Warehousing The Decision Support System (DSS) Tools to assist decision-making Used at all levels in the organization Sometimes focused on a single area Sometimes focused on a single problem
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1
Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics
IST722 Data Warehousing
IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF
CHAPTER 4 Data Warehouse Architecture
CHAPTER 4 Data Warehouse Architecture 4.1 Data Warehouse Architecture 4.2 Three-tier data warehouse architecture 4.3 Types of OLAP servers: ROLAP versus MOLAP versus HOLAP 4.4 Further development of Data
Moving Large Data at a Blinding Speed for Critical Business Intelligence. A competitive advantage
Moving Large Data at a Blinding Speed for Critical Business Intelligence A competitive advantage Intelligent Data In Real Time How do you detect and stop a Money Laundering transaction just about to take
Hybrid Support Systems: a Business Intelligence Approach
Journal of Applied Business Information Systems, 2(2), 2011 57 Journal of Applied Business Information Systems http://www.jabis.ro Hybrid Support Systems: a Business Intelligence Approach Claudiu Brandas
DATA WAREHOUSING - OLAP
http://www.tutorialspoint.com/dwh/dwh_olap.htm DATA WAREHOUSING - OLAP Copyright tutorialspoint.com Online Analytical Processing Server OLAP is based on the multidimensional data model. It allows managers,
Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University
Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES MUHAMMAD KHALEEL (0912125) SZABIST KARACHI CAMPUS Abstract. Data warehouse and online analytical processing (OLAP) both are core component for decision
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
MDM and Data Warehousing Complement Each Other
Master Management MDM and Warehousing Complement Each Other Greater business value from both 2011 IBM Corporation Executive Summary Master Management (MDM) and Warehousing (DW) complement each other There
Why Business Intelligence
Why Business Intelligence Ferruccio Ferrando z IT Specialist Techline Italy March 2011 page 1 di 11 1.1 The origins In the '50s economic boom, when demand and production were very high, the only concern
Data Warehouse Overview. Srini Rengarajan
Data Warehouse Overview Srini Rengarajan Please mute Your cell! Agenda Data Warehouse Architecture Approaches to build a Data Warehouse Top Down Approach Bottom Up Approach Best Practices Case Example
BUILDING BLOCKS OF DATAWAREHOUSE. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT
BUILDING BLOCKS OF DATAWAREHOUSE G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT 1 Data Warehouse Subject Oriented Organized around major subjects, such as customer, product, sales. Focusing on
Innovative technology for big data analytics
Technical white paper Innovative technology for big data analytics The HP Vertica Analytics Platform database provides price/performance, scalability, availability, and ease of administration Table of
[callout: no organization can afford to deny itself the power of business intelligence ]
Publication: Telephony Author: Douglas Hackney Headline: Applied Business Intelligence [callout: no organization can afford to deny itself the power of business intelligence ] [begin copy] 1 Business Intelligence
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
Advanced Data Management Technologies
ADMT 2015/16 Unit 2 J. Gamper 1/44 Advanced Data Management Technologies Unit 2 Basic Concepts of BI and Data Warehousing J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE Acknowledgements:
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Appliances and DW Architectures John O Brien President and Executive Architect Zukeran Technologies 1 TDWI 1 Agenda What
This tutorial will help computer science graduates to understand the basic-toadvanced concepts related to data warehousing.
About the Tutorial A data warehouse is constructed by integrating data from multiple heterogeneous sources. It supports analytical reporting, structured and/or ad hoc queries and decision making. This
Overview. DW Source Integration, Tools, and Architecture. End User Applications (EUA) EUA Concepts. DW Front End Tools. Source Integration
DW Source Integration, Tools, and Architecture Overview DW Front End Tools Source Integration DW architecture Original slides were written by Torben Bach Pedersen Aalborg University 2007 - DWML course
When to consider OLAP?
When to consider OLAP? Author: Prakash Kewalramani Organization: Evaltech, Inc. Evaltech Research Group, Data Warehousing Practice. Date: 03/10/08 Email: [email protected] Abstract: Do you need an OLAP
Business Intelligence, Data warehousing Concept and artifacts
Business Intelligence, Data warehousing Concept and artifacts Data Warehousing is the process of constructing and using the data warehouse. The data warehouse is constructed by integrating the data from
Monitoring Genebanks using Datamarts based in an Open Source Tool
Monitoring Genebanks using Datamarts based in an Open Source Tool April 10 th, 2008 Edwin Rojas Research Informatics Unit (RIU) International Potato Center (CIP) GPG2 Workshop 2008 Datamarts Motivation
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Content Problems of managing data resources in a traditional file environment Capabilities and value of a database management
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
OLAP Systems and Multidimensional Expressions I
OLAP Systems and Multidimensional Expressions I Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Software Development Technologies Master
A Critical Review of Data Warehouse
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin
Data Warehousing Concepts
Data Warehousing Concepts JB Software and Consulting Inc 1333 McDermott Drive, Suite 200 Allen, TX 75013. [[[[[ DATA WAREHOUSING What is a Data Warehouse? Decision Support Systems (DSS), provides an analysis
Hybrid OLAP, An Introduction
Hybrid OLAP, An Introduction Richard Doherty SAS Institute European HQ Agenda Hybrid OLAP overview Building your data model Architectural decisions Metadata creation Report definition Hybrid OLAP overview
SAS BI Course Content; Introduction to DWH / BI Concepts
SAS BI Course Content; Introduction to DWH / BI Concepts SAS Web Report Studio 4.2 SAS EG 4.2 SAS Information Delivery Portal 4.2 SAS Data Integration Studio 4.2 SAS BI Dashboard 4.2 SAS Management Console
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
Turkish Journal of Engineering, Science and Technology
Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server
Data warehouse and Business Intelligence Collateral
Data warehouse and Business Intelligence Collateral Page 1 of 12 DATA WAREHOUSE AND BUSINESS INTELLIGENCE COLLATERAL Brains for the corporate brawn: In the current scenario of the business world, the competition
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
Ramesh Bhashyam Teradata Fellow Teradata Corporation [email protected]
Challenges of Handling Big Data Ramesh Bhashyam Teradata Fellow Teradata Corporation [email protected] Trend Too much information is a storage issue, certainly, but too much information is also
70-467: Designing Business Intelligence Solutions with Microsoft SQL Server
70-467: Designing Business Intelligence Solutions with Microsoft SQL Server The following tables show where changes to exam 70-467 have been made to include updates that relate to SQL Server 2014 tasks.
Business Intelligence Solutions. Cognos BI 8. by Adis Terzić
Business Intelligence Solutions Cognos BI 8 by Adis Terzić Fairfax, Virginia August, 2008 Table of Content Table of Content... 2 Introduction... 3 Cognos BI 8 Solutions... 3 Cognos 8 Components... 3 Cognos
<Insert Picture Here> Enhancing the Performance and Analytic Content of the Data Warehouse Using Oracle OLAP Option
Enhancing the Performance and Analytic Content of the Data Warehouse Using Oracle OLAP Option The following is intended to outline our general product direction. It is intended for
Course 103402 MIS. Foundations of Business Intelligence
Oman College of Management and Technology Course 103402 MIS Topic 5 Foundations of Business Intelligence CS/MIS Department Organizing Data in a Traditional File Environment File organization concepts Database:
LEARNING SOLUTIONS website milner.com/learning email [email protected] phone 800 875 5042
Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300
Data Warehousing. Jens Teubner, TU Dortmund [email protected]. Winter 2015/16. Jens Teubner Data Warehousing Winter 2015/16 1
Jens Teubner Data Warehousing Winter 2015/16 1 Data Warehousing Jens Teubner, TU Dortmund [email protected] Winter 2015/16 Jens Teubner Data Warehousing Winter 2015/16 13 Part II Overview
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Description: This five-day instructor-led course teaches students how to design and implement a BI infrastructure. The
Introduction to Datawarehousing
DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Master of Science in Engineering in Computer Science (MSE-CS) Seminars in Software and Services for the Information Society
Week 13: Data Warehousing. Warehousing
1 Week 13: Data Warehousing Warehousing Growing industry: $8 billion in 1998 Range from desktop to huge: Walmart: 900-CPU, 2,700 disk, 23TB Teradata system Lots of buzzwords, hype slice & dice, rollup,
A DATA WAREHOUSE SOLUTION FOR E-GOVERNMENT
A DATA WAREHOUSE SOLUTION FOR E-GOVERNMENT Xiufeng Liu 1 & Xiaofeng Luo 2 1 Department of Computer Science Aalborg University, Selma Lagerlofs Vej 300, DK-9220 Aalborg, Denmark 2 Telecommunication Engineering
Safe Harbor Statement
Safe Harbor Statement "Safe Harbor" Statement: Statements in this presentation relating to Oracle's future plans, expectations, beliefs, intentions and prospects are "forward-looking statements" and are
Data Warehouse Design
Data Warehouse Design Modern Principles and Methodologies Matteo Golfarelli Stefano Rizzi Translated by Claudio Pagliarani Mc Grauu Hill New York Chicago San Francisco Lisbon London Madrid Mexico City
Lection 3-4 WAREHOUSING
Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing
III JORNADAS DE DATA MINING
III JORNADAS DE DATA MINING EN EL MARCO DE LA MAESTRÍA EN DATA MINING DE LA UNIVERSIDAD AUSTRAL PRESENTACIÓN TECNOLÓGICA IBM Alan Schcolnik, Cognos Technical Sales Team Leader, IBM Software Group. IAE
Introduction to Data Warehousing. Ms Swapnil Shrivastava [email protected]
Introduction to Data Warehousing Ms Swapnil Shrivastava [email protected] Necessity is the mother of invention Why Data Warehouse? Scenario 1 ABC Pvt Ltd is a company with branches at Mumbai,
Data Warehouse Logical Design. Letizia Tanca Politecnico di Milano (with the kind support of Rosalba Rossato)
Data Warehouse Logical Design Letizia Tanca Politecnico di Milano (with the kind support of Rosalba Rossato) Data Mart logical models MOLAP (Multidimensional On-Line Analytical Processing) stores data
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
Master Data Management and Data Warehousing. Zahra Mansoori
Master Data Management and Data Warehousing Zahra Mansoori 1 1. Preference 2 IT landscape growth IT landscapes have grown into complex arrays of different systems, applications, and technologies over the
CS2032 Data warehousing and Data Mining Unit II Page 1
UNIT II BUSINESS ANALYSIS Reporting Query tools and Applications The data warehouse is accessed using an end-user query and reporting tool from Business Objects. Business Objects provides several tools
Integrating SAP and non-sap data for comprehensive Business Intelligence
WHITE PAPER Integrating SAP and non-sap data for comprehensive Business Intelligence www.barc.de/en Business Application Research Center 2 Integrating SAP and non-sap data Authors Timm Grosser Senior Analyst
W H I T E P A P E R B u s i n e s s I n t e l l i g e n c e S o lutions from the Microsoft and Teradata Partnership
W H I T E P A P E R B u s i n e s s I n t e l l i g e n c e S o lutions from the Microsoft and Teradata Partnership Sponsored by: Microsoft and Teradata Dan Vesset October 2008 Brian McDonough Global Headquarters:
Data Warehouse: Introduction
DataBase and Data Mining Grup f Plitecnic di Trin DataBase and Data Mining Grup f Plitecnic di Trin DataBase and Data Mining Grup f Plitecnic di Trin DataBase and Data Mining Grup f Plitecnic di Trin DataBase
Large Telecommunications Company Gains Full Customer View, Boosts Monthly Revenue, Cuts IT Costs by $3 Million
Microsoft Business Intelligence Customer Solution Case Study Large Telecommunications Company Gains Full Customer View, Boosts Monthly Revenue, Cuts IT Costs by $3 Million Overview Country or Region: United
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Problem: HP s numerous systems unable to deliver the information needed for a complete picture of business operations, lack of
Practical Considerations for Real-Time Business Intelligence. Donovan Schneider Yahoo! September 11, 2006
Practical Considerations for Real-Time Business Intelligence Donovan Schneider Yahoo! September 11, 2006 Outline Business Intelligence (BI) Background Real-Time Business Intelligence Examples Two Requirements
Data Warehousing: Data Models and OLAP operations. By Kishore Jaladi [email protected]
Data Warehousing: Data Models and OLAP operations By Kishore Jaladi [email protected] Topics Covered 1. Understanding the term Data Warehousing 2. Three-tier Decision Support Systems 3. Approaches
INTERACTIVE DECISION SUPPORT SYSTEM BASED ON ANALYSIS AND SYNTHESIS OF DATA - DATA WAREHOUSE
INTERACTIVE DECISION SUPPORT SYSTEM BASED ON ANALYSIS AND SYNTHESIS OF DATA - DATA WAREHOUSE Prof. Georgeta Şoavă Ph. D University of Craiova Faculty of Economics and Business Administration, Craiova,
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Data Warehousing and Data Mining
Data Warehousing and Data Mining Part I: Data Warehousing Gao Cong [email protected] Slides adapted from Man Lung Yiu and Torben Bach Pedersen Course Structure Business intelligence: Extract knowledge
Databases in Organizations
The following is an excerpt from a draft chapter of a new enterprise architecture text book that is currently under development entitled Enterprise Architecture: Principles and Practice by Brian Cameron
Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring
www.ijcsi.org 78 Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring Mohammed Mohammed 1 Mohammed Anad 2 Anwar Mzher 3 Ahmed Hasson 4 2 faculty
University of Gaziantep, Department of Business Administration
University of Gaziantep, Department of Business Administration The extensive use of information technology enables organizations to collect huge amounts of data about almost every aspect of their businesses.
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
Data W a Ware r house house and and OLAP II Week 6 1
Data Warehouse and OLAP II Week 6 1 Team Homework Assignment #8 Using a data warehousing tool and a data set, play four OLAP operations (Roll up (drill up), Drill down (roll down), Slice and dice, Pivot
Jagir Singh, Greeshma, P Singh University of Northern Virginia. Abstract
224 Business Intelligence Journal July DATA WAREHOUSING Ofori Boateng, PhD Professor, University of Northern Virginia BMGT531 1900- SU 2011 Business Intelligence Project Jagir Singh, Greeshma, P Singh
Week 3 lecture slides
Week 3 lecture slides Topics Data Warehouses Online Analytical Processing Introduction to Data Cubes Textbook reference: Chapter 3 Data Warehouses A data warehouse is a collection of data specifically
Data Warehousing. Outline. From OLTP to the Data Warehouse. Overview of data warehousing Dimensional Modeling Online Analytical Processing
Data Warehousing Outline Overview of data warehousing Dimensional Modeling Online Analytical Processing From OLTP to the Data Warehouse Traditionally, database systems stored data relevant to current business
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies Ashish Gahlot, Manoj Yadav Dronacharya college of engineering Farrukhnagar, Gurgaon,Haryana Abstract- Data warehousing, Data Mining,
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000
2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000 Introduction This course provides students with the knowledge and skills necessary to design, implement, and deploy OLAP
OLAP & DATA MINING CS561-SPRING 2012 WPI, MOHAMED ELTABAKH
OLAP & DATA MINING CS561-SPRING 2012 WPI, MOHAMED ELTABAKH 1 Online Analytic Processing OLAP 2 OLAP OLAP: Online Analytic Processing OLAP queries are complex queries that Touch large amounts of data Discover
Business Intelligence : a primer
Business Intelligence : a primer Rev April 2012 - Gianmario Motta [email protected] Introduction & overview The paradigm of BI systems Platforms Appendix Review questions Introduction & overview Business
The Cubetree Storage Organization
The Cubetree Storage Organization Nick Roussopoulos & Yannis Kotidis Advanced Communication Technology, Inc. Silver Spring, MD 20905 Tel: 301-384-3759 Fax: 301-384-3679 {nick,kotidis}@act-us.com 1. Introduction
CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University
CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University Given today s business environment, at times a corporate executive
Presented by: Jose Chinchilla, MCITP
Presented by: Jose Chinchilla, MCITP Jose Chinchilla MCITP: Database Administrator, SQL Server 2008 MCITP: Business Intelligence SQL Server 2008 Customers & Partners Current Positions: President, Agile
IT0457 Data Warehousing. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT
IT0457 Data Warehousing G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT Outline What is data warehousing The benefit of data warehousing Differences between OLTP and data warehousing The architecture
Retail POS Data Analytics Using MS Bi Tools. Business Intelligence White Paper
Retail POS Data Analytics Using MS Bi Tools Business Intelligence White Paper Introduction Overview There is no doubt that businesses today are driven by data. Companies, big or small, take so much of
