SeaCloudDM: Massive Heterogeneous Sensor Data Management in the Internet of Things
|
|
|
- Moris Allison
- 9 years ago
- Views:
Transcription
1 SeaCloudDM: Massive Heterogeneous Sensor Data Management in the Internet of Things Jiajie Xu Institute of Software, Chinese Academy of Sciences (ISCAS)
2 Outline 1. Challenges in IoT Data Management 2. SeaCloudDM: Architectures and Solutions 3. Conclusion
3 Outline 1. Research Bac 2. SeaCloudDM: Architecture and Solutions 3. Conclusion
4 Background Internet of Things: The Internet of Things (IoT) refers to uniquely identifiable objects (things) and their virtual representations in an Internet-like structure. IoT-CloudDB Query Processing Applications Universal IoT data management platform intelligent Acquire Store Process Use
5 Challenges and Limitations 1 An IoT system may contain various kinds of sensors whose sampling data have heterogeneous data structures (heterogeneity) For instance, traffic sensors: GPS sensors RFID readers video-based traffic-flow analysis sensors, traffic loop sensors road condition sensors...
6 Challenges and Limitations 2 The data to be managed in IoT are massive, dynamic data Multimedia Data from video cameras, telemetric devices, and other similar devices; Moving Objects Databases Sensor data are sampled frequently, resulting in large data size; Sensor data are dynamically change data streams with arriving of new data and deleting of old data.
7 Challenges and Limitations 3 Spatial-temporal attribute is intrinsic for IoT data (Spatial- Temporal Logic) Queries can not be answered through keyword match with SensorID. Instead, through Spatial-Temporal Constrains; Queries can not be answered through keyword match with Time-stamps. Instead, through Spatial-Temporal interpolations.
8 Outline 1. Research Background 2. SeaCloudDM: Architectures and So 3. Conclusion
9 Architecture of Sea-Cloud-based massive heterogeneous sensor Data Management (SeaCloudDM) framework Data Analysis & Application Layer Cloud Data Management Layer Sensor Deployment Layer Sea-Computing Layer OLAP, Statistical Analysis & Data Mining based on Massive Sensor Data Information Retrieval and Intelligent Recommendation IoT Applications (ITS, Smart-Grid, Emergency Management ) RDB-KV Cloud: Relational-DB and Key-Value Combined Cloud Storage RDB-KV DB: Unified DB for Heterogeneous Sensor Data Management Sea-Computing: Sensor Connection & Raw Sampling Data Processing Sea-Cloud-based Cooperative Data Management Mechanism Sea-Computing Node Sea-Computing Node Sea-Computing Node Sea-Computing Node Sea-Computing Node Sea-Computing Node traffic sensors hydrological sensors geological sensors video analysis sensors telemetric analysis sensors moving video analysis sensors
10 1. Sea-Data Processing Mechanism Key samplings (numerical) Heterogeneous input from various kinds of sensors, standardized (uniform) output data to Cloud Data management layer ; SamplingValue = (t, (x, y), npos, schema, value) SamplingSequence=(schema, (t, ((x, y), npos, value, flag))) Derived Numerical Values Multimedia Analysis Extraction of Key Samplings Numerical Samplings RFID Samplings Multimedia data analysis: multimedia data numerical data; Key samplings identification and extraction Multimedia Samplings State-threshold based extraction method.
11 2. Cloud-Data Management Mechanism Relational DataBase and Key-Value store combined (RDB-KV) model Homogeneous database nodes for heterogeneous sensor sampling data (both historical and present); DBMS-kernel based data types, operators and indices for sensor data management, supporting both SQL and keyword search; Sensor Sampling Sequence: for data stream and for spatialtemporal interpolation query processing. RDB-KV Cloud SQL / ST-Logic Keyword Search
12 2. Cloud-Data Management Mechanism (Cont d) RDB-KV Database for Uniformed Storage of Heterogeneous Sensor Data Example: Data Types, Operators for sensor sampling data Operators Data Types Spatial-Temporal Queries Keyword Queries
13 2. Cloud-Data Management Mechanism (Cont d) Sensor-Sampling-Sequence Spatial-Temporal Tree (S4T-Tree) Spatial R-Tree Index static objects Grid-Sketched Spatial-Temporal R-Tree Index moving objects T Grid Cell MBR 1 MBR 2 Sketched Trajectory Original Trajectory Y X Original Trajectory Unit MBR 3 MBR 4 MBR 5 MBR 6 stu 1 stu 3 stu 2 stu 4 stu 8 stu 5 stu 9 stu n Maximum Bounding Rectangle (MBR) Sketched Trajectory Unit (STUs) RDB + KV Database Engine: Keyword-Tuple Reverted-File Index keysearch Operator
14 2. Cloud-Data Management Mechanism (Cont d) RDB-KV Cloud for Management of Massive Sensor Sampling Data Geo-based Data distribution: Sampling sequence truncation; Home (registered) location based distribution (Hilbert Curve Symbolization). Global Indices: Spatial-Temporal, Keyword index master 根 Root 结 点 Node master Keyword Range Partition Table t site 1 site 2 site 3 site 4 叶 Leaf 结 点 Nodes site 1 site 2 site 3 site 4 叶 Leaf 结 点 Node s 的 管 辖 Service 区 域 Area KeywordsiteID Mapping B+ Tree α(site 1 ) α(site 2 ) α(site 4 ) α(site 3 ) IoTData Table FTKB+ - Tree
15 Outline 1. Research Background 2. SeaCloudDM: Architectures and Solutions
16 Conclusion SeaCloudDM framework with a sea-cloud-based cooperative data management mechanism is proposed; Sea (70%~90%) + Cloud (10%~30%) Data Management A RDB-KV database model is proposed, with related data types, operators, and indices defined; manages heterogeneous sensor sampling data in a uniformed manner A RDB-KV cloud data management model is proposed to manage massive sensor sampling data. combines the advantages of both relational databases and key-value stores
17 Thanks!
ANIMATION a system for animation scene and contents creation, retrieval and display
ANIMATION a system for animation scene and contents creation, retrieval and display Peter L. Stanchev Kettering University ABSTRACT There is an increasing interest in the computer animation. The most of
CUBE INDEXING IMPLEMENTATION USING INTEGRATION OF SIDERA AND BERKELEY DB
CUBE INDEXING IMPLEMENTATION USING INTEGRATION OF SIDERA AND BERKELEY DB Badal K. Kothari 1, Prof. Ashok R. Patel 2 1 Research Scholar, Mewar University, Chittorgadh, Rajasthan, India 2 Department of Computer
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Monitoring and Mining Sensor Data in Cloud Computing Environments
Monitoring and Mining Sensor Data in Cloud Computing Environments Wen-Chih Peng and Yu-Chee Tseng Dept. of Computer Science National Chiao Tung University {wcpeng, yctseng}@cs.nctu.edu.tw 1 Outline Sensor
The basic data mining algorithms introduced may be enhanced in a number of ways.
DATA MINING TECHNOLOGIES AND IMPLEMENTATIONS The basic data mining algorithms introduced may be enhanced in a number of ways. Data mining algorithms have traditionally assumed data is memory resident,
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Transforming the Telecoms Business using Big Data and Analytics
Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe
Middleware support for the Internet of Things
Middleware support for the Internet of Things Karl Aberer, Manfred Hauswirth, Ali Salehi School of Computer and Communication Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne,
Topics in basic DBMS course
Topics in basic DBMS course Database design Transaction processing Relational query languages (SQL), calculus, and algebra DBMS APIs Database tuning (physical database design) Basic query processing (ch
Multi-dimensional index structures Part I: motivation
Multi-dimensional index structures Part I: motivation 144 Motivation: Data Warehouse A definition A data warehouse is a repository of integrated enterprise data. A data warehouse is used specifically for
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
Oracle Database 11g Comparison Chart
Key Feature Summary Express 10g Standard One Standard Enterprise Maximum 1 CPU 2 Sockets 4 Sockets No Limit RAM 1GB OS Max OS Max OS Max Database Size 4GB No Limit No Limit No Limit Windows Linux Unix
Research of Smart Distribution Network Big Data Model
Research of Smart Distribution Network Big Data Model Guangyi LIU Yang YU Feng GAO Wendong ZHU China Electric Power Stanford Smart Grid Research Institute Smart Grid Research Institute Research Institute
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com Image
White Paper. How Streaming Data Analytics Enables Real-Time Decisions
White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream
Time series IoT data ingestion into Cassandra using Kaa
Time series IoT data ingestion into Cassandra using Kaa Andrew Shvayka [email protected] Agenda Data ingestion challenges Why Kaa? Why Cassandra? Reference architecture overview Hands-on Sandbox
Master s Program in Information Systems
The University of Jordan King Abdullah II School for Information Technology Department of Information Systems Master s Program in Information Systems 2006/2007 Study Plan Master Degree in Information Systems
Lesson 15 - Fill Cells Plugin
15.1 Lesson 15 - Fill Cells Plugin This lesson presents the functionalities of the Fill Cells plugin. Fill Cells plugin allows the calculation of attribute values of tables associated with cell type layers.
Improving Data Processing Speed in Big Data Analytics Using. HDFS Method
Improving Data Processing Speed in Big Data Analytics Using HDFS Method M.R.Sundarakumar Assistant Professor, Department Of Computer Science and Engineering, R.V College of Engineering, Bangalore, India
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Cloud Computing and Advanced Relationship Analytics
Cloud Computing and Advanced Relationship Analytics Using Objectivity/DB to Discover the Relationships in your Data By Brian Clark Vice President, Product Management Objectivity, Inc. 408 992 7136 [email protected]
RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE
RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE WANG Jizhou, LI Chengming Institute of GIS, Chinese Academy of Surveying and Mapping No.16, Road Beitaiping, District Haidian, Beijing, P.R.China,
Distributed Database for Environmental Data Integration
Distributed Database for Environmental Data Integration A. Amato', V. Di Lecce2, and V. Piuri 3 II Engineering Faculty of Politecnico di Bari - Italy 2 DIASS, Politecnico di Bari, Italy 3Dept Information
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Content Problems of managing data resources in a traditional file environment Capabilities and value of a database management
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
Find the Information That Matters. Visualize Your Data, Your Way. Scalable, Flexible, Global Enterprise Ready
Real-Time IoT Platform Solutions for Wireless Sensor Networks Find the Information That Matters ViZix is a scalable, secure, high-capacity platform for Internet of Things (IoT) business solutions that
ICT Perspectives on Big Data: Well Sorted Materials
ICT Perspectives on Big Data: Well Sorted Materials 3 March 2015 Contents Introduction 1 Dendrogram 2 Tree Map 3 Heat Map 4 Raw Group Data 5 For an online, interactive version of the visualisations in
Horizontal IoT Application Development using Semantic Web Technologies
Horizontal IoT Application Development using Semantic Web Technologies Soumya Kanti Datta Research Engineer Communication Systems Department Email: [email protected] Roadmap Introduction Challenges
Technologies & Applications
Chapter 10 Emerging Database Technologies & Applications Truong Quynh Chi [email protected] Spring - 2013 Contents 1 Distributed Databases & Client-Server Architectures 2 Spatial and Temporal Database
Contents RELATIONAL DATABASES
Preface xvii Chapter 1 Introduction 1.1 Database-System Applications 1 1.2 Purpose of Database Systems 3 1.3 View of Data 5 1.4 Database Languages 9 1.5 Relational Databases 11 1.6 Database Design 14 1.7
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges James Campbell Corporate Systems Engineer HP Vertica [email protected] Big
Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer
Alejandro Vaisman Esteban Zimanyi Data Warehouse Systems Design and Implementation ^ Springer Contents Part I Fundamental Concepts 1 Introduction 3 1.1 A Historical Overview of Data Warehousing 4 1.2 Spatial
Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities
Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling
Technical. Overview. ~ a ~ irods version 4.x
Technical Overview ~ a ~ irods version 4.x The integrated Ru e-oriented DATA System irods is open-source, data management software that lets users: access, manage, and share data across any type or number
Internet of Things (IoT): A vision, architectural elements, and future directions
SeoulTech UCS Lab 2014-2 st Internet of Things (IoT): A vision, architectural elements, and future directions 2014. 11. 18 Won Min Kang Email: [email protected] Table of contents Open challenges
Professor, D.Sc. (Tech.) Eugene Kovshov MSTU «STANKIN», Moscow, Russia
Professor, D.Sc. (Tech.) Eugene Kovshov MSTU «STANKIN», Moscow, Russia As of today, the issue of Big Data processing is still of high importance. Data flow is increasingly growing. Processing methods
GEOG 482/582 : GIS Data Management. Lesson 10: Enterprise GIS Data Management Strategies GEOG 482/582 / My Course / University of Washington
GEOG 482/582 : GIS Data Management Lesson 10: Enterprise GIS Data Management Strategies Overview Learning Objective Questions: 1. What are challenges for multi-user database environments? 2. What is Enterprise
Complex Event Processing (CEP) Why and How. Richard Hallgren BUGS 2013-05-30
Complex Event Processing (CEP) Why and How Richard Hallgren BUGS 2013-05-30 Objectives Understand why and how CEP is important for modern business processes Concepts within a CEP solution Overview of StreamInsight
How To Understand The History Of Navigation In French Marine Science
E-navigation, from sensors to ship behaviour analysis Laurent ETIENNE, Loïc SALMON French Naval Academy Research Institute Geographic Information Systems Group [email protected] [email protected]
Data-intensive HPC: opportunities and challenges. Patrick Valduriez
Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,
Fast Innovation requires Fast IT
Fast Innovation requires Fast IT 2014 Cisco and/or its affiliates. All rights reserved. 2 2014 Cisco and/or its affiliates. All rights reserved. 3 IoT World Forum Architecture Committee 2013 Cisco and/or
Concepts of Database Management Seventh Edition. Chapter 9 Database Management Approaches
Concepts of Database Management Seventh Edition Chapter 9 Database Management Approaches Objectives Describe distributed database management systems (DDBMSs) Discuss client/server systems Examine the ways
Design of Electric Energy Acquisition System on Hadoop
, pp.47-54 http://dx.doi.org/10.14257/ijgdc.2015.8.5.04 Design of Electric Energy Acquisition System on Hadoop Yi Wu 1 and Jianjun Zhou 2 1 School of Information Science and Technology, Heilongjiang University
Software Requirements Specification. Schlumberger Scheduling Assistant. for. Version 0.2. Prepared by Design Team A. Rice University COMP410/539
Software Requirements Specification for Schlumberger Scheduling Assistant Page 1 Software Requirements Specification for Schlumberger Scheduling Assistant Version 0.2 Prepared by Design Team A Rice University
CloudDB: A Data Store for all Sizes in the Cloud
CloudDB: A Data Store for all Sizes in the Cloud Hakan Hacigumus Data Management Research NEC Laboratories America http://www.nec-labs.com/dm www.nec-labs.com What I will try to cover Historical perspective
Vector storage and access; algorithms in GIS. This is lecture 6
Vector storage and access; algorithms in GIS This is lecture 6 Vector data storage and access Vectors are built from points, line and areas. (x,y) Surface: (x,y,z) Vector data access Access to vector
Integrating VoltDB with Hadoop
The NewSQL database you ll never outgrow Integrating with Hadoop Hadoop is an open source framework for managing and manipulating massive volumes of data. is an database for handling high velocity data.
ECS 165A: Introduction to Database Systems
ECS 165A: Introduction to Database Systems Todd J. Green based on material and slides by Michael Gertz and Bertram Ludäscher Winter 2011 Dept. of Computer Science UC Davis ECS-165A WQ 11 1 1. Introduction
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
COMP 5311: Topics in DB Research Comp 5311 Database Management Systems. 7. Topics in DB Research
COMP 5311: Topics in DB Research Comp 5311 Database Management Systems 7. Topics in DB Research 1 DB Topics Data Warehouses and OLAP Data Streams Keyword Search in Databases Spatial/Spatio-temporal Databases
Teradata s Big Data Technology Strategy & Roadmap
Teradata s Big Data Technology Strategy & Roadmap Artur Borycki, Director International Solutions Marketing 18 March 2014 Agenda > Introduction and level-set > Enabling the Logical Data Warehouse > Any
The Data Grid: Towards an Architecture for Distributed Management and Analysis of Large Scientific Datasets
The Data Grid: Towards an Architecture for Distributed Management and Analysis of Large Scientific Datasets!! Large data collections appear in many scientific domains like climate studies.!! Users and
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
Distributed Computing and Big Data: Hadoop and MapReduce
Distributed Computing and Big Data: Hadoop and MapReduce Bill Keenan, Director Terry Heinze, Architect Thomson Reuters Research & Development Agenda R&D Overview Hadoop and MapReduce Overview Use Case:
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
Big Data and Analytics in Government
Big Data and Analytics in Government Nov 29, 2012 Mark Johnson Director, Engineered Systems Program 2 Agenda What Big Data Is Government Big Data Use Cases Building a Complete Information Solution Conclusion
ISSN: 2348 9510. A Review: Image Retrieval Using Web Multimedia Mining
A Review: Image Retrieval Using Web Multimedia Satish Bansal*, K K Yadav** *, **Assistant Professor Prestige Institute Of Management, Gwalior (MP), India Abstract Multimedia object include audio, video,
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
Clustering through Decision Tree Construction in Geology
Nonlinear Analysis: Modelling and Control, 2001, v. 6, No. 2, 29-41 Clustering through Decision Tree Construction in Geology Received: 22.10.2001 Accepted: 31.10.2001 A. Juozapavičius, V. Rapševičius Faculty
The emergence of big data technology and analytics
ABSTRACT The emergence of big data technology and analytics Bernice Purcell Holy Family University The Internet has made new sources of vast amount of data available to business executives. Big data is
SAP BOBJ. Participants will gain the detailed knowledge necessary to design a dashboard that can be used to facilitate the decision making process.
SAP BOBJ 1. BOX310 SAP Business Objects Dashboards 4.0: Core Participants will gain the detailed knowledge necessary to design a dashboard that can be used to facilitate the decision making process. Participants
Exploiting Data at Rest and Data in Motion with a Big Data Platform
Exploiting Data at Rest and Data in Motion with a Big Data Platform Sarah Brader, [email protected] What is Big Data? Where does it come from? 12+ TBs of tweet data every day 30 billion RFID tags
An Architecture Model of Sensor Information System Based on Cloud Computing
An Architecture Model of Sensor Information System Based on Cloud Computing Pengfei You, Yuxing Peng National Key Laboratory for Parallel and Distributed Processing, School of Computer Science, National
Optimization of Image Search from Photo Sharing Websites Using Personal Data
Optimization of Image Search from Photo Sharing Websites Using Personal Data Mr. Naeem Naik Walchand Institute of Technology, Solapur, India Abstract The present research aims at optimizing the image search
DATA MINING CONCEPTS AND TECHNIQUES. Marek Maurizio E-commerce, winter 2011
DATA MINING CONCEPTS AND TECHNIQUES Marek Maurizio E-commerce, winter 2011 INTRODUCTION Overview of data mining Emphasis is placed on basic data mining concepts Techniques for uncovering interesting data
Reverse Engineering in Data Integration Software
Database Systems Journal vol. IV, no. 1/2013 11 Reverse Engineering in Data Integration Software Vlad DIACONITA The Bucharest Academy of Economic Studies [email protected] Integrated applications
Ramesh Bhashyam Teradata Fellow Teradata Corporation [email protected]
Challenges of Handling Big Data Ramesh Bhashyam Teradata Fellow Teradata Corporation [email protected] Trend Too much information is a storage issue, certainly, but too much information is also
Digital Modernization of Oilfields Digital Oilfield to Intelligent Oilfield. Karamay Hongyou Software Co., Ltd.
Digital Modernization of Oilfields Digital Oilfield to Intelligent Oilfield Karamay Hongyou Software Co., Ltd. Professional technologies and information technology enhance the development of the oil industry.
Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!!
Simplifying Big Data Analytics: Unifying Batch and Stream Processing John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Streaming Analy.cs S S S Scale- up Database Data And Compute Grid
CHAPTER-24 Mining Spatial Databases
CHAPTER-24 Mining Spatial Databases 24.1 Introduction 24.2 Spatial Data Cube Construction and Spatial OLAP 24.3 Spatial Association Analysis 24.4 Spatial Clustering Methods 24.5 Spatial Classification
R-trees. R-Trees: A Dynamic Index Structure For Spatial Searching. R-Tree. Invariants
R-Trees: A Dynamic Index Structure For Spatial Searching A. Guttman R-trees Generalization of B+-trees to higher dimensions Disk-based index structure Occupancy guarantee Multiple search paths Insertions
Chapter 6 8/12/2015. Foundations of Business Intelligence: Databases and Information Management. Problem:
Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Chapter 6 Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:
Manufacturing and the Internet of Everything
Manufacturing and the Internet of Everything Johan Arens, CISCO ([email protected]) Business relevance of the Internet of everything Manufacturing trends Business imperatives and outcomes A vision of the
Delivering Business Intelligence With Microsoft SQL Server 2005 or 2008 HDT922 Five Days
or 2008 Five Days Prerequisites Students should have experience with any relational database management system as well as experience with data warehouses and star schemas. It would be helpful if students
Gaming as a Service. Prof. Victor C.M. Leung. The University of British Columbia, Canada www.ece.ubc.ca/~vleung
Gaming as a Service Prof. Victor C.M. Leung The University of British Columbia, Canada www.ece.ubc.ca/~vleung International Conference on Computing, Networking and Communications 4 February, 2014 Outline
Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives
Chapter 6 FOUNDATIONS OF BUSINESS INTELLIGENCE: DATABASES AND INFORMATION MANAGEMENT Learning Objectives Describe how the problems of managing data resources in a traditional file environment are solved
Course 103402 MIS. Foundations of Business Intelligence
Oman College of Management and Technology Course 103402 MIS Topic 5 Foundations of Business Intelligence CS/MIS Department Organizing Data in a Traditional File Environment File organization concepts Database:
ICOM 6005 Database Management Systems Design. Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 2 August 23, 2001
ICOM 6005 Database Management Systems Design Dr. Manuel Rodríguez Martínez Electrical and Computer Engineering Department Lecture 2 August 23, 2001 Readings Read Chapter 1 of text book ICOM 6005 Dr. Manuel
OBJECT RECOGNITION IN THE ANIMATION SYSTEM
OBJECT RECOGNITION IN THE ANIMATION SYSTEM Peter L. Stanchev, Boyan Dimitrov, Vladimir Rykov Kettering Unuversity, Flint, Michigan 48504, USA {pstanche, bdimitro, vrykov}@kettering.edu ABSTRACT This work
iservdb The database closest to you IDEAS Institute
iservdb The database closest to you IDEAS Institute 1 Overview 2 Long-term Anticipation iservdb is a relational database SQL compliance and a general purpose database Data is reliable and consistency iservdb
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2
Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on
Indexing and Retrieval of Historical Aggregate Information about Moving Objects
Indexing and Retrieval of Historical Aggregate Information about Moving Objects Dimitris Papadias, Yufei Tao, Jun Zhang, Nikos Mamoulis, Qiongmao Shen, and Jimeng Sun Department of Computer Science Hong
USING COMPLEX EVENT PROCESSING TO MANAGE PATTERNS IN DISTRIBUTION NETWORKS
USING COMPLEX EVENT PROCESSING TO MANAGE PATTERNS IN DISTRIBUTION NETWORKS Foued BAROUNI Eaton Canada [email protected] Bernard MOULIN Laval University Canada [email protected] ABSTRACT
Big Data and Analytics: Getting Started with ArcGIS. Mike Park Erik Hoel
Big Data and Analytics: Getting Started with ArcGIS Mike Park Erik Hoel Agenda Overview of big data Distributed computation User experience Data management Big data What is it? Big Data is a loosely defined
INTERNET OF THINGS Recent Advances and Applications MengChu Zhou, Tongji University and New Jersey Institute of Technology
INTERNET OF THINGS Recent Advances and Applications MengChu Zhou, Tongji University and New Jersey Institute of Technology What is the next Industrial Revolution? The 1st answer People producing their
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
