Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1
|
|
|
- Esther Pitts
- 10 years ago
- Views:
Transcription
1 Slide 29-1
2 Chapter 29 Overview of Data Warehousing and OLAP
3 Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics of Data Warehouses Classification of Data Warehouses Multi-dimensional Schemas Building a Data Warehouse Functionality of a Data Warehouse Warehouse vs. Data Views Implementation difficulties and open issues Slide 29-3
4 Purpose of Data Warehousing Traditional databases are not optimized for data access only they have to balance the requirement of data access with the need to ensure integrity of data. Most of the times the data warehouse users need only read access but, need the access to be fast over a large volume of data. Most of the data required for data warehouse analysis comes from multiple databases and these analysis are recurrent and predictable to be able to design specific software to meet the requirements. There is a great need for tools that provide decision makers with information to make decisions quickly and reliably based on historical data. The above functionality is achieved by Data Warehousing and Online analytical processing (OLAP) Slide 29-4
5 Introduction, Definitions, and Terminology W. H Inmon characterized a data warehouse as: A subject-oriented, integrated, nonvolatile, time-variant collection of data in support of management s decisions. Slide 29-5
6 Introduction, Definitions, and Terminology Data warehouses have the distinguishing characteristic that they are mainly intended for decision support applications. Traditional databases are transactional. Applications that data warehouse supports are: OLAP (Online Analytical Processing) is a term used to describe the analysis of complex data from the data warehouse. DSS (Decision Support Systems) also known as EIS (Executive Information Systems) supports organization s leading decision makers for making complex and important decisions. Data Mining is used for knowledge discovery, the process of searching data for unanticipated new knowledge. Slide 29-6
7 Conceptual Structure of Data Warehouse Data Warehouse processing involves Cleaning and reformatting of data OLAP Data Mining Back Flushing Data Warehouse Databases Cleaning Reformatting Data Metadata OLAP DSSI EIS Data Mining Other Data Inputs Updates/New Data Slide 29-7
8 Comparison with Traditional Databases Data Warehouses are mainly optimized for appropriate data access. Traditional databases are transactional and are optimized for both access mechanisms and integrity assurance measures. Data warehouses emphasize more on historical data as their main purpose is to support time-series and trend analysis. Compared with transactional databases, data warehouses are nonvolatile. In transactional databases transaction is the mechanism change to the database. By contrast information in data warehouse is relatively coarse grained and refresh policy is carefully chosen, usually incremental. Slide 29-8
9 Characteristics of Data Warehouses Multidimensional conceptual view Generic dimensionality Unlimited dimensions and aggregation levels Unrestricted cross-dimensional operations Dynamic sparse matrix handling Client-server architecture Multi-user support Accessibility Transparency Intuitive data manipulation Consistent reporting performance Flexible reporting Slide 29-9
10 Classification of Data Warehouses Generally, Data Warehouses are an order of magnitude larger than the source databases. The sheer volume of data is an issue, based on which Data Warehouses could be classified as follows. Enterprise-wide data warehouses They are huge projects requiring massive investment of time and resources. Virtual data warehouses They provide views of operational databases that are materialized for efficient access. Data marts These are generally targeted to a subset of organization, such as a department, and are more tightly focused. Slide 29-10
11 Data Modeling for Data Warehouses Traditional Databases generally deal with two-dimensional data (similar to a spread sheet). However, querying performance in a multidimensional data storage model is much more efficient. Data warehouses can take advantage of this feature as generally these are Non volatile The degree of predictability of the analysis that will be performed on them is high. Slide 29-11
12 Data Modeling for Data Warehouses Example of Two- Dimensional vs. Multi- Dimensional Two Dimensional Model REGION Three dimensional data cube REG1 REG2 REG3 P R O D U C T P123 P124 P125 P126 : : P r o d u c t P123 P124 P125 P126 : : Fiscal Quarter Qtr 1 Reg Qtr 12 Qtr 3 Qtr 4 Reg 2 Reg 3 Region Slide 29-12
13 Data Modeling for Data Warehouses Advantages of a multi-dimensional model Multi-dimensional models lend themselves readily to hierarchical views in what is known as roll-up display and drill-down display. The data can be directly queried in any combination of dimensions, bypassing complex database queries. Slide 29-13
14 Multi-dimensional Schemas Multi-dimensional schemas are specified using: Dimension table It consists of tuples of attributes of the dimension. Fact table Each tuple is a recorded fact. This fact contains some measured or observed variable (s) and identifies it with pointers to dimension tables. The fact table contains the data, and the dimensions to identify each tuple in the data. Slide 29-14
15 Multi-dimensional Schemas Two common multi-dimensional schemas are Star schema: Consists of a fact table with a single table for each dimension Snowflake Schema: It is a variation of star schema, in which the dimensional tables from a star schema are organized into a hierarchy by normalizing them. Slide 29-15
16 Multi-dimensional Schemas Star schema: Consists of a fact table with a single table for each dimension. Slide 29-16
17 Multi-dimensional Schemas Snowflake Schema: It is a variation of star schema, in which the dimensional tables from a star schema are organized into a hierarchy by normalizing them. Slide 29-17
18 Multi-dimensional Schemas Fact Constellation Fact constellation is a set of tables that share some dimension tables. However, fact constellations limit the possible queries for the warehouse. Slide 29-18
19 Multi-dimensional Schemas Indexing Data warehouse also utilizes indexing to support high performance access. A technique called bitmap indexing constructs a bit vector for each value in domain being indexed. Indexing works very well for domains of low cardinality. Slide 29-19
20 Building A Data Warehouse The builders of Data warehouse should take a broad view of the anticipated use of the warehouse. The design should support ad-hoc querying An appropriate schema should be chosen that reflects the anticipated usage. Slide 29-20
21 Building A Data Warehouse The Design of a Data Warehouse involves following steps. Acquisition of data for the warehouse. Ensuring that Data Storage meets the query requirements efficiently. Giving full consideration to the environment in which the data warehouse resides. Slide 29-21
22 Building A Data Warehouse Acquisition of data for the warehouse The data must be extracted from multiple, heterogeneous sources. Data must be formatted for consistency within the warehouse. The data must be cleaned to ensure validity. Difficult to automate cleaning process. Back flushing, upgrading the data with cleaned data. Slide 29-22
23 Building A Data Warehouse Acquisition of data for the warehouse (contd.) The data must be fitted into the data model of the warehouse. The data must be loaded into the warehouse. Proper design for refresh policy should be considered. Slide 29-23
24 Building A Data Warehouse Storing the data according to the data model of the warehouse Creating and maintaining required data structures Creating and maintaining appropriate access paths Providing for time-variant data as new data are added Supporting the updating of warehouse data. Refreshing the data Purging data Slide 29-24
25 Building A Data Warehouse Usage projections The fit of the data model Characteristics of available resources Design of the metadata component Modular component design Design for manageability and change Considerations of distributed and parallel architecture Distributed vs. federated warehouses Slide 29-25
26 Functionality of a Data Warehouse Functionality that can be expected: Roll-up: Data is summarized with increasing generalization Drill-Down: Increasing levels of detail are revealed Pivot: Cross tabulation is performed Slice and dice: Performing projection operations on the dimensions. Sorting: Data is sorted by ordinal value. Selection: Data is available by value or range. Derived attributes: Attributes are computed by operations on stored derived values. Slide 29-26
27 Warehouse vs. Data Views Views and data warehouses are alike in that they both have read-only extracts from the databases. However, data warehouses are different from views in the following ways: Data Warehouses exist as persistent storage instead of being materialized on demand. Data Warehouses are not usually relational, but rather multidimensional. Data Warehouses can be indexed for optimization. Data Warehouses provide specific support of functionality. Data Warehouses deals huge volumes of data that is contained generally in more than one database. Slide 29-27
28 Difficulties of implementing Data Warehouses Lead time is huge in building a data warehouse Potentially it takes years to build and efficiently maintain a data warehouse. Both quality and consistency of data are major concerns. Revising the usage projections regularly to meet the current requirements. The data warehouse should be designed to accommodate addition and attrition of data sources without major redesign Administration of data warehouse would require far broader skills than are needed for a traditional database. Slide 29-28
29 Open Issues in Data Warehousing Data cleaning, indexing, partitioning, and views could be given new attention with perspective to data warehousing. Automation of data acquisition data quality management selection and construction of access paths and structures self-maintainability functionality and performance optimization Incorporating of domain and business rules appropriately into the warehouse creation and maintenance process more intelligently. Slide 29-29
30 Recap Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics of data Warehouses Classification of Data Warehouses Multi-dimensional Schemas Building A Data Warehouse Functionality of a Data Warehouse Warehouse vs. Data Views Implementation difficulties and open issues Slide 29-30
Overview of Data Warehousing and OLAP
Overview of Data Warehousing and OLAP Chapter 28 March 24, 2008 ADBS: DW 1 Chapter Outline What is a data warehouse (DW) Conceptual structure of DW Why separate DW Data modeling for DW Online Analytical
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Week 3 lecture slides
Week 3 lecture slides Topics Data Warehouses Online Analytical Processing Introduction to Data Cubes Textbook reference: Chapter 3 Data Warehouses A data warehouse is a collection of data specifically
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
CS2032 Data warehousing and Data Mining Unit II Page 1
UNIT II BUSINESS ANALYSIS Reporting Query tools and Applications The data warehouse is accessed using an end-user query and reporting tool from Business Objects. Business Objects provides several tools
Introduction to Data Warehousing. Ms Swapnil Shrivastava [email protected]
Introduction to Data Warehousing Ms Swapnil Shrivastava [email protected] Necessity is the mother of invention Why Data Warehouse? Scenario 1 ABC Pvt Ltd is a company with branches at Mumbai,
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
Part 22. Data Warehousing
Part 22 Data Warehousing The Decision Support System (DSS) Tools to assist decision-making Used at all levels in the organization Sometimes focused on a single area Sometimes focused on a single problem
DATA CUBES E0 261. Jayant Haritsa Computer Science and Automation Indian Institute of Science. JAN 2014 Slide 1 DATA CUBES
E0 261 Jayant Haritsa Computer Science and Automation Indian Institute of Science JAN 2014 Slide 1 Introduction Increasingly, organizations are analyzing historical data to identify useful patterns and
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
OLAP. Business Intelligence OLAP definition & application Multidimensional data representation
OLAP Business Intelligence OLAP definition & application Multidimensional data representation 1 Business Intelligence Accompanying the growth in data warehousing is an ever-increasing demand by users for
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application
CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2007 Lecture 16 - Data Warehousing
CSE 544 Principles of Database Management Systems Magdalena Balazinska Fall 2007 Lecture 16 - Data Warehousing Class Projects Class projects are going very well! Project presentations: 15 minutes On Wednesday
Week 13: Data Warehousing. Warehousing
1 Week 13: Data Warehousing Warehousing Growing industry: $8 billion in 1998 Range from desktop to huge: Walmart: 900-CPU, 2,700 disk, 23TB Teradata system Lots of buzzwords, hype slice & dice, rollup,
DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM
DATA WAREHOUSING APPLICATIONS: AN ANALYTICAL TOOL FOR DECISION SUPPORT SYSTEM MOHAMMED SHAFEEQ AHMED Guest Lecturer, Department of Computer Science, Gulbarga University, Gulbarga, Karnataka, India (e-mail:
Data Warehousing. Read chapter 13 of Riguzzi et al Sistemi Informativi. Slides derived from those by Hector Garcia-Molina
Data Warehousing Read chapter 13 of Riguzzi et al Sistemi Informativi Slides derived from those by Hector Garcia-Molina What is a Warehouse? Collection of diverse data subject oriented aimed at executive,
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
Lection 3-4 WAREHOUSING
Lection 3-4 DATA WAREHOUSING Learning Objectives Understand d the basic definitions iti and concepts of data warehouses Understand data warehousing architectures Describe the processes used in developing
Data Warehousing and OLAP
1 Data Warehousing and OLAP Hector Garcia-Molina Stanford University Warehousing Growing industry: $8 billion in 1998 Range from desktop to huge: Walmart: 900-CPU, 2,700 disk, 23TB Teradata system Lots
Data Warehouses & OLAP
Riadh Ben Messaoud 1. The Big Picture 2. Data Warehouse Philosophy 3. Data Warehouse Concepts 4. Warehousing Applications 5. Warehouse Schema Design 6. Business Intelligence Reporting 7. On-Line Analytical
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
DATA WAREHOUSE CONCEPTS DATA WAREHOUSE DEFINITIONS
DATA WAREHOUSE CONCEPTS A fundamental concept of a data warehouse is the distinction between data and information. Data is composed of observable and recordable facts that are often found in operational
CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 15 - Data Warehousing: Cubes
CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 15 - Data Warehousing: Cubes Final Exam Overview Open books and open notes No laptops and no other mobile devices
Data Warehousing: Data Models and OLAP operations. By Kishore Jaladi [email protected]
Data Warehousing: Data Models and OLAP operations By Kishore Jaladi [email protected] Topics Covered 1. Understanding the term Data Warehousing 2. Three-tier Decision Support Systems 3. Approaches
BUSINESS ANALYTICS AND DATA VISUALIZATION. ITM-761 Business Intelligence ดร. สล ล บ ญพราหมณ
1 BUSINESS ANALYTICS AND DATA VISUALIZATION ITM-761 Business Intelligence ดร. สล ล บ ญพราหมณ 2 การท าความด น น ยากและเห นผลช า แต ก จ าเป นต องท า เพราะหาไม ความช วซ งท าได ง ายจะเข ามาแทนท และจะพอกพ นข
OLAP Theory-English version
OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction
DATA WAREHOUSE E KNOWLEDGE DISCOVERY
DATA WAREHOUSE E KNOWLEDGE DISCOVERY Prof. Fabio A. Schreiber Dipartimento di Elettronica e Informazione Politecnico di Milano DATA WAREHOUSE (DW) A TECHNIQUE FOR CORRECTLY ASSEMBLING AND MANAGING DATA
Outline. Data Warehousing. What is a Warehouse? What is a Warehouse?
Outline Data Warehousing What is a data warehouse? Why a warehouse? Models & operations Implementing a warehouse 2 What is a Warehouse? Collection of diverse data subject oriented aimed at executive, decision
Data Warehousing and Decision Support. Introduction. Three Complementary Trends. Chapter 23, Part A
Data Warehousing and Decision Support Chapter 23, Part A Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1 Introduction Increasingly, organizations are analyzing current and historical
Data W a Ware r house house and and OLAP II Week 6 1
Data Warehouse and OLAP II Week 6 1 Team Homework Assignment #8 Using a data warehousing tool and a data set, play four OLAP operations (Roll up (drill up), Drill down (roll down), Slice and dice, Pivot
Chapter 3, Data Warehouse and OLAP Operations
CSI 4352, Introduction to Data Mining Chapter 3, Data Warehouse and OLAP Operations Young-Rae Cho Associate Professor Department of Computer Science Baylor University CSI 4352, Introduction to Data Mining
BUILDING BLOCKS OF DATAWAREHOUSE. G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT
BUILDING BLOCKS OF DATAWAREHOUSE G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT 1 Data Warehouse Subject Oriented Organized around major subjects, such as customer, product, sales. Focusing on
DATA WAREHOUSING - OLAP
http://www.tutorialspoint.com/dwh/dwh_olap.htm DATA WAREHOUSING - OLAP Copyright tutorialspoint.com Online Analytical Processing Server OLAP is based on the multidimensional data model. It allows managers,
Namrata 1, Dr. Saket Bihari Singh 2 Research scholar (PhD), Professor Computer Science, Magadh University, Gaya, Bihar
A Comprehensive Study on Data Warehouse, OLAP and OLTP Technology Namrata 1, Dr. Saket Bihari Singh 2 Research scholar (PhD), Professor Computer Science, Magadh University, Gaya, Bihar Abstract: Data warehouse
2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000
2074 : Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000 Introduction This course provides students with the knowledge and skills necessary to design, implement, and deploy OLAP
Unit -3. Learning Objective. Demand for Online analytical processing Major features and functions OLAP models and implementation considerations
Unit -3 Learning Objective Demand for Online analytical processing Major features and functions OLAP models and implementation considerations Demand of On Line Analytical Processing Need for multidimensional
B.Sc (Computer Science) Database Management Systems UNIT-V
1 B.Sc (Computer Science) Database Management Systems UNIT-V Business Intelligence? Business intelligence is a term used to describe a comprehensive cohesive and integrated set of tools and process used
Concepts of Database Management Seventh Edition. Chapter 9 Database Management Approaches
Concepts of Database Management Seventh Edition Chapter 9 Database Management Approaches Objectives Describe distributed database management systems (DDBMSs) Discuss client/server systems Examine the ways
Database Applications. Advanced Querying. Transaction Processing. Transaction Processing. Data Warehouse. Decision Support. Transaction processing
Database Applications Advanced Querying Transaction processing Online setting Supports day-to-day operation of business OLAP Data Warehousing Decision support Offline setting Strategic planning (statistics)
IST722 Data Warehousing
IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF
Data Warehousing. Outline. From OLTP to the Data Warehouse. Overview of data warehousing Dimensional Modeling Online Analytical Processing
Data Warehousing Outline Overview of data warehousing Dimensional Modeling Online Analytical Processing From OLTP to the Data Warehouse Traditionally, database systems stored data relevant to current business
UNIT-3 OLAP in Data Warehouse
UNIT-3 OLAP in Data Warehouse Bharati Vidyapeeth s Institute of Computer Applications and Management, New Delhi-63, by Dr.Deepali Kamthania U2.1 OLAP Demand for Online analytical processing Major features
Why Business Intelligence
Why Business Intelligence Ferruccio Ferrando z IT Specialist Techline Italy March 2011 page 1 di 11 1.1 The origins In the '50s economic boom, when demand and production were very high, the only concern
OLAP and Data Warehousing! Introduction!
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still
PowerDesigner WarehouseArchitect The Model for Data Warehousing Solutions. A Technical Whitepaper from Sybase, Inc.
PowerDesigner WarehouseArchitect The Model for Data Warehousing Solutions A Technical Whitepaper from Sybase, Inc. Table of Contents Section I: The Need for Data Warehouse Modeling.....................................4
CHAPTER 4 Data Warehouse Architecture
CHAPTER 4 Data Warehouse Architecture 4.1 Data Warehouse Architecture 4.2 Three-tier data warehouse architecture 4.3 Types of OLAP servers: ROLAP versus MOLAP versus HOLAP 4.4 Further development of Data
When to consider OLAP?
When to consider OLAP? Author: Prakash Kewalramani Organization: Evaltech, Inc. Evaltech Research Group, Data Warehousing Practice. Date: 03/10/08 Email: [email protected] Abstract: Do you need an OLAP
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES
LITERATURE SURVEY ON DATA WAREHOUSE AND ITS TECHNIQUES MUHAMMAD KHALEEL (0912125) SZABIST KARACHI CAMPUS Abstract. Data warehouse and online analytical processing (OLAP) both are core component for decision
Module 1: Introduction to Data Warehousing and OLAP
Raw Data vs. Business Information Module 1: Introduction to Data Warehousing and OLAP Capturing Raw Data Gathering data recorded in everyday operations Deriving Business Information Deriving meaningful
Data W a Ware r house house and and OLAP Week 5 1
Data Warehouse and OLAP Week 5 1 Midterm I Friday, March 4 Scope Homework assignments 1 4 Open book Team Homework Assignment #7 Read pp. 121 139, 146 150 of the text book. Do Examples 3.8, 3.10 and Exercise
Data Warehousing, OLAP, and Data Mining
Data Warehousing, OLAP, and Marek Rychly [email protected] Strathmore University, @ilabafrica & Brno University of Technology, Faculty of Information Technology Advanced Databases and Enterprise Systems
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies
An Overview of Data Warehousing, Data mining, OLAP and OLTP Technologies Ashish Gahlot, Manoj Yadav Dronacharya college of engineering Farrukhnagar, Gurgaon,Haryana Abstract- Data warehousing, Data Mining,
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
A Comparative Study on Operational Database, Data Warehouse and Hadoop File System T.Jalaja 1, M.Shailaja 2
RESEARCH ARTICLE A Comparative Study on Operational base, Warehouse Hadoop File System T.Jalaja 1, M.Shailaja 2 1,2 (Department of Computer Science, Osmania University/Vasavi College of Engineering, Hyderabad,
Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer
Alejandro Vaisman Esteban Zimanyi Data Warehouse Systems Design and Implementation ^ Springer Contents Part I Fundamental Concepts 1 Introduction 3 1.1 A Historical Overview of Data Warehousing 4 1.2 Spatial
New Approach of Computing Data Cubes in Data Warehousing
International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 14 (2014), pp. 1411-1417 International Research Publications House http://www. irphouse.com New Approach of
Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach
2006 ISMA Conference 1 Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach Priya Lobo CFPS Satyam Computer Services Ltd. 69, Railway Parallel Road, Kumarapark West, Bangalore 560020,
A DATA WAREHOUSE SOLUTION FOR E-GOVERNMENT
A DATA WAREHOUSE SOLUTION FOR E-GOVERNMENT Xiufeng Liu 1 & Xiaofeng Luo 2 1 Department of Computer Science Aalborg University, Selma Lagerlofs Vej 300, DK-9220 Aalborg, Denmark 2 Telecommunication Engineering
This tutorial will help computer science graduates to understand the basic-toadvanced concepts related to data warehousing.
About the Tutorial A data warehouse is constructed by integrating data from multiple heterogeneous sources. It supports analytical reporting, structured and/or ad hoc queries and decision making. This
Advanced Data Management Technologies
ADMT 2015/16 Unit 2 J. Gamper 1/44 Advanced Data Management Technologies Unit 2 Basic Concepts of BI and Data Warehousing J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE Acknowledgements:
COURSE OUTLINE. Track 1 Advanced Data Modeling, Analysis and Design
COURSE OUTLINE Track 1 Advanced Data Modeling, Analysis and Design TDWI Advanced Data Modeling Techniques Module One Data Modeling Concepts Data Models in Context Zachman Framework Overview Levels of Data
An Introduction to Data Warehousing. An organization manages information in two dominant forms: operational systems of
An Introduction to Data Warehousing An organization manages information in two dominant forms: operational systems of record and data warehouses. Operational systems are designed to support online transaction
Designing a Dimensional Model
Designing a Dimensional Model Erik Veerman Atlanta MDF member SQL Server MVP, Microsoft MCT Mentor, Solid Quality Learning Definitions Data Warehousing A subject-oriented, integrated, time-variant, and
Business Intelligence & Product Analytics
2010 International Conference Business Intelligence & Product Analytics Rob McAveney www. 300 Brickstone Square Suite 904 Andover, MA 01810 [978] 691 8900 www. Copyright 2010 Aras All Rights Reserved.
Mastering Data Warehouse Aggregates. Solutions for Star Schema Performance
Brochure More information from http://www.researchandmarkets.com/reports/2248199/ Mastering Data Warehouse Aggregates. Solutions for Star Schema Performance Description: - This is the first book to provide
Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006
Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006 What is a Data Warehouse? A data warehouse is a subject-oriented, integrated, time-varying, non-volatile
Turkish Journal of Engineering, Science and Technology
Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server
Decision Support. Chapter 23. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1
Decision Support Chapter 23 Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1 Introduction Increasingly, organizations are analyzing current and historical data to identify useful
INFO 321, Database Systems, Semester 2 2012
References References INFO 321 Chapter 3: Decision Support Systems Department of Information Science Semester 2, 2012 General Kifer Chapter 17 Silberschatz (5th ed.) Chapter 18 Data Warehousing for Cavemen
Data Warehouse Snowflake Design and Performance Considerations in Business Analytics
Journal of Advances in Information Technology Vol. 6, No. 4, November 2015 Data Warehouse Snowflake Design and Performance Considerations in Business Analytics Jiangping Wang and Janet L. Kourik Walker
Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring
www.ijcsi.org 78 Meta-data and Data Mart solutions for better understanding for data and information in E-government Monitoring Mohammed Mohammed 1 Mohammed Anad 2 Anwar Mzher 3 Ahmed Hasson 4 2 faculty
A Technical Review on On-Line Analytical Processing (OLAP)
A Technical Review on On-Line Analytical Processing (OLAP) K. Jayapriya 1., E. Girija 2,III-M.C.A., R.Uma. 3,M.C.A.,M.Phil., Department of computer applications, Assit.Prof,Dept of M.C.A, Dhanalakshmi
Data Warehousing with Oracle
Data Warehousing with Oracle Comprehensive Concepts Overview, Insight, Recommendations, Best Practices and a whole lot more. By Tariq Farooq A BrainSurface Presentation What is a Data Warehouse? Designed
Overview. Data Warehousing and Decision Support. Introduction. Three Complementary Trends. Data Warehousing. An Example: The Store (e.g.
Overview Data Warehousing and Decision Support Chapter 25 Why data warehousing and decision support Data warehousing and the so called star schema MOLAP versus ROLAP OLAP, ROLLUP AND CUBE queries Design
HYPERION MASTER DATA MANAGEMENT SOLUTIONS FOR IT
HYPERION MASTER DATA MANAGEMENT SOLUTIONS FOR IT POINT-AND-SYNC MASTER DATA MANAGEMENT 04.2005 Hyperion s new master data management solution provides a centralized, transparent process for managing critical
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
CHAPTER 5: BUSINESS ANALYTICS
Chapter 5: Business Analytics CHAPTER 5: BUSINESS ANALYTICS Objectives The objectives are: Describe Business Analytics. Explain the terminology associated with Business Analytics. Describe the data warehouse
Business Intelligence
Business Intelligence Data Mining and Data Warehousing Dominik Ślęzak [email protected] www.infobright.com Research Interests Data Warehouses, Knowledge Discovery, Rough Sets Machine Intelligence,
DSS based on Data Warehouse
DSS based on Data Warehouse C_13 / 6.01.2015 Decision support system is a complex system engineering. At the same time, research DW composition, DW structure and DSS Architecture based on DW, puts forward
Data Warehousing Concepts
Data Warehousing Concepts JB Software and Consulting Inc 1333 McDermott Drive, Suite 200 Allen, TX 75013. [[[[[ DATA WAREHOUSING What is a Data Warehouse? Decision Support Systems (DSS), provides an analysis
Enterprise Solutions. Data Warehouse & Business Intelligence Chapter-8
Enterprise Solutions Data Warehouse & Business Intelligence Chapter-8 Learning Objectives Concepts of Data Warehouse Business Intelligence, Analytics & Big Data Tools for DWH & BI Concepts of Data Warehouse
Business Intelligence. 1. Introduction September, 2013.
Business Intelligence 1. Introduction September, 2013. The content of the first lecture Introduction to data warehousing and business intelligence Star join 2 Data hierarchy Strategical data Operational
QAD Business Intelligence Data Warehouse Demonstration Guide. May 2015 BI 3.11
QAD Business Intelligence Data Warehouse Demonstration Guide May 2015 BI 3.11 Overview This demonstration focuses on the foundation of QAD Business Intelligence the Data Warehouse and shows how this functionality
Data Warehousing Fundamentals Student Guide
Data Warehousing Fundamentals Student Guide D16310GC10 Edition 1.0 September 2002 D37302 Authors Nikos Psomas Padmaja Mitravinda, Kolachalam Technical Contributors and Reviewers Kasturi Shekhar Vidya Nagaraj
Data Warehousing OLAP
Data Warehousing OLAP References Wei Wang. A Brief MDX Tutorial Using Mondrian. School of Computer Science & Engineering, University of New South Wales. Toon Calders. Querying OLAP Cubes. Wolf-Tilo Balke,
SAS BI Course Content; Introduction to DWH / BI Concepts
SAS BI Course Content; Introduction to DWH / BI Concepts SAS Web Report Studio 4.2 SAS EG 4.2 SAS Information Delivery Portal 4.2 SAS Data Integration Studio 4.2 SAS BI Dashboard 4.2 SAS Management Console
1. What are the uses of statistics in data mining? Statistics is used to Estimate the complexity of a data mining problem. Suggest which data mining
1. What are the uses of statistics in data mining? Statistics is used to Estimate the complexity of a data mining problem. Suggest which data mining techniques are most likely to be successful, and Identify
CS54100: Database Systems
CS54100: Database Systems Date Warehousing: Current, Future? 20 April 2012 Prof. Chris Clifton Data Warehousing: Goals OLAP vs OLTP On Line Analytical Processing (vs. Transaction) Optimize for read, not
A Critical Review of Data Warehouse
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 95-103 Research India Publications http://www.ripublication.com A Critical Review of Data Warehouse Sachin
Data warehousing. Han, J. and M. Kamber. Data Mining: Concepts and Techniques. 2001. Morgan Kaufmann.
Data warehousing Han, J. and M. Kamber. Data Mining: Concepts and Techniques. 2001. Morgan Kaufmann. KDD process Application Pattern Evaluation Data Mining Task-relevant Data Data Warehouse Selection Data
