EN25P64 EN25P Megabit Uniform Sector, Serial Flash Memory FEATURES GENERAL DESCRIPTION
|
|
|
- Rafe Willis
- 10 years ago
- Views:
Transcription
1 64 Megabit Uniform Sector, Serial Flash Memory EN25P64 FEATURES Single power supply operation - Full voltage range: volt 64 M-bit Serial Flash - 64 M-bit/8192 K-byte/32768 pages bytes per programmable page High performance - 100MHz clock rate Low power consumption - 5 ma typical active current - 1 μa typical power down current Uniform Sector Architecture: - One hundred twenty-eight 64-Kbyte sectors Software and Hardware Write Protection: - Write Protect all or portion of memory via software - Enable/Disable protection with WP# pin High performance program/erase speed - Byte program time: 7µs typical - Page program time: 1.5ms typical - Sector erase time: 800ms typical - Chip erase time: 50 Seconds typical Lockable 512byte OTP security sector Minimum 100K endurance cycle Package Options - 16 pins SOP 300mil body width - All Pb-free packages are RoHS compliant Industrial temperature Range GENERAL DESCRIPTION The EN25P64 is a 64M-bit (8192K-byte) Serial Flash memory, with advanced write protection mechanisms, accessed by a high speed SPI-compatible bus. The memory can be programmed 1 to 256 bytes at a time, using the Page Program instruction. The EN25P64 is designed to allow either single Sector at a time or full chip erase operation. The EN25P64 can be configured to protect part of the memory as the software protected mode. The device can sustain a minimum of 100K program/erase cycles on each sector. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
2 Figure.1 CONNECTION DIAGRAMS 16 - LEAD SOP This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
3 Figure 2. BLOCK DIAGRAM This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
4 SIGNAL DESCRIPTION Serial Data Input (DI) The SPI Serial Data Input (DI) pin provides a means for instructions, addresses and data to be serially written to (shifted into) the device. Data is latched on the rising edge of the Serial Clock (CLK) input pin. Serial Data Output (DO) The SPI Serial Data Output (DO) pin provides a means for data and status to be serially read from (shifted out of) the device. Data is shifted out on the falling edge of the Serial Clock (CLK) input pin. Serial Clock (CLK) The SPI Serial Clock Input (CLK) pin provides the timing for serial input and output operations. ("See SPI Mode") Chip Select (CS#) The SPI Chip Select (CS#) pin enables and disables device operation. When CS# is high the device is deselected and the Serial Data Output (DO) pin is at high impedance. When deselected, the devices power consumption will be at standby levels unless an internal erase, program or status register cycle is in progress. When CS# is brought low the device will be selected, power consumption will increase to active levels and instructions can be written to and data read from the device. After power-up, CS# must transition from high to low before a new instruction will be accepted. Hold (HOLD#) The HOLD pin allows the device to be paused while it is actively selected. When HOLD is brought low, while CS# is low, the DO pin will be at high impedance and signals on the DI and CLK pins will be ignored (don t care). The hold function can be useful when multiple devices are sharing the same SPI signals. Write Protect (WP#) The Write Protect (WP#) pin can be used to prevent the Status Register from being written. Used in conjunction with the Status Register s Block Protect (BP0, BP1and BP2) bits and Status Register Protect (SRP) bits, a portion or the entire memory array can be hardware protected. Table 1. PIN Names Symbol CLK DI DO CS# WP# HOLD# Vcc Vss Pin Name Serial Clock Input Serial Data Input Serial Data Output Chip Enable Write Protect Hold Input Supply Voltage ( V) Ground This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
5 MEMORY ORGANIZATION The memory is organized as: 8,388,608 bytes Uniform Sector Architecture One hundred twenty-eight 64-Kbyte sectors pages (256 bytes each) EN25P64 Each page can be individually programmed (bits are programmed from 1 to 0). The device is Sector or Bulk Erasable but not Page Erasable. Table 2 Block Sector Architecture Sector SECTOR SIZE (KByte) Address range F0000h 7FFFFFh E0000h 7EFFFFh D0000h 7DFFFFh C0000h 7CFFFFh B0000h 7BFFFFh A0000h 7AFFFFh h 79FFFFh h 78FFFFh h 77FFFFh h 76FFFFh h 75FFFFh h 74FFFFh h 73FFFFh h 72FFFFh h 71FFFFh h 70FFFFh F0000h 6FFFFFh E0000h 6EFFFFh D0000h 6DFFFFh C0000h 6CFFFFh B0000h 6BFFFFh A0000h 6AFFFFh h 69FFFFh h 68FFFFh h 67FFFFh h 66FFFFh h 65FFFFh h 64FFFFh h 63FFFFh h 62FFFFh h 61FFFFh h 60FFFFh F0000h 5FFFFFh E0000h 5EFFFFh D0000h 5DFFFFh C0000h 5CFFFFh B0000h 5BFFFFh This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
6 A0000h 5AFFFFh h 59FFFFh h 58FFFFh h 57FFFFh h 56FFFFh h 55FFFFh h 54FFFFh h 53FFFFh h 52FFFFh h 51FFFFh h 50FFFFh F0000h 4FFFFFh E0000h 4EFFFFh D0000h 4DFFFFh C0000h 4CFFFFh B0000h 4BFFFFh A0000h 4AFFFFh h 49FFFFh h 48FFFFh h 47FFFFh h 46FFFFh h 45FFFFh h 44FFFFh h 43FFFFh h 42FFFFh h 41FFFFh h 40FFFFh F0000h 3FFFFFh E0000h 3EFFFFh D0000h 3DFFFFh C0000h 3CFFFFh B0000h 3BFFFFh A0000h 3AFFFFh h 39FFFFh h 38FFFFh h 37FFFFh h 36FFFFh h 35FFFFh h 34FFFFh h 33FFFFh h 32FFFFh h 31FFFFh h 30FFFFh F0000h 2FFFFFh E0000h 2EFFFFh D0000h 2DFFFFh C0000h 2CFFFFh B0000h 2BFFFFh A0000h 2AFFFFh h 29FFFFh This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
7 h 28FFFFh h 27FFFFh h 26FFFFh h 25FFFFh h 24FFFFh h 23FFFFh h 22FFFFh h 21FFFFh h 20FFFFh F0000h 1FFFFFh E0000h 1EFFFFh D0000h 1DFFFFh C0000h 1CFFFFh B0000h 1BFFFFh A0000h 1AFFFFh h 19FFFFh h 18FFFFh h 17FFFFh h 16FFFFh h 15FFFFh h 14FFFFh h 13FFFFh h 12FFFFh h 11FFFFh h 10FFFFh F0000h 0FFFFFh E0000h 0EFFFFh D0000h 0DFFFFh C0000h 0CFFFFh B0000h 0BFFFFh A0000h 0AFFFFh h 09FFFFh h 08FFFFh h 07FFFFh h 06FFFFh h 05FFFFh h 04FFFFh h 03FFFFh h 02FFFFh h 01FFFFh h 00FFFFh This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
8 OPERATING FEATURES SPI Modes The EN25P64 is accessed through an SPI compatible bus consisting of four signals: Serial Clock (CLK), Chip Select (CS#), Serial Data Input (DI) and Serial Data Output (DO). Both SPI bus operation Modes 0 (0,0) and 3 (1,1) are supported. The primary difference between Mode 0 and Mode 3, as shown in Figure 3, concerns the normal state of the CLK signal when the SPI bus master is in standby and data is not being transferred to the Serial Flash. For Mode 0 the CLK signal is normally low. For Mode 3 the CLK signal is normally high. In either case data input on the DI pin is sampled on the rising edge of the CLK. Data output on the DO pin is clocked out on the falling edge of CLK. Figure 3. SPI Modes Page Programming To program one data byte, two instructions are required: Write Enable (WREN), which is one byte, and a Page Program (PP) sequence, which consists of four bytes plus data. This is followed by the internal Program cycle (of duration t PP ). To spread this overhead, the Page Program (PP) instruction allows up to 256 bytes to be programmed at a time (changing bits from 1 to 0), provided that they lie in consecutive addresses on the same page of memory. Sector Erase and Bulk Erase The Page Program (PP) instruction allows bits to be reset from 1 to 0. Before this can be applied, the bytes of memory need to have been erased to all 1s (FFh). This can be achieved either a sector at a time, using the Sector Erase (SE) instruction, or throughout the entire memory, using the Bulk Erase (BE) instruction. This starts an internal Erase cycle (of duration t SE or t BE ). The Erase instruction must be preceded by a Write Enable (WREN) instruction. Polling During a Write, Program or Erase Cycle A further improvement in the time to Write Status Register (WRSR), Program (PP) or Erase (SE or BE) can be achieved by not waiting for the worst case delay (t W, t PP, t SE, or t BE ). The Write In Progress (WIP) bit is provided in the Status Register so that the application program can monitor its value, polling it to establish when the previous Write cycle, Program cycle or Erase cycle is complete. Active Power, Stand-by Power and Deep Power-Down Modes When Chip Select (CS#) is Low, the device is enabled, and in the Active Power mode. When Chip Select (CS#) is High, the device is disabled, but could remain in the Active Power mode until all internal cycles have completed (Program, Erase, Write Status Register). The device then goes in to the Stand-by Power mode. The device consumption drops to I CC1. The Deep Power-down mode is entered when the specific instruction (the Enter Deep Power-down Mode (DP) instruction) is executed. The device consumption drops further to I CC2. The device remains in this mode until another specific instruction (the Release from Deep Power-down Mode and Read Device ID (RDI) instruction) is executed. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
9 All other instructions are ignored while the device is in the Deep Power-down mode. This can be used as an extra software protection mechanism, when the device is not in active use, to protect the device from inadvertent Write, Program or Erase instructions. Status Register. The Status Register contains a number of status and control bits that can be read or set (as appropriate) by specific instructions. WIP bit. The WIP bit indicates whether the memory is busy with a Write Status Register, Program or Erase cycle. WEL bit. The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. BP2, BP1, BP0 bits. The Block Protect (BP2, BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Program and Erase instructions. SRP bit / OTP_LOCK bit The Status Register Protect (SRP) bit is operated in conjunction with the Write Protect (WP#) signal. The Status Register Protect (SRP) bit and Write Protect (WP#) signal allow the device to be put in the Hardware Protected mode. In this mode, the non-volatile bits of the Status Register (SRP, BP2, BP1, BP0) become read-only bits. In OTP mode, this bit is served as OTP_LOCK bit, user can read/program/erase OTP sector as normal sector while OTP_LOCK value is equal 0, after OTP_LOCK is programmed with 1 by WRSR command, the OTP sector is protected form program and erase operation. The OTP_LOCK bit can only be programmed once. Note : In OTP mode, the WRSR command will ignore any input data and program OTP_LOCK bit to 1, user must clear the protect bits before enter OTP mode and program the OTP code, then execute WRSR command to lock the OTP sector before leaving OTP mode. Write Protection Applications that use non-volatile memory must take into consideration the possibility of noise and other adverse system conditions that may compromise data integrity. To address this concern the EN25P64 provides the following data protection mechanisms: Power-On Reset and an internal timer (t PUW ) can provide protection against inadvertent changes while the power supply is outside the operating specification. Program, Erase and Write Status Register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution. All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state by the following events: Power-up Write Disable (WRDI) instruction completion or Write Status Register (WRSR) instruction completion or Page Program (PP) instruction completion or Sector Erase (SE)instruction completion or Bulk Erase (BE) instruction completion or The Block Protect (BP2, BP1, BP0) bits allow part of the memory to be configured as read-only. This is the Software Protected Mode (SPM). The Write Protect (WP#) signal allows the Block Protect (BP2, BP1, BP0) bits and Status Register Protect (SRP) bit to be protected. This is the Hardware Protected Mode (HPM). In addition to the low power consumption feature, the Deep Power-down mode offers extra software protection from inadvertent Write, Program and Erase instructions, as all instructions are ignored except one particular instruction (the Release from Deep Power-down instruction). This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
10 Table 3 Protected Area Sizes Sector Organization Status Register Memory Content Content BP2 BP1 BP0 Addresses Density(KB) Portion Protect Sectors Bit Bit Bit All h-7FFFFFh 8192KB All Sector 64 to h-7FFFFFh 4096KB Upper 1/ Sector 96 to h-7FFFFFh 2048KB Upper 1/ Sector 112 to h-7FFFFFh 1024KB Upper 1/ Sector 120 to h-7FFFFFh 512KB Upper 1/ Sector 124 to 127 7C0000h-7FFFFFh 256KB Upper 1/ Sector 126 to 127 7E0000h-7FFFFFh 128KB Upper 1/ None None None None Hold Function The Hold (HOLD) signal is used to pause any serial communications with the device without resetting the clocking sequence. However, taking this signal Low does not terminate any Write Status Register, Program or Erase cycle that is currently in progress. To enter the Hold condition, the device must be selected, with Chip Select (CS#) Low. The Hold condition starts on the falling edge of the Hold (HOLD) signal, provided that this coincides with Serial Clock (CLK) being Low (as shown in Figure 4.). The Hold condition ends on the rising edge of the Hold (HOLD) signal, provided that this coincides with Serial Clock (CLK) being Low. If the falling edge does not coincide with Serial Clock (CLK) being Low, the Hold condition starts after Serial Clock (CLK) next goes Low. Similarly, if the rising edge does not coincide with Serial Clock (CLK) being Low, the Hold condition ends after Serial Clock (CLK) next goes Low. (This is shown in Figure 4.). During the Hold condition, the Serial Data Output (DO) is high impedance, and Serial Data Input (DI) and Serial Clock (CLK) are Don t Care. Normally, the device is kept selected, with Chip Select (CS#) driven Low, for the whole duration of the Hold condition. This is to ensure that the state of the internal logic remains unchanged from the moment of entering the Hold condition. If Chip Select (CS#) goes High while the device is in the Hold condition, this has the effect of resetting the internal logic of the device. To restart communication with the device, it is necessary to drive Hold (HOLD) High, and then to drive Chip Select (CS#) Low. This prevents the device from going back to the Hold condition. Figure 4. Hold Condition Waveform This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
11 INSTRUCTIONS All instructions, addresses and data are shifted in and out of the device, most significant bit first. Serial Data Input (DI) is sampled on the first rising edge of Serial Clock (CLK) after Chip Select (CS#) is driven Low. Then, the one-byte instruction code must be shifted in to the device, most significant bit first, on Serial Data Input (DI), each bit being latched on the rising edges of Serial Clock (CLK). The instruction set is listed in Table 4. Every instruction sequence starts with a one-byte instruction code. Depending on the instruction, this might be followed by address bytes, or by data bytes, or by both or none. Chip Select (CS#) must be driven High after the last bit of the instruction sequence has been shifted in. In the case of a Read Data Bytes (READ), Read Data Bytes at Higher Speed (Fast_Read), Read Status Register (RDSR) or Release from Deep Power-down, and Read Device ID (RDI) instruction, the shifted-in instruction sequence is followed by a data-out sequence. Chip Select (CS#) can be driven High after any bit of the data-out sequence is being shifted out. In the case of a Page Program (PP), Sector Erase (SE), Bulk Erase (BE), Write Status Register (WRSR), Write Enable (WREN), Write Disable (WRDI) or Deep Power-down (DP) instruction, Chip Select (CS#) must be driven High exactly at a byte boundary, otherwise the instruction is rejected, and is not executed. That is, Chip Select (CS#) must driven High when the number of clock pulses after Chip Select (CS#) being driven Low is an exact multiple of eight. For Page Program, if at any time the input byte is not a full byte, nothing will happen and WEL will not be reset. In the case of multi-byte commands of Page Program (PP), and Release from Deep Power Down (RES ) minimum number of bytes specified has to be given, without which, the command will be ignored. In the case of Page Program, if the number of byte after the command is less than 4 (at least 1 data byte), it will be ignored too. In the case of SE, exact 24-bit address is a must, any less or more will cause the command to be ignored. All attempts to access the memory array during a Write Status Register cycle, Program cycle or Erase cycle are ignored, and the internal Write Status Register cycle, Program cycle or Erase cycle continues unaffected. Table 4. Instruction Set Instruction Name Byte 1 Code Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 n-bytes Write Enable 06h Write Disable 04h Read Status Register 05h (S7-S0) (1) continuous (2) Write Status Register 01h S7-S0 Read Data 03h A23-A16 A15-A8 A7-A0 (D7-D0) (Next byte) continuous Fast Read 0Bh A23-A16 A15-A8 A7-A0 dummy (D7-D0) (Next Byte) continuous Page Program 02h A23-A16 A15-A8 A7-A0 D7-D0 Next byte continuous Sector Erase D8h A23-A16 A15-A8 A7-A0 Bulk Erase Deep Power-down Release from Deep Power-down, and read Device ID Release from Deep Power-down C7h B9h ABh This Data Sheet may be revised by subsequent versions dummy dummy dummy (ID7-ID0) 11 (4) 2004 Eon Silicon Solution, Inc.,
12 Manufacturer/ 90h Device ID dummy dummy 00h (5) (M7-M0) (ID7-ID0) Read Identification 9Fh (M7-M0) (ID15-ID8) (ID7-ID0) Enter OTP mode 3Ah EN25P64 Notes: 1. Data bytes are shifted with Most Significant Bit first. Byte fields with data in parenthesis ( ) indicate data being read from the device on the DO pin. 2. The Status Register contents will repeat continuously until CS# terminate the instruction. 3. All sectors may use any address within the sector. 4. The Device ID will repeat continuously until CS# terminate the instruction. 5. The Manufacturer ID and Device ID bytes will repeat continuously until CS# terminate the instruction. 00h on Byte 4 starts with MID and alternate with DID, 01h on Byte 4 starts with DID and alternate with MID. Table 5. Manufacturer and Device Identification OP Code (M7-M0) (ID15-ID0) (ID7-ID0) ABh 16h 90h 1Ch 16h 9Fh 1Ch 2017h Write Enable (WREN) (06h) The Write Enable (WREN) instruction (Figure 5) sets the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL) bit must be set prior to every Page Program (PP), Sector Erase (SE), Bulk Erase (BE) and Write Status Register (WRSR) instruction. The Write Enable (WREN) instruction is entered by driving Chip Select (CS#) Low, sending the instruction code, and then driving Chip Select (CS#) High. Figure 5. Write Enable Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
13 Write Disable (WRDI) (04h) The Write Disable instruction (Figure 6) resets the Write Enable Latch (WEL) bit in the Status Register to a 0 or exit from OTP mode to normal mode. The Write Disable instruction is entered by driving Chip Select (CS#) low, shifting the instruction code 04h into the DI pin and then driving Chip Select (CS#) high. Note that the WEL bit is automatically reset after Power-up and upon completion of the Write Status Register, Page Program, Sector Erase, and Bulk Erase instructions. Figure 6. Write Disable Instruction Sequence Diagram Read Status Register (RDSR) (05h) The Read Status Register (RDSR) instruction allows the Status Register to be read. The Status Register may be read at any time, even while a Program, Erase or Write Status Register cycle is in progress. When one of these cycles is in progress, it is recommended to check the Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible to read the Status Register continuously, as shown in Figure 7. Figure 7. Read Status Register Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
14 Table 6. Status Register Bit Locations S7 S6 S5 S4 S3 S2 S1 S0 SRP 0 0 BP2 BP1 BP0 WEL WIP Status Register Protect Reserved Bits Block Protect Bits Write Enable Latch Write In Progress Note : In OTP mode, SRP bit is served as OTP_LOCK bit, The status and control bits of the Status Register are as follows: WIP bit. The WIP bit indicates whether the memory is busy with a Write Status Register, Program or Erase cycle. When set to 1, such a cycle is in progress, when reset to 0 no such cycle is in progress. WEL bit. The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write Status Register, Program or Erase instruction is accepted. BP2, BP1, BP0 bits. The Block Protect (BP2, BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Program and Erase instructions. These bits are written with the Write Status Register (WRSR) instruction. When one or both of the Block Protect (BP2, BP1, BP0) bits is set to 1, the relevant memory area (as defined in Table 3.) becomes protected against Page Program (PP) and Sector Erase (SE) instructions. The Block Protect (BP2, BP1, BP0) bits can be written provided that the Hardware Protected mode has not been set. The Bulk Erase (BE) instruction is executed if, and only if, both Block Protect (BP2, BP1, BP0) bits are 0. Reserved bit. Status register bit locations 5 and 6 are reserved for future use. Current devices will read 0 for these bit locations. It is recommended to mask out the reserved bit when testing the Status Register. Doing this will ensure compatibility with future devices. SRP bit / OTP_LOCK bit. The Status Register Protect (SRP) bit is operated in conjunction with the Write Protect (WP#) signal. The Status Register Write Protect (SRP) bit and Write Protect (WP#) signal allow the device to be put in the Hardware Protected mode (when the Status Register Protect (SRP) bit is set to 1, and Write Protect (WP#) is driven Low). In this mode, the non-volatile bits of the Status Register (SRP, BP2, BP1, BP0) become read-only bits and the Write Status Register (WRSR) instruction is no longer accepted for execution. In OTP mode this bit is served as OTP_LOCK bit, user can read/program/erase OTP sector as normal sector while OTP_LOCK value is equal 0, after OTP_LOCK is programmed with 1 by WRSR command, the OTP sector is protected form program and erase operation. The OTP_LOCK bit can only be programmed once. Note : In OTP mode, the WRSR command will ignore any input data and program OTP_LOCK bit to 1, user must clear the protect bits before enter OTP mode and program the OTP code, then execute WRSR command to lock the OTP sector before leaving OTP mode. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
15 Write Status Register (WRSR) (01h) The Write Status Register (WRSR) instruction allows new values to be written to the Status Register. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded and executed, the device sets the Write Enable Latch (WEL). The Write Status Register (WRSR) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code and the data byte on Serial Data Input (DI). The instruction sequence is shown in Figure 8. The Write Status Register (WRSR) instruction has no effect on S6, S5, S1 and S0 of the Status Register. S6 and S5 are always read as 0. Chip Select (CS#) must be driven High after the eighth bit of the data byte has been latched in. If not, the Write Status Register (WRSR) instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Write Status Register cycle (whose duration is t W ) is initiated. While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Write Status Register cycle, and is 0 when it is completed. When the cycle is completed, the Write Enable Latch (WEL) is reset. The Write Status Register (WRSR) instruction allows the user to change the values of the Block Protect (BP2, BP1, BP0) bits, to define the size of the area that is to be treated as read-only, as defined in Table 3.. The Write Status Register (WRSR) instruction also allows the user to set or reset the Status Register Protect (SRP) bit in accordance with the Write Protect (WP#) signal. The Status Register Protect (SRP) bit and Write Protect (WP#) signal allow the device to be put in the Hardware Protected Mode (HPM). The Write Status Register (WRSR) instruction is not executed once the Hardware Protected Mode (HPM) is entered. NOTE : In the OTP mode, WRSR command will ignore input data and program OTP_LOCK bit to 1. Figure 8. Write Status Register Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
16 Read Data Bytes (READ) (03h) The device is first selected by driving Chip Select (CS#) Low. The instruction code for the Read Data Bytes (READ) instruction is followed by a 3-byte address (A23-A0), each bit being latched-in during the rising edge of Serial Clock (CLK). Then the memory contents, at that address, is shifted out on Serial Data Output (DO), each bit being shifted out, at a maximum frequency f R, during the falling edge of Serial Clock (CLK). The instruction sequence is shown in Figure 9. The first byte addressed can be at any location. The address is automatically incremented to the next higher address after each byte of data is shifted out. The whole memory can, therefore, be read with a single Read Data Bytes (READ) instruction. When the highest address is reached, the address counter rolls over to h, allowing the read sequence to be continued indefinitely. The Read Data Bytes (READ) instruction is terminated by driving Chip Select (CS#) High. Chip Select (CS#) can be driven High at any time during data output. Any Read Data Bytes (READ) instruction, while an Erase, Program or Write cycle is in progress, is rejected without having any effects on the cycle that is in progress. Figure 9. Read Data Instruction Sequence Diagram Read Data Bytes at Higher Speed (FAST_READ) (0Bh) The device is first selected by driving Chip Select (CS#) Low. The instruction code for the Read Data Bytes at Higher Speed (FAST_READ) instruction is followed by a 3-byte address (A23-A0) and a dummy byte, each bit being latched-in during the rising edge of Serial Clock (CLK). Then the memory contents, at that address, is shifted out on Serial Data Output (DO), each bit being shifted out, at a maximum frequency F R, during the falling edge of Serial Clock (CLK). The instruction sequence is shown in Figure 10. The first byte addressed can be at any location. The address is automatically incremented to the next higher address after each byte of data is shifted out. The whole memory can, therefore, be read with a single Read Data Bytes at Higher Speed (FAST_READ) instruction. When the highest address is reached, the address counter rolls over to h, allowing the read sequence to be continued indefinitely. The Read Data Bytes at Higher Speed (FAST_READ) instruction is terminated by driving Chip Select (CS#) High. Chip Select (CS#) can be driven High at any time during data output. Any Read Data Bytes at Higher Speed (FAST_READ) instruction, while an Erase, Program or Write cycle is in progress, is rejected without having any effects on the cycle that is in progress. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
17 Figure 10. Fast Read Instruction Sequence Diagram Page Program (PP) (02h) The Page Program (PP) instruction allows bytes to be programmed in the memory. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded, the device sets the Write Enable Latch (WEL). The Page Program (PP) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code, three address bytes and at least one data byte on Serial Data Input (DI). If the 8 least significant address bits (A7-A0) are not all zero, all transmitted data that goes beyond the end of the current page are programmed from the start address of the same page (from the address whose 8 least significant bits (A7-A0) are all zero). Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 11. If more than 256 bytes are sent to the device, previously latched data are discarded and the last 256 data bytes are guaranteed to be programmed correctly within the same page. If less than 256 Data bytes are sent to device, they are correctly programmed at the requested addresses without having any effects on the other bytes of the same page. Chip Select (CS#) must be driven High after the eighth bit of the last data byte has been latched in, otherwise the Page Program (PP) instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Page Program cycle (whose duration is t PP ) is initiated. While the Page Program cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Page Program cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A Page Program (PP) instruction applied to a page which is protected by the Block Protect (BP2, BP1, BP0) bits (see Table 3.a and Table 3.b) is not executed. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
18 Figure 11. Page Program Instruction Sequence Diagram Sector Erase (SE) (D8h) The Sector Erase (SE) instruction sets to 1 (FFh) all bits inside the chosen sector. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded, the device sets the Write Enable Latch (WEL). The Sector Erase (SE) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code, and three address bytes on Serial Data Input (DI). Any address inside the Sector (see Table 2.a and Table 2.b) is a valid address for the Sector Erase (SE) instruction. Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 12. Chip Select (CS#) must be driven High after the eighth bit of the last address byte has been latched in, otherwise the Sector Erase (SE) instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Sector Erase cycle (whose duration is t SE ) is initiated. While the Sector Erase cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Sector Erase cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A Sector Erase (SE) instruction applied to a page which is protected by the Block Protect (BP2, BP1, BP0) bits (see Table 3.a and Table 3.b) is not executed. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
19 Figure 12. Sector Erase Instruction Sequence Diagram Bulk Erase (BE) (C7h) The Bulk Erase (BE) instruction sets all bits to 1 (FFh). Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded, the device sets the Write Enable Latch (WEL). The Bulk Erase (BE) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code on Serial Data Input (DI). Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 13. Chip Select (CS#) must be driven High after the eighth bit of the instruction code has been latched in, otherwise the Bulk Erase instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Bulk Erase cycle (whose duration is t BE ) is initiated. While the Bulk Erase cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Bulk Erase cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. The Bulk Erase (BE) instruction is executed only if all Block Protect (BP2, BP1, BP0) bits are 0. The Bulk Erase (BE) instruction is ignored if one, or more, sectors are protected. Figure 13. Bulk Erase Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
20 Deep Power-down (DP) (B9h) Executing the Deep Power-down (DP) instruction is the only way to put the device in the lowest consumption mode (the Deep Power-down mode). It can also be used as an extra software protection mechanism, while the device is not in active use, since in this mode, the device ignores all Write, Program and Erase instructions. Driving Chip Select (CS#) High deselects the device, and puts the device in the Standby mode (if there is no internal cycle currently in progress). But this mode is not the Deep Power-down mode. The Deep Power-down mode can only be entered by executing the Deep Power-down (DP) instruction, to reduce the standby current (from ICC1 to ICC2, as specified in Table 8.). Once the device has entered the Deep Power-down mode, all instructions are ignored except the Release from Deep Power-down and Read Device ID (RDI) instruction. This releases the device from this mode. The Release from Deep Power-down and Read Device ID (RDI) instruction also allows the Device ID of the device to be output on Serial Data Output (DO). The Deep Power-down mode automatically stops at Power-down, and the device always Powersup in the Standby mode. The Deep Power-down (DP) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code on Serial Data Input (DI). Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 14.Chip Select (CS#) must be driven High after the eighth bit of the instruction code has been latched in, otherwise the Deep Power-down (DP) instruction is not executed. As soon as Chip Select (CS#) is driven High, it requires a delay of t DP before the supply current is reduced to ICC2 and the Deep Power-down mode is entered. Any Deep Power-down (DP) instruction, while an Erase, Program or Write cycle is in progress, is rejected without having any effects on the cycle that is in progress. Figure 14. Deep Power-down Instruction Sequence Diagram Release from Deep Power-down and Read Device ID (RDI) Once the device has entered the Deep Power-down mode, all instructions are ignored except the Release from Deep Power-down and Read Device ID (RDI) instruction. Executing this instruction takes the device out of the Deep Power-down mode. Please note that this is not the same as, or even a subset of, the JEDEC 16-bit Electronic Signature that is read by the Read Identifier (RDID) instruction. The old-style Electronic Signature is supported for reasons of backward compatibility, only, and should not be used for new designs. New designs should, instead, make use of the JEDEC 16-bit Electronic Signature, and the Read Identifier (RDID) instruction. When used only to release the device from the power-down state, the instruction is issued by driving the CS# pin low, shifting the instruction code ABh and driving CS# high as shown in Figure 15. After the time duration of t RES1 (See AC Characteristics) the device will resume normal operation and other instructions will be accepted. The CS# pin must remain high during the t RES1 time duration. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
21 When used only to obtain the Device ID while not in the power-down state, the instruction is initiated by driving the CS# pin low and shifting the instruction code ABh followed by 3-dummy bytes. The Device ID bits are then shifted out on the falling edge of CLK with most significant bit (MSB) first as shown in Figure 16. The Device ID value for the EN25P64 is listed in Table 5. The Device ID can be read continuously. The instruction is completed by driving CS# high. When Chip Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Standby Power mode is delayed by t RES2, and Chip Select (CS#) must remain High for at least t RES2 (max), as specified in Table 10. Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. Except while an Erase, Program or Write Status Register cycle is in progress, the Release from Deep Power-down and Read Device ID (RDI) instruction always provides access to the 8bit Device ID of the device, and can be applied even if the Deep Power-down mode has not been entered. Any Release from Deep Power-down and Read Device ID (RDI) instruction while an Erase, Program or Write Status Register cycle is in progress, is not decoded, and has no effect on the cycle that is in progress. Figure 15. Release Power-down Instruction Sequence Figure 16. Release Power-down / Device ID Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
22 Read Manufacturer / Device ID (90h) The Read Manufacturer/Device ID instruction is an alternative to the Release from Power-down / Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID. The Read Manufacturer/Device ID instruction is very similar to the Release from Power-down / Device ID instruction. The instruction is initiated by driving the CS# pin low and shifting the instruction code 90h followed by a 24-bit address (A23-A0) of h. After which, the Manufacturer ID for Eon (1Ch) and the Device ID are shifted out on the falling edge of CLK with most significant bit (MSB) first as shown in Figure 17. The Device ID values for the EN25P64 are listed in Table 5. If the 24-bit address is initially set to h the Device ID will be read first Figure 17. Read Manufacturer / Device ID Diagram This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
23 Read Identification (RDID) (9Fh) The Read Identification (RDID) instruction allows the 8-bit manufacturer identification to be read, followed by two bytes of device identification. The device identification indicates the memory type in the first byte, and the memory capacity of the device in the second byte. Any Read Identification (RDID) instruction while an Erase or Program cycle is in progress, is not decoded, and has no effect on the cycle that is in progress. The Read Identification (RDID) instruction should not be issued while the device is in Deep Power down mode. The device is first selected by driving Chip Select Low. Then, the 8-bit instruction code for the instruction is shifted in. This is followed by the 24-bit device identification, stored in the memory, being shifted out on Serial Data Output, each bit being shifted out during the falling edge of Serial Clock. The instruction sequence is shown in Figure 18. The Read Identification (RDID) instruction is terminated by driving Chip Select High at any time during data output. When Chip Select is driven High, the device is put in the Standby Power mode. Once in the Standby Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. Figure 18. Read Identification (RDID) This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
24 Enter OTP Mode (3Ah) This Flash has a extra 512 bytes OTP sector, user must issue ENTER OTP MODE command to enter OTP mode before reading / programming or erasing OTP sector. After entering OTP mode, the OTP sector is mapping to sector 127 respectively, SRP bit becomes OTP_LOCK bit and can be reading by RDSR command. Program / Erase command will be disabled when OTP_LOCK is 1 WRSR command will ignore the input data and program LOCK_BIT to 1. User must clear the protect bits before enter OTP mode. OTP sector can only be program and erase when LOCK_BIT equal 0 and BP [2:0] = 000. In OTP mode, user can read other sectors, but program/erase other sectors only allowed when OTP_LOCK equal 0. User can use WRDI (04H) command to exit OTP mode. Figure 19. Enter OTP Mode Table 7 Security Sector Address Sector Size (bytes) Address Range Byte mode (x8) 512 7FFE00h 7FFFFFh This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
25 Power-up Timing Figure 20. Power-up Timing Table 8. Power-Up Timing and Write Inhibit Threshold Symbol Parameter Min. Max. Unit tvsl (1) VCC(min) to CS# low 10 µs tpuw (1) Time delay to Write instruction 1 10 ms VWI (1) Write Inhibit Voltage V Note: 1.The parameters are characterized only. INITIAL DELIVERY STATE The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register contains 00h (all Status Register bits are 0). This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
26 Table 9. DC Characteristics (T a = - 40 C to 85 C; V CC = V) Symbol Parameter Test Conditions Min. Max. Unit I LI Input Leakage Current ± 2 µa I LO Output Leakage Current ± 2 µa I CC1 Standby Current CS# = V CC, V IN = V SS or V CC 5 µa I CC2 Deep Power-down Current CS# = V CC, V IN = V SS or V CC 5 µa CLK = 0.1 V CC / 0.9 V CC at 100MHz, Q = open 20 ma I CLK = 0.1 V CC / 0.9 V CC at CC3 Operating Current (READ) 75MHz, Q = open 15 ma CLK = 0.1 V CC / 0.9 V CC at 33MHz, Q = open 12 ma I CC4 Operating Current (PP) CS# = V CC 15 ma I CC5 Operating Current (WRSR) CS# = V CC 15 ma I CC6 Operating Current (SE) CS# = V CC 15 ma I CC7 Operating Current (BE) CS# = V CC 15 ma V IL Input Low Voltage V CC V V IH Input High Voltage 0.7V CC V CC +0.4 V V OL Output Low Voltage I OL = 1.6 ma 0.4 V V OH Output High Voltage I OH = 100 µa V CC -0.2 V Table 10. AC Measurement Conditions Symbol Parameter Min. Max. Unit C L Load Capacitance 20/30 pf Input Rise and Fall Times 5 ns Input Pulse Voltages 0.2V CC to 0.8V CC V Input Timing Reference Voltages 0.3V CC to 0.7V CC V Output Timing Reference Voltages V CC / 2 V Note: 1. C L = 20 pf when CLK=100MHz, C L = 30 pf when CLK=75MHz Figure 21. AC Measurement I/O Waveform This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
27 Table MHz AC Characteristics EN25P64 (T a = 40 C to 85 C; V CC = V) Symbol Alt Parameter Min Typ Max Unit F R f C Serial Clock Frequency for: FAST_READ, PP, SE, BE, DP, RES, WREN, D.C. 100 MHz WRDI, RDSR, WRSR f R Serial Clock Frequency READ instruction D.C. 66 MHz t 1 CLH t 1 CLL t 2 CLCH t 2 CHCL Serial Clock High Time 4 ns Serial Clock Low Time 4 ns Serial Clock Rise Time (Slew Rate) 0.1 V / ns Serial Clock Fall Time (Slew Rate) 0.1 V / ns t SLCH t CSS CS# Active Setup Time 5 ns t CHSH CS# Active Hold Time 5 ns t SHCH CS# Not Active Setup Time 5 ns t CHSL CS# Not Active Hold Time 5 ns t SHSL t CSH CS# High Time 100 ns t SHQZ 2 t DIS Output Disable Time 6 ns t CLQX t HO Output Hold Time 0 ns t DVCH t DSU Data In Setup Time 2 ns t CHDX t DH Data In Hold Time 5 ns t HLCH HOLD# Low Setup Time ( relative to CLK ) 5 ns t HHCH HOLD# High Setup Time ( relative to CLK ) 5 ns t CHHH HOLD# Low Hold Time ( relative to CLK ) 5 ns t CHHL HOLD# High Hold Time ( relative to CLK ) 5 ns t HLQZ 2 t HZ HOLD# Low to High-Z Output 6 ns t HHQZ 2 t LZ HOLD# High to Low-Z Output 6 ns t CLQV t V Output Valid from CLK 8 ns t WHSL 3 Write Protect Setup Time before CS# Low 20 ns t SHWL 3 Write Protect Hold Time after CS# High 100 ns t DP 2 CS# High to Deep Power-down Mode 3 µs t 2 CS# High to Standby Mode without Electronic RES1 Signature read 3 µs t 2 CS# High to Standby Mode with Electronic RES2 Signature read 1.8 µs t W Write Status Register Cycle Time ms t PP Page Programming Time ms t SE Sector Erase Time 64KB sectors s t BE Bulk Erase Time s Note: 1. T CLKH + T CLKL must be greater than or equal to 1/ F CLK 2. Value guaranteed by characterization, not 100% tested in production. 3. Only applicable as a constraint for a Write status Register instruction when Sector Protect Bit is set at V CC = V for 100MHz operation This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
28 Table MHz AC Characteristics (T a = 40 C to 85 C; V CC = V) EN25P64 Symbol Alt Parameter Min Typ Max Unit F R f C Serial Clock Frequency for: FAST_READ, PP, SE, BE, DP, RES, WREN, D.C. 75 MHz WRDI, RDSR, WRSR f R Serial Clock Frequency READ instruction D.C. 66 MHz t 1 CLH t 1 CLL t 2 CLCH t 2 CHCL Serial Clock High Time 6 ns Serial Clock Low Time 6 ns Serial Clock Rise Time (Slew Rate) 0.1 V / ns Serial Clock Fall Time (Slew Rate) 0.1 V / ns t SLCH t CSS CS# Active Setup Time 5 ns t CHSH CS# Active Hold Time 5 ns t SHCH CS# Not Active Setup Time 5 ns t CHSL CS# Not Active Hold Time 5 ns t SHSL t CSH CS# High Time 100 ns t SHQZ 2 t DIS Output Disable Time 6 ns t CLQX t HO Output Hold Time 0 ns t DVCH t DSU Data In Setup Time 2 ns t CHDX t DH Data In Hold Time 5 ns t HLCH HOLD# Low Setup Time ( relative to CLK ) 5 ns t HHCH HOLD# High Setup Time ( relative to CLK ) 5 ns t CHHH HOLD# Low Hold Time ( relative to CLK ) 5 ns t CHHL HOLD# High Hold Time ( relative to CLK ) 5 ns t HLQZ 2 t HZ HOLD# Low to High-Z Output 6 ns t HHQZ 2 t LZ HOLD# High to Low-Z Output 6 ns t CLQV t V Output Valid from CLK 6 ns t WHSL 3 Write Protect Setup Time before CS# Low 20 ns t SHWL 3 Write Protect Hold Time after CS# High 100 ns t DP 2 CS# High to Deep Power-down Mode 3 µs t 2 CS# High to Standby Mode without Electronic RES1 Signature read 3 µs t 2 CS# High to Standby Mode with Electronic RES2 Signature read 1.8 µs t W Write Status Register Cycle Time ms t PP Page Programming Time ms t SE Sector Erase Time 64KB sectors s t BE Bulk Erase Time s Note: 1. T CLKH + T CLKL must be greater than or equal to 1/ F CLK 2. Value guaranteed by characterization, not 100% tested in production. 3. Only applicable as a constraint for a Write status Register instruction when Sector Protect Bit is set at 1. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
29 Figure 22. Serial Output Timing Figure 23. Input Timing Figure 24. Hold Timing This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
30 ABSOLUTE MAXIMUM RATINGS Stresses above the values so mentioned above may cause permanent damage to the device. These values are for a stress rating only and do not imply that the device should be operated at conditions up to or above these values. Exposure of the device to the maximum rating values for extended periods of time may adversely affect the device reliability. Parameter Value Unit Storage Temperature -65 to +125 Plastic Packages -65 to +125 Output Short Circuit Current ma Input and Output Voltage (with respect to to +4.0 V ground) Vcc -0.5 to +4.0 V Notes: 1. No more than one output shorted at a time. Duration of the short circuit should not be greater than one second. 2. Minimum DC voltage on input or I/O pins is 0.5 V. During voltage transitions, inputs may undershoot V ss to 1.0V for periods of up to 50ns and to 2.0 V for periods of up to 20ns. See figure below. Maximum DC voltage on output and I/O pins is V cc V. During voltage transitions, outputs may overshoot to V cc V for periods up to 20ns. See figure below. RECOMMENDED OPERATING RANGES 1 Parameter Value Unit Ambient Operating Temperature Industrial Devices -40 to 85 Operating Supply Voltage Vcc Regulated: 3.0 to 3.6 Full: 2.7 to 3.6 V Notes: 1. Recommended Operating Ranges define those limits between which the functionality of the device is guaranteed. Vcc +1.5V Maximum Negative Overshoot Waveform Maximum Positive Overshoot Waveform This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
31 Table 13. DATA RETENTION and ENDURANCE Parameter Description Test Conditions Min Unit Minimum Pattern Data Retention Time 150 C 10 Years 125 C 20 Years Erase/Program Endurance -40 to 85 C 100k cycles Table 14. LATCH UP CHARACTERISTICS Parameter Description Min Max Input voltage with respect to V ss on all pins except I/O pins (including A9, Reset and OE#) -1.0 V 12.0 V Input voltage with respect to V ss on all I/O Pins -1.0 V Vcc V Vcc Current -100 ma 100 ma Note : These are latch up characteristics and the device should never be put under these conditions. Refer to Absolute Maximum ratings for the actual operating limits. Table 15. CAPACITANCE ( V CC = V) Parameter Symbol Parameter Description Test Setup Typ Max Unit C IN Input Capacitance V IN = 0 6 pf C OUT Output Capacitance V OUT = 0 8 pf Note : Sampled only, not 100% tested, at T A = 25 C and a frequency of 20MHz. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
32 PACKAGE MECHANICAL Figure LEAD SOP 300 mil SYMBOL DIMENSION IN MM MIN. NOR MAX A A A C D E E e b L θ Note : 1. Coplanarity: 0.1 mm This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
33 ORDERING INFORMATION EN25P64-75 F I P PACKAGING CONTENT (Blank) = Conventional P = RoHS compliant TEMPERATURE RANGE I = Industrial (-40 C to +85 C) PACKAGE F = 16-pin 300mil SOP SPEED 100 = 100 Mhz 75 = 75 Mhz BASE PART NUMBER EN = Eon Silicon Solution Inc. 25P = 3V Serial Uniform-Sector FLASH 64 = 64 Megabit (8192K x 8) This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
34 Revisions List Revision No Description Date A Initial Release 2007/11/20 B 1. Remove C grade option of temperature range in page /06/23 and page Update the Table 6. Status Register Bit Locations in page 14. This Data Sheet may be revised by subsequent versions Eon Silicon Solution, Inc.,
M25P05-A. 512-Kbit, serial flash memory, 50 MHz SPI bus interface. Features
512-Kbit, serial flash memory, 50 MHz SPI bus interface Features 512 Kbits of flash memory Page program (up to 256 bytes) in 1.4 ms (typical) Sector erase (256 Kbits) in 0.65 s (typical) Bulk erase (512
M25P40 3V 4Mb Serial Flash Embedded Memory
Features M25P40 3V 4Mb Serial Flash Embedded Memory Features SPI bus-compatible serial interface 4Mb Flash memory 75 MHz clock frequency (maximum) 2.3V to 3.6V single supply voltage Page program (up to
W25Q80, W25Q16, W25Q32 8M-BIT, 16M-BIT AND 32M-BIT SERIAL FLASH MEMORY WITH DUAL AND QUAD SPI
8M-BIT, 16M-BIT AND 32M-BIT SERIAL FLASH MEMORY WITH DUAL AND QUAD SPI - 1 - Preliminary - Revision B Table of Contents 1. GENERAL DESCRIPTION... 5 2. FEATURES... 5 3. PIN CONFIGURATION SOIC 208-MIL...
M25P32 32Mb 3V NOR Serial Flash Embedded Memory
Features M25P32 32Mb 3V NOR Serial Flash Embedded Memory Features SPI bus-compatible serial interface 32Mb Flash memory 75 MHz clock frequency (maximum) 2.7V to 3.6V single supply voltage V PP = 9V for
CAT28C64B F R E E. 64K-Bit CMOS PARALLEL EEPROM L E A D FEATURES DESCRIPTION BLOCK DIAGRAM
64K-Bit CMOS PARALLEL EEPROM FEATURES Fast read access times: 90/120/150ns Low power CMOS dissipation: Active: 25 ma max. Standby: 100 µa max. Simple write operation: On-chip address and data latches Self-timed
MR25H10. RoHS FEATURES INTRODUCTION
FEATURES No write delays Unlimited write endurance Data retention greater than 20 years Automatic data protection on power loss Block write protection Fast, simple SPI interface with up to 40 MHz clock
LE25U81AMC. Advance Information
Ordering number : EN*A2286 LE25U81AMC Advance Information CMOS L 8M-bit (1024K x 8) Serial Flash Memory http://onsemi.com Overview The LE25U81AMC is a SPI bus flash memory device with a 8M bit (1024K 8-bit)
MX25L1605A. 16M-BIT [x 1] CMOS SERIAL FLASH FEATURES
16M-BIT [x 1] CMOS SERIAL FLASH FEATURES GENERAL Serial Peripheral Interface (SPI) compatible -- Mode 0 and Mode 3 16,777,216 x 1 bit structure 512 Equal Sectors with 4K byte each - Any Sector can be erased
MX25L5121E MX25L1021E MX25L5121E, MX25L1021E DATASHEET
MX25L5121E, DATASHEET 1 Contents FEATURES... 4 GENERAL... 4 PERFORMANCE... 4 FTWARE FEATURES... 4 HARDWARE FEATURES... 4 GENERAL DESCRIPTION... 5 PIN CONFIGURATIONS... 6 PIN DESCRIPTION... 6 BLOCK DIAGRAM...
Allows the user to protect against inadvertent write operations. Device select and address bytes are Acknowledged Data Bytes are not Acknowledged
Write Protect CAT24WCxxx I 2 C Serial EEPROMs. Allows the user to protect against inadvertent write operations. WP = V CC : Write Protected Device select and address bytes are Acknowledged Data Bytes are
ANV31A81W. Anvo-Systems Dresden
FATURS Compatible with Serial Peripheral Interface (SPI) Supports SPI Modes 0 and 3 66MHz clock rate Block Write Protection Write Disable for Software Data Protection Secure WRIT Secure RAD Read Last Successful
DS1621 Digital Thermometer and Thermostat
www.maxim-ic.com FEATURES Temperature measurements require no external components Measures temperatures from -55 C to +125 C in 0.5 C increments. Fahrenheit equivalent is -67 F to 257 F in 0.9 F increments
DS1621 Digital Thermometer and Thermostat
Digital Thermometer and Thermostat www.dalsemi.com FEATURES Temperature measurements require no external components Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent
Features INSTRUCTION DECODER CONTROL LOGIC AND CLOCK GENERATORS COMPARATOR AND WRITE ENABLE EEPROM ARRAY READ/WRITE AMPS 16
July 2000 FM9346 (MICROWIRE Bus Interface) 1024- Serial EEPROM General Description FM9346 is a 1024-bit CMOS non-volatile EEPROM organized as 64 x 16-bit array. This device features MICROWIRE interface
W25Q128FV 3V 128M-BIT SERIAL FLASH MEMORY WITH DUAL/QUAD SPI & QPI. Publication Release Date: August 24, 2015 Revision L
3V 128M-BIT SERIAL FLASH MEMORY WITH DUAL/QUAD SPI & QPI Publication Release Date: August 24, 2015 Revision L Table of Contents 1. GENERAL DESCRIPTIONS... 5 2. FEATURES... 5 3. PACKAGE TYPES AND PIN CONFIGURATIONS...
1-Mbit (128K 8) Quad SPI nvsram with Real Time Clock
CY4VPS -Mbit (28K 8) Quad SPI nvsram with Real Time Clock Features Density Mbit (28K 8) Bandwidth 8-MHz high-speed interface Read and write at 54 Mbps Serial Peripheral Interface Clock polarity and phase
8-Bit Flash Microcontroller for Smart Cards. AT89SCXXXXA Summary. Features. Description. Complete datasheet available under NDA
Features Compatible with MCS-51 products On-chip Flash Program Memory Endurance: 1,000 Write/Erase Cycles On-chip EEPROM Data Memory Endurance: 100,000 Write/Erase Cycles 512 x 8-bit RAM ISO 7816 I/O Port
PACKAGE OUTLINE DALLAS DS2434 DS2434 GND. PR 35 PACKAGE See Mech. Drawings Section
PRELIMINARY DS2434 Battery Identification Chip FEATURES Provides unique ID number to battery packs PACKAGE OUTLINE Eliminates thermistors by sensing battery temperature on chip DALLAS DS2434 1 2 3 256
Single 2.5V - 3.6V or 2.7V - 3.6V supply Atmel RapidS serial interface: 66MHz maximum clock frequency. SPI compatible modes 0 and 3
32Mb, 2.5V or 2.7V Atmel ataflash ATASHEET Features Single 2.5V - 3.6V or 2.7V - 3.6V supply Atmel RapidS serial interface: 66MHz maximum clock frequency SPI compatible modes 0 and 3 User configurable
Features. Instruction. Decoder Control Logic, And Clock Generators. Address Compare amd Write Enable. Protect Register V PP.
February 1999 NM9366 (MICROWIRE Bus Interface) 4096-Bit Serial EEPROM General Description The NM9366 devices are 4096 bits of CMOS non-volatile electrically erasable memory divided into 256 16-bit registers.
SPI FLASH INTERFACE SPECIFICATION
SPI FLASH INTERFACE SPECIFICATION 223-0017-006 REV F 3/14 1 Table of contents Table of contents... 1 Notices and other considerations... 2 Introduction... 3 Functional description... 5 Operating features...
DS1220Y 16k Nonvolatile SRAM
19-5579; Rev 10/10 NOT RECOENDED FOR NEW DESIGNS 16k Nonvolatile SRAM www.maxim-ic.com FEATURES 10 years minimum data retention in the absence of external power Data is automatically protected during power
DS1307ZN. 64 x 8 Serial Real-Time Clock
DS137 64 x 8 Serial Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid
1 Mbit SPI Serial Flash SST25VF010A
SST's serial flash family features a four-wire, SPI-compatible interface that allows for a low pin-count package occupying less board space and ultimately lowering total system costs. SPI serial flash
DS1220Y 16k Nonvolatile SRAM
Not Recommended for New Design DS122Y 16k Nonvolatile SRAM www.maxim-ic.com FEATURES years minimum data retention in the absence of external power Data is automatically protected during power loss Directly
EN29LV800B 8 Megabit (1024K x 8-bit / 512K x 16-bit) Flash Memory Boot Sector Flash Memory, CMOS 3.0 Volt-only
EN29LV800B 8 Megabit (1024K x 8-bit / 512K x 16-bit) Flash Memory Boot Sector Flash Memory, CMOS 3.0 Volt-only FEATURES Single power supply operation - Full voltage range: 2.7-3.6 volt read and write operations
Micron Serial NOR Flash Memory
Micron Serial NOR Flash Memory 1.8V, Multiple I/O, 4KB Sector Erase N25Q64A 64Mb, 1.8V, Multiple I/O Serial Flash Memory Features Features SPI-compatible serial bus interface 18 MHz (MAX) clock frequency
DS1225Y 64k Nonvolatile SRAM
DS1225Y 64k Nonvolatile SRAM www.maxim-ic.com FEATURES years minimum data retention in the absence of external power Data is automatically protected during power loss Directly replaces 2k x 8 volatile
1 Gbit, 2 Gbit, 4 Gbit, 3 V SLC NAND Flash For Embedded
1 Gbit, 2 Gbit, 4 Gbit, 3 V SLC NAND Flash For Embedded Distinctive Characteristics Density 1 Gbit / 2 Gbit / 4 Gbit Architecture Input / Output Bus Width: 8-bits / 16-bits Page Size: x8 = 2112 (2048 +
Micron Serial NOR Flash Memory
Micron Serial NOR Flash Memory 1.8V, Multiple I/O, 4KB Sector Erase N25Q128A 128Mb, Multiple I/O Serial Flash Memory Features Features SPI-compatible serial bus interface 18 MHz (MAX) clock frequency 1.7
DS1721 2-Wire Digital Thermometer and Thermostat
www.dalsemi.com FEATURES Temperature measurements require no external components with ±1 C accuracy Measures temperatures from -55 C to +125 C; Fahrenheit equivalent is -67 F to +257 F Temperature resolution
Technical Note. SFDP for MT25Q Family. Introduction. TN-25-06: Serial Flash Discovery Parameters for MT25Q Family. Introduction
Technical Note SFDP for MT25Q Family TN-25-06: Serial Flash Discovery Parameters for MT25Q Family Introduction Introduction The serial Flash discoverable parameter (SFDP) standard enables a consistent
1 Mbit (128K x8) Page-Write EEPROM GLS29EE010
1 Mbit (128K x8) Page-Write EEPROM 1Mb (x8) Page-Write, Small-Sector flash memories FEATURES: Single Voltage Read and Write Operations 4.5-5.5V for Superior Reliability Endurance: 100,000 Cycles (typical)
HT1632C 32 8 &24 16 LED Driver
328 &216 LED Driver Features Operating voltage: 2.V~5.5V Multiple LED display 32 ROW /8 COM and 2 ROW & 16 COM Integrated display RAM select 32 ROW & 8 COM for 6 display RAM, or select 2 ROW & 16 COM for
NM93CS06 CS46 CS56 CS66. 256-1024- 2048-4096-Bit Serial EEPROM with Data Protect and Sequential Read
August 1996 NM93CS06 CS46 CS56 CS66 (MICROWIRE TM Bus Interface) 256-1024- 2048-4096-Bit Serial EEPROM with Data Protect and Sequential Read General Description The NM93CS06 CS46 CS56 CS66 devices are
1-Mbit (128K x 8) Static RAM
1-Mbit (128K x 8) Static RAM Features Pin- and function-compatible with CY7C109B/CY7C1009B High speed t AA = 10 ns Low active power I CC = 80 ma @ 10 ns Low CMOS standby power I SB2 = 3 ma 2.0V Data Retention
256K (32K x 8) Battery-Voltage Parallel EEPROMs AT28BV256
Features Single 2.7V - 3.6V Supply Fast Read Access Time 200 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Internal Control Timer Fast Write Cycle Times Page Write Cycle
Serial Quad I/O (SQI) Flash Memory SST26VF016 / SST26VF032
The Serial Quad I/O (SQI ) flash device utilizes a 4-bit multiplexed I/O serial interface to boost performance while maintaining the compact form factor of standard serial flash devices. Operating at frequencies
256K (32K x 8) Static RAM
256K (32K x 8) Static RAM Features High speed: 55 ns and 70 ns Voltage range: 4.5V 5.5V operation Low active power (70 ns, LL version) 275 mw (max.) Low standby power (70 ns, LL version) 28 µw (max.) Easy
64K (8K x 8) Parallel EEPROM with Page Write and Software Data Protection AT28C64B
Features Fast Read Access Time 150 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Fast Write Cycle Times Page Write Cycle Time: 10 ms Maximum (Standard) 2 ms Maximum (Option
DIP Top View VCC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 GND A17 A14 A13 A8 A9 A11 A10 I/O7 I/O6 I/O5 I/O4 I/O3. PLCC Top View VCC A17
Features Fast Read Access Time 70 ns 5-volt Only Reprogramming Sector Program Operation Single Cycle Reprogram (Erase and Program) 1024 Sectors (256 Bytes/Sector) Internal Address and Data Latches for
256K (32K x 8) OTP EPROM AT27C256R 256K EPROM. Features. Description. Pin Configurations
Features Fast Read Access Time - 45 ns Low-Power CMOS Operation 100 µa max. Standby 20 ma max. Active at 5 MHz JEDEC Standard Packages 28-Lead 600-mil PDIP 32-Lead PLCC 28-Lead TSOP and SOIC 5V ± 10% Supply
M24512-W M24512-R M24512-HR M24256-BW M24256-BR M24256-BHR
M24512-W M24512-R M24512-HR M24256-BW M24256-BR M24256-BHR 512 Kbit and 256 Kbit serial I²C bus EEPROM with three Chip Enable lines Features Two-wire I 2 C serial interface supports the 1 MHz protocol
4~16GB High Capacity microsd Card. Description. Features. Placement. Pin Definition. Transcend Information Inc. 1
Description Transcend High Capacity microsd Card series are specifically designed to meet the High Capacity, High Definition Audio and Video requirement for the latest Digital Cameras, DV Recorders, Mobile
DS1386/DS1386P RAMified Watchdog Timekeeper
DS1386/DS1386P RAMified Watchdog Timekeeper www.maxim-ic.com GENERAL DESCRIPTION The DS1386 is a nonvolatile static RAM with a full-function real-time clock (RTC), alarm, watchdog timer, and interval timer
Rev. 1.0. 64GB Extended Capacity Secure Digital Card. Description. Features. Placement. Pin Definition. Transcend Information Inc.
Description Transcend secured digital extended capacity Card series are specifically designed to meet the High Capacity, High Definition Audio and Full HD Video requirement for the latest Digital Cameras,
8741A UNIVERSAL PERIPHERAL INTERFACE 8-BIT MICROCOMPUTER
UNIVERSAL PERIPHERAL INTERFACE 8-BIT MICROCOMPUTER 8-Bit CPU plus ROM RAM I O Timer and Clock in a Single Package One 8-Bit Status and Two Data Registers for Asynchronous Slave-to- Master Interface DMA
HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION
BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION QUIESCENT CURRENT SPECIF. UP TO 20V OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAY. EQUIVALENT AC OUTPUT DRIVE
DS1821 Programmable Digital Thermostat and Thermometer
ma www.maxim-ic.com FEATURES Requires no external components Unique 1-Wire interface requires only one port pin for communication Operates over a -55 C to +125 C (67 F to +257 F) temperature range Functions
TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features
DATASHEET ICS280 Description The ICS280 field programmable spread spectrum clock synthesizer generates up to four high-quality, high-frequency clock outputs including multiple reference clocks from a low-frequency
microsd Memory Card Features Description Placement Pin Definition Transcend Information Inc. 1
Description Transcend microsd card series are non-volatile, which means no external power is required to retain the information stored on it. Besides, it is also a solid-state device that without moving
2-wire Serial EEPROM AT24C512
Features Low-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V). (V CC =.V to 5.5V). (V CC =.V to.v) Internally Organized 5,5 x -wire Serial Interface Schmitt Triggers, Filtered Inputs for
Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +1024 C)
19-2235; Rev 1; 3/02 Cold-Junction-Compensated K-Thermocoupleto-Digital General Description The performs cold-junction compensation and digitizes the signal from a type-k thermocouple. The data is output
CD4043BC CD4044BC Quad 3-STATE NOR R/S Latches Quad 3-STATE NAND R/S Latches
CD4043BC CD4044BC Quad 3-STATE NOR R/S Latches Quad 3-STATE NAND R/S Latches General Description The CD4043BC are quad cross-couple 3-STATE CMOS NOR latches, and the CD4044BC are quad cross-couple 3- STATE
S25FL128S and S25FL256S
S25FL28S and S25FL256S S25FL28S 28 Mbit (6 Mbyte) S25FL256S 256 Mbit (32 Mbyte) MirrorBit Flash Non-Volatile Memory CMOS 3. Volt Core with Versatile I/O Serial Peripheral Interface with Multi-I/O Data
ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram
Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed
DS1232LP/LPS Low Power MicroMonitor Chip
DSLP/LPS Low Power MicroMonitor Chip www.dalsemi.com FEATURES Super-low power version of DS 50 µa quiescent current Halts and restarts an out-of-control microprocessor Automatically restarts microprocessor
DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs
DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits
DS18B20 Programmable Resolution 1-Wire Digital Thermometer
www.dalsemi.com FEATURES Unique 1-Wire interface requires only one port pin for communication Multidrop capability simplifies distributed temperature sensing applications Requires no external components
High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch)
High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch) DG2301 ishay Siliconix DESCRIPTION The DG2301 is a high-speed, 1-bit, low power, TTLcompatible bus switch. Using sub-micron CMOS technology,
ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET
DATASHEET ICS650-44 Description The ICS650-44 is a spread spectrum clock synthesizer intended for video projector and digital TV applications. It generates three copies of an EMI optimized 50 MHz clock
DG2302. High-Speed, Low r ON, SPST Analog Switch. Vishay Siliconix. (1-Bit Bus Switch with Level-Shifter) RoHS* COMPLIANT DESCRIPTION FEATURES
High-Speed, Low r ON, SPST Analog Switch (1-Bit Bus Switch with Level-Shifter) DG2302 DESCRIPTION The DG2302 is a high-speed, 1-bit, low power, TTLcompatible bus switch. Using sub-micron CMOS technology,
8254 PROGRAMMABLE INTERVAL TIMER
PROGRAMMABLE INTERVAL TIMER Y Y Y Compatible with All Intel and Most Other Microprocessors Handles Inputs from DC to 10 MHz 8 MHz 8254 10 MHz 8254-2 Status Read-Back Command Y Y Y Y Y Six Programmable
Parallel NOR Flash Automotive Memory
Features Parallel NOR Flash Automotive Memory MT28EW512ABA1xJS-0AAT, MT28EW512ABA1xPC-0AAT Features Single-level cell (SLC) process technology Density: 512Mb Supply voltage V CC = 2.7 3.6V (program, erase,
www.jameco.com 1-800-831-4242
Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. www.maxim-ic.com FEATURES 10 years minimum data retention in the absence
16 Mbit SPI Serial Flash SST25VF016B
SST's 25 series Serial Flash family features a four-wire, SPI-compatible interface that allows for a low pin-count package which occupies less board space and ultimately lowers total system costs. The
AT89C1051. 8-Bit Microcontroller with 1 Kbyte Flash. Features. Description. Pin Configuration
AT89C1051 Features Compatible with MCS-51 Products 1 Kbyte of Reprogrammable Flash Memory Endurance: 1,000 Write/Erase Cycles 2.7 V to 6 V Operating Range Fully Static Operation: 0 Hz to 24 MHz Two-Level
M27C322. 32 Mbit (2Mb x16) UV EPROM and OTP EPROM
32 Mbit (2Mb x16) UV PROM and OTP PROM 5V ± 10% SUPPLY VOLTAG in RAD OPRATION ACCSS TIM: 80ns WORD-WID CONFIGURABL 32 Mbit MASK ROM RPLACMNT LOW POWR CONSUMPTION Active Current 50mA at 5MHz Stand-by Current
MicroMag3 3-Axis Magnetic Sensor Module
1008121 R01 April 2005 MicroMag3 3-Axis Magnetic Sensor Module General Description The MicroMag3 is an integrated 3-axis magnetic field sensing module designed to aid in evaluation and prototyping of PNI
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
VITESSE SEMICONDUCTOR CORPORATION. 16:1 Multiplexer. Timing Generator. CMU x16
Features 16:1 2.488 Gb/s Multiplexer Integrated PLL for Clock Generation - No External Components 16-bit Wide, Single-ended, ECL 100K Compatible Parallel Data Interface 155.52 MHz Reference Clock Frequency
INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook. 1997 Jun 30
INTEGRATED CIRCUITS IC24 Data Handbook 1997 Jun 30 FEATURES Wide supply voltage range of 1.2 V to 3.6 V In accordance with JEDEC standard no. 8-1A Inputs accept voltages up to 5.5 V CMOS low power consumption
DS2187 Receive Line Interface
Receive Line Interface www.dalsemi.com FEATURES Line interface for T1 (1.544 MHz) and CEPT (2.048 MHz) primary rate networks Extracts clock and data from twisted pair or coax Meets requirements of PUB
The Programming Interface
: In-System Programming Features Program any AVR MCU In-System Reprogram both data Flash and parameter EEPROM memories Eliminate sockets Simple -wire SPI programming interface Introduction In-System programming
Mobile SDRAM. MT48H16M16LF 4 Meg x 16 x 4 banks MT48H8M32LF 2 Meg x 32 x 4 banks
Features Mobile SDRAM MT48H6M6LF 4 Meg x 6 x 4 banks MT48H8M32LF 2 Meg x 32 x 4 banks Features Fully synchronous; all signals registered on positive edge of system clock V DD /V D =.7.95V Internal, pipelined
Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND
DATASHEET IDT5P50901/2/3/4 Description The IDT5P50901/2/3/4 is a family of 1.8V low power, spread spectrum clock generators capable of reducing EMI radiation from an input clock. Spread spectrum technique
ST24C16, ST25C16 ST24W16, ST25W16
ST24C6, ST25C6 ST24W6, ST25W6 SERIAL 6K (2K x 8) EEPROM MILLION ERASE/WRITE CYCLES, with 40 YEARS DATA RETENTION SINGLE SUPPLY VOLTAGE: 4.5V to 5.5V for ST24x6 versions 2.5V to 5.5V for ST25x6 versions
CMOS PARALLEL-TO-SERIAL FIFO 256 x 16, 512 x 16, 1,024 x 16
CMOS PARALLEL-TO-SERIAL FIFO IDT72105 IDT72115 IDT72125 Integrated Device Technology, Inc. FEATURES: 25ns parallel port access time, 35ns cycle time 45MHz serial output shift rate Wide x16 organization
Technical Note. Micron NAND Flash Controller via Xilinx Spartan -3 FPGA. Overview. TN-29-06: NAND Flash Controller on Spartan-3 Overview
Technical Note TN-29-06: NAND Flash Controller on Spartan-3 Overview Micron NAND Flash Controller via Xilinx Spartan -3 FPGA Overview As mobile product capabilities continue to expand, so does the demand
LCM NHD-12032BZ-FSW-GBW. User s Guide. (Liquid Crystal Display Graphic Module) RoHS Compliant. For product support, contact
User s Guide -FSW-GBW LCM (Liquid Crystal Display Graphic Module) RoHS Compliant NHD- 12032- BZ- F - SW- G- B- W- Newhaven Display 120 x 32 pixels Version Line Transflective Side White LED B/L STN- Gray
3 Mbit / 4 Mbit / 8 Mbit LPC Flash SST49LF030A / SST49LF040A / SST49LF080A
FEATURES: 3 Mbit / 4 Mbit / 8 Mbit LPC Flash 3 Mb / 4 Mb / 8 Mbit LPC Flash LPC Interface Flash SST49LF030A: 384K x8 (3 Mbit) SST49LF040A: 512K x8 (4 Mbit) SST49LF080A: 1024K x8 (8 Mbit) Conforms to Intel
74LS193 Synchronous 4-Bit Binary Counter with Dual Clock
74LS193 Synchronous 4-Bit Binary Counter with Dual Clock General Description The DM74LS193 circuit is a synchronous up/down 4-bit binary counter. Synchronous operation is provided by having all flip-flops
DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 WE# RAS# A0 A1 A2 A3
MEG x 6 MT4CM6C3, MT4LCM6C3 For the latest data sheet revisions, please refer to the Micron Web site: www.micron.com/datasheets FEATURES JEDEC- and industry-standard x6 timing, functions, pinouts, and
HD61202U. (Dot Matrix Liquid Crystal GraphicDisplay Column Driver)
HD622U (Dot Matrix Liquid Crystal GraphicDisplay Column Driver) Description HD622U is a column (segment) driver for dot matrix liquid crystal graphic display systems. It stores the display data transferred
HCC/HCF4032B HCC/HCF4038B
HCC/HCF4032B HCC/HCF4038B TRIPLE SERIAL ADDERS INERT INPUTS ON ALL ADDERS FOR SUM COMPLEMENTING APPLICATIONS FULLY STATIC OPERATION...DC TO 10MHz (typ.) @ DD = 10 BUFFERED INPUTS AND OUTPUTS SINGLE-PHASE
INTEGRATED CIRCUITS. For a complete data sheet, please also download:
INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS Logic Family Specifications The IC6 74C/CT/CU/CMOS Logic Package Information The IC6 74C/CT/CU/CMOS
CD4013BC Dual D-Type Flip-Flop
CD4013BC Dual D-Type Flip-Flop General Description The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors.
HT9170 DTMF Receiver. Features. General Description. Selection Table
DTMF Receiver Features Operating voltage: 2.5V~5.5V Minimal external components No external filter is required Low standby current (on power down mode) General Description The HT9170 series are Dual Tone
DS2401 Silicon Serial Number
19-5860; Rev 3/15 Silicon Serial Number BENEFITS AND FEATURES Guaranteed Unique 64-Bit ROM ID Chip for Absolute Traceability o Unique, Factory-Lasered and Tested 64-Bit Registration Number (8-Bit Family
LMB162ABC LCD Module User Manual
LMB162ABC LCD Module User Manual Shenzhen TOPWAY Technology Co., Ltd. Rev. Descriptions Release Date 0.1 Prelimiay release 2005-03-17 0.2 Typing Correction in 1.3 Block Diagram 2007-05-06 URL Document
1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET
DATASHEET 1 TO 4 CLOCK BUFFER ICS551 Description The ICS551 is a low cost, high-speed single input to four output clock buffer. Part of IDT s ClockBlocks TM family, this is our lowest cost, small clock
. MEDIUM SPEED OPERATION - 8MHz (typ.) @ . MULTI-PACKAGE PARALLEL CLOCKING FOR HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE
HCC4029B HCF4029B PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE. MEDIUM SPEED OPERATION - 8MHz (typ.) @ CL = 50pF AND DD-SS = 10. MULTI-PACKAGE PARALLEL CLOCKING FOR SYNCHRONOUS HIGH SPEED OUTPUT RES-
7 OUT1 8 OUT2 9 OUT3 10 OUT4 11 OUT5 12 OUT6 13 OUT7 14 OUT8 15 OUT9 16 OUT10 17 OUT11 18 OUT12 19 OUT13 20 OUT14 21 OUT15 22 OUT16 OUT17 23 OUT18
18 CHANNELS LED DRIVER GENERAL DESCRIPTION IS31FL3218 is comprised of 18 constant current channels each with independent PWM control, designed for driving LEDs. The output current of each channel can be
74AC191 Up/Down Counter with Preset and Ripple Clock
74AC191 Up/Down Counter with Preset and Ripple Clock General Description The AC191 is a reversible modulo 16 binary counter. It features synchronous counting and asynchronous presetting. The preset feature
74F675A 16-Bit Serial-In, Serial/Parallel-Out Shift Register
74F675A 16-Bit Serial-In, Serial/Parallel-Out Shift Register General Description The 74F675A contai a 16-bit serial in/serial out shift register and a 16-bit parallel out storage register. Separate serial
SPECIFICATION NO. : DS-1601-0000-00. D A T E O F I S S U E : July 16, 2010. R E V I S I O N : September 1, 2010 (00) : : :
RoHS 22/95/EC VACUUM FLUORESCENT DISPLAY MODULE SPECIFICATION MODEL: CU229-UWJ SPECIFICATION NO. : DS-6-- D A T E O F I S S U E : July 6, 2 (R) R E V I S I O N : September, 2 () : : : PUBLISHED BY NORITAKE
DM74LS169A Synchronous 4-Bit Up/Down Binary Counter
Synchronous 4-Bit Up/Down Binary Counter General Description This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation
DM74LS193 Synchronous 4-Bit Binary Counter with Dual Clock
September 1986 Revised March 2000 DM74LS193 Synchronous 4-Bit Binary Counter with Dual Clock General Description The DM74LS193 circuit is a synchronous up/down 4-bit binary counter. Synchronous operation
DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control
August 1986 Revised February 1999 DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control General Description The DM74LS191 circuit is a synchronous, reversible, up/ down counter. Synchronous operation
S34ML08G2 NAND Flash Memory for Embedded
S34ML08G2 NAND Flash Memory for Embedded 8 Gb, 4-bit ECC, x8 I/O and 3V V CC Data Sheet (Advance Information) S34ML08G2 NAND Flash Memory for Embedded Cover Sheet Notice to Readers: This document states
