Direct Attach Cable with Micro Coaxial Wire for Data Center
|
|
|
- Eleanor Greene
- 10 years ago
- Views:
Transcription
1 FEATURED TOPIC Direct Attach Cable with Micro Coaxial Wire for Data Center Yasuhiro MAEDA*, Kensaku SHIMADA, Yuki ISOYA, Tatsunori HAYASHISHITA and Michiko HARUMOTO In data centers, direct attach cables with twinax wire have been used to date in order to avoid defects such as skew. However these cables have drawbacks of being thick and hard. In the background of a recent trend of the rack highly dense with switches and servers, which is common in many data centers, there is a growing need for thin and flexible cable that provides better wiring operation and heat dissipation for intra-rack wiring of up to 3 m. Sumitomo Electric Industries, Ltd. developed novel thin and flexible direct attach cables (SFP+ and QSFP+) by using the advanced micro coaxial wire technology cultivated through information appliance products Keywords: direct attach cable, micro coaxial wire, SFP+/QSFP+, data center 1. Introduction With the rapid increase in the use of mobile information devices such as smart phones and tablets in recent years, data traffic on the Internet is exploding, and data centers to support data traffic are increasingly important. With this background, the data transfer rate and the server density per rack in data centers are increasing. Currently, a data transfer rate of 1 Gb/s between a switch and a server in the rack is becoming predominant, and devices to support a data transfer rate of 4 Gb/s are becoming available. Direct attach cables, such as Small Form Factor Pluggable Plus (SFP+) and Quad Small Form Factor Pluggable Plus (QSFP+), are mainly used as media to support high transfer rates between these devices in the rack. Conventionally, twinax wire* 1 with a high skew performance has been mainly used for direct attach cables. However, since conventional direct attach cables are thick and hard, there is an increasing need for thin and flexible cables for high-density rack wiring of up to 3 m that offer ease of installation and operation and high heat dissipation performance. To meet this need, we have successfully developed direct attach cables (SFP+, QSFP+) that are thinner and more flexible than conventional ones, using our advanced micro-coaxial wire* 2 technology, which we have developed for information appliance products. This report presents the outline of the design of the cables and their characteristics, as well as the evaluation results of the characteristics of SFP+ and QSFP+ using the developed cables. 2. Brief Description of the Direct Attach Cables Table 1 briefly describes the developed direct attach cables. SFP+ and QSFP+, which are the form factor for transfer rates of 1 Gb/s and 4 Gb/s (4 1 Gb/s), respectively, are connected to a cable terminal. Generally, the diameter of conventional 1 m SFP+ and QSFP+ twinax cables is more than 4 mm and 6 mm, respectively. The diameter of the 1-m micro-coaxial cables is small, with 3.2 mm for SFP+ and. mm for QSFP+. Table 1. Outline of the direct attach cables Form factor SFP+ QSFP+ Transmission rate 1 Gb/s 4 Gb/s Compatible standards 1GSFP+Cu (SFF-8431) 4GBASE-CR4 (IEEE82.3) QDR (Infiniband) Number of cores in cable 4 cores (2 pairs) 16 cores (8 pairs) Cable diameter Wire gauge External view 3.2 mm (1m) 3.6 mm (3m) AWG34 (1m) AWG32 (3m). mm (1m) 6.4 mm (3m) AWG34 (1m) AWG3 (3m) 3. Brief Description of the Cable Design 3-1 Cable design and construction Figure 1 shows the cross sections of the developed cables. SFP+ and QSFP+ are for 1-lane bidirectional signal transmission and for 4-lane bidirectional signal transmission, respectively, and have 4 cores (2 pairs of wires) and 16 cores (8 pairs of wires) in the cable. 3-2 Transmission characteristics of the cables The skew is one of the most important parameters that affects the signal transmission characteristics of cables. SFP+ and QSFP+ use the differential signal transmission method. The skew is the time difference after signal transmission between positive and negative signals in the transmission of differential signals. A differential signal is defined as the voltage difference SEI TECHNICAL REVIEW NUMBER 8 APRIL 21 21
2 2 N = 64 SFP+ Braided shield Jacket QSFP+ Braided shield Jacket Filler Fig. 1. Cross section of the cables Skew [ps/m] between the positive and negative signals. Therefore, the magnitude of the skew affects the voltage difference (differential amplitude). That is, the magnitude of the skew affects the signal transmission characteristics of the cable in proportion to the frequency of the signal. It is important in controlling the skew to reduce the difference in characteristics between two coaxial wires to make them a pair as much as possible. More specifically, it is necessary to make the physical length and signal delay time of the two coaxial wires as equal as possible. For example, for a 1-m cable, a skew of 4.7 ps/ m occurs if there is a difference in length by only 1 mm between the two coaxial wires (because the average signal delay time of the coaxial wire is 4.7 ns/m). We reduced the effect of flattened shape or non-perfect circular cable shape on the difference in the physical length as much as possible by arranging coaxial wires concentrically and making a pair of two adjacent coaxial wires to reduce the difference in the physical length when making a multi-core cable. As the signal delay time (Td) is given by Td = dielectric constant/speed of light, the difference in the dielectric constant of the insulation material covering the center conductor of the coaxial wire directly affects the skew. Since the dielectric constant is specific to a material, selection of an insulation material is certainly important. To aim at a skew of less than 1 ps/m required for a transmission rate of 1 Gb/s, a variation in the small air layer between the center conductor and the insulation material cannot be ignored. We focused on the variation in the air layer and achieved a low skew in a coaxial construction by stably controlling the variation in the longitudinal direction. Figure 2 shows a typical example of the skew of differential pair wires in an SFP+ (1 m) cable using the developed micro-coaxial wire. Figure 3 shows a typical example of insertion loss. The skew is to 6 ps/m at a maximum and low enough for a transmission rate of 1 Gb/s, or signal transmission at a signal interval of 1 ps per bit. The insertion loss of the coaxial wire is similar to that of the twinax wire. In addition, the coaxial wire shows no significant attenuation in a specific frequency range called suck-out, which appears in conventional twinax wires. Similar results to the SFP+ (1 m) cable shown in the figure were obtained for other cables shown in Table 1. Insertion loss [db/m] Fig. 2. Typical skew Twinax wire Fig. 3. Typical cable insertion loss 3-3 Mechanical properties of the cables Table 2 shows the results of a flexibility test of coaxial and twinax SFP+ (1 m) cables. The load was measured when the cable was bent 1. A cable with a lower value of load is more flexible. The coaxial wire multicore construction provides much higher flexibility than the twinax construction. The load is more than times lower for the former than for the latter. The level of flexibility directly affects the reliability of the cable. Table 3 shows the insertion loss measured by bending the coaxial and twinax SFP+ (1 m) cables a specified number of times under the same conditions. While the twinax wire broke before being bent 1, times, the coaxial wire did not break until it had been bent 1, times and it maintained its signal transmission characteristics. As shown in Photo 1, the coaxial SFP+ (1 m) cable was folded at several points at a radius equal to its diameter, and the insertion loss was measured in the folded state. Figure 4 shows the measured insertion loss. A conventional twinax wire degrades or breaks due to the contact that occurs when the cable is placed or inserted and removed or when the server rack is 22 Direct Attach Cable with Micro Coaxial Wire for Data Center
3 opened and closed. When the coaxial wire multi-core cable was folded at a radius equal to its diameter, the signal transmission characteristics were not affected, indicating that the risk of degradation is very low. Table 2. Flexibility test results (bending load) Sample Twinax wire Unit No No No Table 3. Bending durability test Number of bending cycles Insertion lossat. GHz [db/m] Twinax wire , 4.6 No electrical conduction, 4.7-1,.2-1, , No electrical conduction - N m 4. Evaluation Results of the SFP+ and QSFP+ Cables 4-1 Evaluation results of the SFP+ cable SFP+ is a form factor specified by a multi-source agreement (MSA), an industry standard for communication modules. The electrical interface specifications, including transmission characteristics, are defined in SFF-8431 (1). SFP+ (a passive cable) is specified as 1GSFP+Cu in SFF-8431 (1). Table 4 shows the main parameters related to the transmission characteristics. Figures to 8 show the evaluation results (3 m) of each parameter. Vcm is the common mode voltage* 3 output after cable transmission and a parameter most susceptible to the skew of the cable. The obtained value of Vcm proves that the developed low skew micro-coaxial wire has sufficient performance conforming to the specification. dwdp and VMA Loss are the parameters indi- Table 4. Main parameters of 1GSFP+Cu Parameter Minimum Maximum Unit Output AC Common Mode Voltage (Vcm) 13. mv (RMS) Difference Waveform Distortion Penalty (dwdp) 6.7 dbe VMA Loss 4.4 dbe VMA Loss to Crosstalk Ratio (VCR) 32. db (13. mv) Photo 1. Cable folding test Vcm [mv] Fig.. Output AC Common Mode Voltage (Vcm) w/o folding (solid line) 2 Insertion loss [db/m] w/ folding (dashed line) (6.7 dbe) dwdp [dbe] Fig. 4. Effect of folding on insertion loss Fig. 6. Difference Waveform Distortion Penalty (dwdp) SEI TECHNICAL REVIEW NUMBER 8 APRIL 21 23
4 (4.4 dbe) Table. Main parameters of 4GBASE-CR4 Parameter Minimum Maximum Unit Insertion Loss at.162 GHz (IL) db Integrated Crosstalk Noise (ICN) See Fig.1 mv (RMS) (min.) m 2 VMA Loss [dbe] Fig. 7. VMA Loss Insertion loss (IL) [db] m (max.) (32. db) Fig. 9. Insertion Loss (IL) VCR [db] Fig. 8. VMA Loss to Crosstalk Ratio (VCR) (max.) cating the level of degradation of a signal waveform after cable transmission. VCR is the tolerance to crosstalk* 4 between opposing lanes. It has been confirmed that these parameters are satisfactory. These results are for 3-m cables, for which the property requirements of the specifications are more severe. Satisfactory results were obtained similarly for 1-m cables. 4-2 Evaluation results of the QSFP+ cable As with SFP+, QSFP+ is a form factor specified by MSA, but its electrical interface specifications are not defined in MSA. Communication standards, such as Ethernet* and InfiniBand* 6, are referenced for QSFP+. This report presents the results of evaluation against 4GBASE-CR4 (2), an Ethernet standard for passive cables for a transmission rate of 4 Gb/s (4 1 Gb/s). Table shows the typical transmission performance parameters of 4GBASE-CR4. Figures 9 and 1 show the typical evaluation results. IL is a parameter indicating signal attenuation, which increases with an increase in the skew of the cable. It has been confirmed that with small variations among lanes, the obtained value of IL is sufficient to the specification. ICN is a parameter indicating the tolerance to crosstalk from the other seven lanes (3 lanes in ICN [mv] m Insertion loss at.162 GHz [db] the same direction and 4 lanes in the opposite direction). The coaxial wires in the cable must have a high shield performance to meet this property. It has been confirmed that with both high flexibility and shield performance, the developed coaxial wire has satisfactory properties for both 1-m and 3-m cables. 7. Conclusion We have reduced the skew of a micro-coaxial wire and have successfully developed thin, flexible and robust direct attach cables (SFP+, QSFP+) for use in 3 m Fig. 1. Integrated Crosstalk Noise (ICN) 24 Direct Attach Cable with Micro Coaxial Wire for Data Center
5 data centers, which have transmission characteristics as good as conventional twinax direct attach cables. We believe that these products will make a significant contribution to improving the ease of installation and operation and in heat dissipation performance for highdensity, high-speed signal wiring in the rack. Contributors (The lead author is indicated by an asterisk (*).) Y. MAEDA* Assistant General Manager, Sumitomo Electric Wire Inc. Technical Terms *1 Twinax wire: A twinax wire is made of two insulated signal wires and a drain wire placed in parallel and wrapped with conductive tape. *2 : A coaxial wire is made of a single insulated signal wire surrounded by a braided external conductor. Two coaxial wires are required for differential signal transmission. *3 Common mode voltage: The common mode voltage is a voltage in the same phase generated between two signal wires. It is generated due to an amplitude difference or a phase difference (skew) between negative and positive signals. *4 Crosstalk: Crosstalk refers to the leakage of a transmission signal from one transmission channel to another. In this report, it refers to the leakage of a signal from one lane to a specific lane in a direct attach cable. * Ethernet: Ethernet is a communication network standard. It is widely used as a practical Local Area Network (LAN) standard. *6 InfiniBand: InfiniBand is a high-speed interface standard developed by the InfiniBand Trade Association (IBTA) for servers or external storage devices. K. SHIMADA Optical Communications R&D Laboratories Y. ISOYA Sumitomo Electric Wire Inc. T. HAYASHISHITA Sumitomo Electric Wire Inc. M. HARUMOTO Group Manager, Optical Communications R&D Laboratories References (1) SFF-8431 Specification for Enhanced Small Form Factor Pluggable Module SFP+ Rev 4.1 (July 6, 29) (2) IEEE 82.3ba -21 Media Access Control Parameters, Physical Layers, and Management Parameters for 4 Gb/s and 1 Gb/s Operation SEI TECHNICAL REVIEW NUMBER 8 APRIL 21 2
MICRO SFP+ CONNECTOR & CABLE ASSEMBLY
MICRO SFP+ CONNECTOR & CABLE ASSEMBLY micro SFP+ Connector and Cable Assembly TE Connectivity s (TE) micro SFP+ connector and cable assembly empower you to dream big when designing your communication system.
Uncompromising Integrity. Making 100Gb/s deployments as easy as 10Gb/s
Uncompromising Integrity Making 100Gb/s deployments as easy as 10Gb/s Supporting Data Rates up to 100Gb/s Mellanox 100Gb/s LinkX cables and transceivers make 100Gb/s deployments as easy as 10Gb/s. A wide
The Next Generation of Cable Technology. A technology primer from NORDX/CDT By, Eric d Allmen
A technology primer from NORDX/CDT By, Eric d Allmen Foreword The Telecommunications Industry Association (TIA) and the International Standards Organization (ISO/IEC) are actively engaged in the development
SICK AG WHITEPAPER. Information for cable manufacturers Note-2_03
SICK AG WHITEPAPER Cable and connector for HIPERFACE DSL motor drive applications Information for cable manufacturers Note-2_03 Juergen Funkhaenel Application Engineer at SICK STEGMANN GmbH Donaueschingen
Outdoor Carrier Class Shielded Ethernet Cable. Datasheet. Models: PRO, CARRIER, Connectors. Increase Performance. Extreme Weatherproof
Datasheet Outdoor Carrier Class Shielded Ethernet Cable Models: PRO, CARRIER, Connectors Increase Performance Extreme Weatherproof ESD Damage Protection Extended Cable Support 1 2Datasheet Protect your
Methode Electronics. DM-317-XXXX 40 Gbps QSFP+ Passive Cable RoHS COMPLIANT. www.methode.com
DM-317-XXXX 40 Gbps QSFP+ Passive Cable RoHS COMPLIANT QSFP+ MSA compliant Hot-pluggable footprint Supports Digital Serial ID and User Memory Robust Die Cast Housing Small footprint to maximize port spacing
Communication, Signal & Data Cables
Communication, Signal & Data Cables Used for indoor installation and interconnection of transmission, telephone, telegraph and electronic equipment as well as media equipments www.alfanar.com Communication
High Speed Cables for Enterprise Data Solutions Business Unit Telecommunication Systems
High Speed Cables for Enterprise Data Solutions Business Unit Telecommunication Systems 2 The LEONI Group Cable competence for different industrial markets LEONI is a leading supplier of cable systems
Coaxial Cables for Medium-Frequency Applications
Coaxial Cables for Medium-Frequency Applications Coaxial Cables for Medium-Frequency Applications Introduction Telecommunications technology is moving forward rapidly and the need for fast and reliable
1000BASE-T and 10/100/1000BASE-T Copper SFP Transceiver
1000BASE-T and 10/100/1000BASE-T Copper SFP Transceiver Features Up to 1.25Gb/s bi-directional data links Hot-pluggable SFP footprint TX Disable and RX Los/without Los function Fully metallic enclosure
WHITEPAPER. Cable and Connector for Hiperface dsl motor drive applications
WHITEPAPER Cable and Connector for Hiperface dsl motor drive applications information for cable manufacturers Version 02 Content Information for cable manufacturers...3 Communication...3 Crosstalk & shielding...3
SFP+ LR 10G Ethernet 10km SFP+ Transceiver 10GBASE-LR / 10BBASE-LW
Product Features Compliant with IEEE Std 802.3-2005 10G Ethernet 10GBase-LR/LW Electrical interface specifications per SFF-8431 Management interface specifications per SFF-8431 and SFF-8472 SFP+ MSA package
LONGLINE QSFP+ SR4. Features. Applications. Description. Page 1 of 13
LONGLINE QSFP+ SR4 Features 4 channels full-duplex transceiver modules Transmission data rate up to 10.5Gbps per channel 4 channels 850nm VCSEL array 4 channels PIN photo detector array Low power consumption
Quick Reference Guide High Speed Input/Output Solutions
Quick Reference Guide The pluggable I/O interface offers significant advantages as a high speed I/O interconnect. With a standard equipment I/O interface and the flexibility of pluggable modules come the
LOW LOSS CABLE PAG. 1
LOW LOSS CABLE PAG. 1 INTRODUCTION Following many requests we received regarding the need for low-loss custom cable assemblies, we have set up a special production of high performance coaxial cable assemblies
HIGH SPEED COMMUNICATIONS PLENUM CABLE CATEGORY 5e CMP FEP JACKETED, PVC-FREE UNSHIELDED TWISTED PAIR (UTP)
Cable Specification Category 5e CMP HIGH SPEED COMMUNICATIONS PLENUM CABLE CATEGORY 5e CMP FEP JACKETED, PVC-FREE UNSHIELDED TWISTED PAIR (UTP) This cable specification complies with the electrical transmission
75 Ω Transmission System
NRAO NTC-DSL Laboratory Report Dynamic Spectroscopy Laboratory Report Series Report 03 September, 2006 75 Ω Transmission System Chaitali R. Parashare Department of Electrical and Computer Engineering,
XFP Optical Receiver, 80km Reach
Features Supports 9.95Gb/s to 11.1Gb/s bit rates Hot-pluggable XFP footprint Maximum link length of 80km with SMF APD ROSA receiver XFP MSA package with duplex LC connector No reference clock required
MYTHBUSTING Takes on Shielded Cabling
MYTHBUSTING Takes on Shielded Cabling Herb Congdon Brian Davis Objectives Take on myths of shielded cabling and use modern-day science to show what's real and what's fiction - through trial and error actually
MICROCABLES. A complete vision of your connectivity needs. Catalogue
MICROCABLES A complete vision of your connectivity needs Catalogue ELECTRONIC Filotex Introduction Application Nexans s line of microcables is designed towards the increasing requirements of electronics
The ABC of Direct Attach Cables
The ABC of Direct Attach Cables Thomas Ko, RCDD Product Manager TE Connectivity Network Speed and Technology 10/40/100 Gbps the transition is occurring right now What are Customers Saying about their 10/40/100
Planning for 10Gbps Ethernet over UTP Questions to Ask When Planning the Cabling Plant WHITE PAPER
Planning for 10Gbps Ethernet over UTP Questions to Ask When Planning the Cabling Plant WHITE PAPER Questions to Ask When Planning the Cabling Plant Planning a copper cabling plant to support 10Gbps transmission
1394 locking cables. Your locking cables for AVT IEEE 1394 cameras
Your locking cables for AVT IEEE 1394 cameras AVT locking cables are ideal for connection of IEEE 1394 cameras in any industrial application. The high quality cables guarantee low damping and best signal
Mixed High-Speed Ethernet Operations over Different Categories of Bundled UTP Cable
Mixed High-Speed Ethernet Operations over Different Categories of Bundled UTP Cable June 10, 2010 Contributors: Yinglin (Frank) Yang CommScope, Inc. Charles Seifert Ixia Ethernet Alliance 3855 SW 153 rd
Coaxial Cable Products Guide. Connectivity for Business-Critical Continuity
Coaxial Cable Products Guide Connectivity for Business-Critical Continuity The Difference Starts With The Cable BULK CABLES SLA Series Lowest loss cable available to 18 GHz, best choice for critical applications
SFP-TX 1000BASE-T SFP Transceiver 10/100/1000M SFP Transceiver
Product Features Up to 1.25Gb/s bi-directional data links SFP form with compact RJ-45 connector +3.3V single power supply 0 to 70 o C operating case temperature Intelligent Auto-Negotiation support for
Design of Ultra-High-Density 2000-Optical Fiber Cable with Pliable 8-fiber Ribbons for Underground Deployment
INFOCOMMUNICATIONS Design of Ultra-High-Density 2000-Optical Fiber Cable with Pliable 8-fiber Ribbons for Underground Deployment Fumiaki SATO*, Masakazu TAKAMI, Yoshiaki NAGAO, Kentaro TAKEDA and Hiroshi
8.5Gb/s SFP+ Fibre Channel Optical Transceiver
8.5Gb/s SFP+ Fibre Channel Optical Transceiver Features Up to 8.5Gb/s bi-directional data links Hot Pluggable SFP+ footprint Built-in digital diagnostic functions 1310nm FP laser transmitter Duplex LC
How to Choose the Right Cable Category
How to Choose the Right Cable Category Why do I need a different category of cable? Not too long ago, when local area networks were being designed, each work area outlet typically consisted of one Category
Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.
Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations
10/100/1000BASE-T SFP Transceiver
10/100/1000BASE-T SFP Transceiver Features Support 10/100/1000BASE-T operation in host systems with SGMII interface Up to 1.25Gbps bi-direction data links Hot-pluggable SFP footprint Fully metallic enclosure
RX-AM4SF Receiver. Pin-out. Connections
RX-AM4SF Receiver The super-heterodyne receiver RX-AM4SF can provide a RSSI output indicating the amplitude of the received signal: this output can be used to create a field-strength meter capable to indicate
I-PEX MHF4 Micro Coaxial Connector
PRODUCT SPECIFICATION I-PEX MHF4 Micro Coaxial Connector Plug P/N 20448-001R-81 Receptacle P/N 20449-001E RF Connector, RF Cable & Antenna Manufacturer E-mail: [email protected] Tel: +886-2-24239376
Product Specification. RoHS-6 Compliant 10Gb/s 850nm Multimode Datacom XFP Optical Transceiver FTLX8512D3BCL
Product Specification RoHS-6 Compliant 10Gb/s 850nm Multimode Datacom XFP Optical Transceiver FTLX8512D3BCL PRODUCT FEATURES Hot-pluggable XFP footprint Supports 8.5Gb/s and 9.95 through 10.5Gb/s* bit
SFP-SX with DOM 1.25Gb/s Multi-Mode SFP Transceiver 1000BASE-SX 1.0625Gb/s Fiber Channel
Product Features Compliant to IEEE Std 802.3-2005 Gigabit Ethernet 1000Base-SX, with DOM Specifications according to SFF-8074i and SFF-8472, revision 9.5 Digital Diagnostic Monitoring 850nm Vertical Cavity
An Ethernet Cable Discharge Event (CDE) Test and Measurement System
An Ethernet Cable Discharge Event (CDE) Test and Measurement System Wei Huang, Jerry Tichenor ESDEMC Technology LLC Rolla, MO, USA [email protected] Abstract A Cable Discharge Event (CDE) is an electrostatic
The effect of temperature on the bandwidth of telecommunications cabling in commercial buildings. Focus on the IBDN System 4800LX from NORDX/CDT
The effect of temperature on the bandwidth of telecommunications cabling in commercial buildings Focus on the IBDN System 4800LX from NORDX/CDT Table of Contents Introduction... 3 Bandwidth and Information
Cable Analysis and Fault Detection using the Bode 100
Cable Analysis and Fault Detection using the Bode 100 By Stephan Synkule 2014 by OMICRON Lab V1.3 Visit www.omicron-lab.com for more information. Contact [email protected] for technical support.
10Gb/s SFP+ LRM 1310nm FP with PIN Receiver 220meters transmission distance
Feature 10Gb/s serial optical interface compliant to 802.3aq 10GBASE-LRM Electrical interface compliant to SFF-8431 specifications for enhanced 8.5 and 10 Gigabit small form factor pluggable module SFP+
coaxial cable coaxial Cable CERTIFIED 100% certified coaxial cable A cable that is marked Televés, no doubt is a certified cable
COAXIAL CABLE coaxial Cable 100% certified coaxial cable coaxial cable CERTIFIED The step ahead undertaken by Televés to improve its service and technical excellence, is now reflected in this new challenge.
ELECTRICAL CHARACTERISTICS OF LOW VOLTAGE DIFFERENTIAL SIGNALING (LVDS) INTERFACE CIRCUITS PN-4584. May 2000
ELECTRICAL CHARACTERISTICS OF LOW VOLTAGE DIFFERENTIAL SIGNALING (LVDS) INTERFACE CIRCUITS PN-4584 May 2000 ELECTRICAL CHARACTERISTICS OF LOW VOLTAGE DIFFERENTIAL SIGNALING (LVDS) INTERFACE CIRCUITS Contents
AMP CO Plus Insert for Cat. 6 A Applications
Product Specification 108-93039 10/Mar/2011 Rev F AMP CO Plus Insert for Cat. 6 A Applications 1. SCOPE 1.1 Content This specification covers performance, tests and quality requirements for AMP* CO Plus
Shielding Effectiveness Test Method. Harbour s LL, SB, and SS Coaxial Cables. Designs for Improved Shielding Effectiveness
Shielding Effectiveness Test Method Harbour s LL, SB, and SS Coaxial Cables Designs for Improved Shielding Effectiveness Harbour Industries 4744 Shelburne Road Shelburne Vermont 05482 USA 802-985-3311
Datacenter Performance
Datacenter Performance Dramatic Advances Driven by Innovative Power, Interface Connectivity Technologies We re seeing connectivity reaching everywhere and reaching further, with Internet traffic volume
Wideband Driver Amplifiers
The driver amplifier is a wideband, 1 khz to 4 GHz amplifier intended for use in broadband microwave and high data rate systems. The is a 3-stage high output power modulator driver amplifier that can provide
DTSB35(53)12L-CD20 RoHS Compliant 1.25G 1310/1550nm(1550/1310nm) 20KM Transceiver
产 品 规 格 书 Product Specification Sheet DTSB35(53)12L-CD20 RoHS Compliant 1.25G 1310/1550nm(1550/1310nm) 20KM Transceiver PRODUCT FEATURES Up to 1.25Gb/s data links FP laser transmitter for DTSB35(53)12L-CD20
Networks. The two main network types are: Peer networks
Networks Networking is all about sharing information and resources. Computers connected to a network can avail of many facilities not available to standalone computers: Share a printer or a plotter among
Ethernet Patch Cord Wiring
Ethernet Patch Cord Wiring C ONTENTS Ethernet Patch Cords & RJ-45 Connectors... 2 Ethernet Patch Cords and UTP Cabling... 3 What s all the twisting about?... 4 Ethernet Applications... 5 568A & 568B Wiring
PRODUCT SPECIFICATION
ipass TM / ipass+ TM 0.8 mm PITCH I/O CONNECTOR SYSTEM EXTERNAL ipass / ipass+ of TABLE OF CONTENTS.0 SCOPE... 3.0 PRODUCT DESCRIPTION... 3. PRODUCT NAME AND SERIES NUMBER(S)... 3. DIMENSION, MATERIALS,
Subject: Glenair MIL-PRF 24758 Conduit Surface Transfer Impedance Test
Lothar O. Hoeft, Ph.D. Consultant, Electromagnetic Effects 5012 San Pedro Ct., NE Albuquerque, New Mexico 87109-2515 Phone: (505)-889-9705 E-mail: [email protected] 1 February 24, 2006 Subject: Glenair
GaAs Switch ICs for Cellular Phone Antenna Impedance Matching
GaAs Switch ICs for Cellular Phone Antenna Impedance Matching IWATA Naotaka, FUJITA Masanori Abstract Recently cellular phones have been advancing toward multi-band and multi-mode phones and many of them
Feasibility of 25 Gb/s Serial Transmission Over Copper Cable Assemblies
DesignCon Feasibility of 5 Gb/s Serial Transmission Over Copper Cable Assemblies Vittal Balasubramanian, FCI USA, LLC [email protected] Stephen B. Smith, FCI USA, LLC [email protected]
Specification SFTP CAT6 Network Cable 23AWG CU
Specification SFTP CAT6 Network Cable 23AWG CU S/FTP CAT6 Shielded S/FTP PVC Cable 23AWG 4pair Solid, Wooden drum 1000 Grey CAT6 600MHZ CM Shielded (S/FTP) Solid Cable: Our CAT6 600MHZ Shielded (S/FTP)
with Component Rating A Simple Perspective
Cat-6A UTP and Shielded with Component Rating A Simple Perspective Asef Baddar RCDD, DCD Sr. Technical Manager Leviton Middle East Category Specifications Agenda Terminology International & North America
This paper will explain some of the more important factors on how UTP wires work; specifically it will cover the following:
UTP Technology In the late 1970s, unshielded twisted pair (UTP) cabling originated in the computer industry as a means of transmitting digital data over computer networks. This cable was designed to be
10Gbps XFP Bi-Directional Transceiver, 10km Reach 1270/1330nm TX / 1330/1270 nm RX
Features 10Gbps XFP Bi-Directional Transceiver, 10km Reach 1270/1330nm TX / 1330/1270 nm RX Supports 9.95Gb/s to 10.5Gb/s bit rates Hot-pluggable XFP footprint Maximum link length of 10km with SMF 1270/1330nm
db MISER ULTRA LOW LOSS CABLE ASSEMBLIES Are you a design or test engineer fighting a challenging loss budget?
db MISER ULTRA LOW LOSS ASSEMBLIES Are you a design or test engineer fighting a challenging loss budget? Consider db Miser ultra low loss cable assemblies. High performance materials, careful attention
Data Communications Competence Center
Importance of Cable Balance For Improving Noise Susceptibility Data Communications Competence Center DCCC03101702 July 11, 2007 Summary In a study of category 5e and category 6 UTP cables, a strong correlation
Twinax Intra Pair Skew Comparison Report Various Lengths and Competitors Tested
Twinax Intra Pair Skew Comparison Report Various Lengths and Competitors Tested 4.5 Average All Lengths Intra-Pair Skew Samtec vs. Competitors 4.0 3.5 Average pico-seconds 3.0 2.5 2.0 1.5 1.0 Competitor
Uniprise Solutions COAX 101. White Paper. www.commscope.com
Uniprise Solutions COAX 101 White Paper www.commscope.com Structured cable systems have very thorough standards for fiber optic and twisted pair installations. The cabling components and installed systems
Product Specification. 1000BASE-T RoHS Compliant Copper SFP Transceiver FCLF8520P2BTL / FCLF8521P2BTL / FCLF8522P2BTL
Finisar Product Specification 1000BASE-T RoHS Compliant Copper SFP Transceiver FCLF8520P2BTL / FCLF8521P2BTL / FCLF8522P2BTL Product Features Up to 1.25Gb/s bi-directional data links Hot-pluggable SFP
Measurement Results of 3m QSFP-to-4SFP Breakout Cable for Non-FEC 25Gbps/lane Server Connections
Measurement Results of 3m QSFP-to-4SFP Breakout Cable for Non-FEC 25Gbps/lane Server Connections 11/2014 Erdem Matoglu Amphenol [email protected] Supporter : Rich Mellitz Intel Corporation
Session 2; Cabling Technology in the Data Centre Media Choices; Copper Twisted Pair
Presentation; Session 2; Cabling Technology in the Data Centre Media Choices; Copper Twisted Pair 5 th April 2010 Paul Mathews MInstSMM, CCNA, MIEEE Global Channel Manager Media Types Physical Layer Cabling;
The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT
The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error
GORE Aerospace Cables
GORE Aerospace Cables For Data Transmission Reliable signal transmission in high-density, lightweight constructions Engineered for demanding aerospace environments, GORE Aerospace Cables are constructed
LONGLINE 10Gbps 10km SFP+ Optical Transceiver
LONGLINE 10Gbps 10km SFP+ Optical Transceiver Features Optical interface compliant to IEEE 802.3ae 10GBASE-LR Electrical interface compliant to SFF-8431 Hot Pluggable 1310nm DFB transmitter, PIN photo-detector
LONGLINE 2km XFP Optical Transceiver
LONGLINE 2km XFP Optical Transceiver Features Supports 9.95Gb/s to 11.1Gb/s bit rates Hot-pluggable XFP footprint Maximum link length of 2km with SMF 1310nm FP laser XFP MSA package with duplex LC connector
Siemens Energy & Automation. structured. WIRING Product Training Series: Advanced Video Session 3
s structured WIRING Product Training Series: Advanced Video Session 3 1 Table of Contents This presentation will give you a closer look at Video in Structured Wiring applications. The following Areas will
Introduction to Digital Subscriber s Line (DSL)
Introduction to Digital Subscriber s Line (DSL) Professor Fu Li, Ph.D., P.E. Chapter 3 DSL Fundementals BASIC CONCEPTS maximizes the transmission distance by use of modulation techniques but generally
STRANDED AND SOLID CONDUCTOR
STRANDED AND SOLID CONDUCTOR ETHERNET CABLES CONTENTS C ATEGORY- TYPE CABLES...2 S OLID CABLE CONDUCTORS: ALONE, BUT NOT STRANDED...3 S TRANDED CABLE CONDUCTORS: STRANDED WITH A TWIST...4 A NOTE ON WIRE
Intel Ethernet SFP+ Optics
Product Brief Intel Ethernet SFP+ Optics Network Connectivity Intel Ethernet SFP+ Optics SR and LR Optics for the Intel Ethernet Server Adapter X520 Family Hot-pluggable SFP+ footprint Supports rate selectable
ANSI/TIA/EIA - 568-A, Commercial Building Telecommunications Cabling Standard.
WIRING STANDARD INTRODUCTION This standard defines a telecommunications wiring system for North Dakota State Agencies, offices or buildings that will support a multi-product environment. The purpose of
Broadcast and Commercial AV Cabling MASTER CATALOG
Broadcast and Commercial AV Cabling MASTER CATALOG Clark Wire & Cable 408 Washington Blvd. Mundelein, IL 60060 800-222-5348 toll free 847-949-9944 local 847-949-9595 fax www.clarkwire.com Specifications
Smart Cabling: Constructing a cost effective reliable and upgradeable cable infrastructure for your data centre/enterprise network
Smart Cabling: Constructing a cost effective reliable and upgradeable cable infrastructure for your data centre/enterprise network WP4270 Issued: June 2011 Authors: Carl Roberts and Merrion Edwards Introduction
White Paper: DC Resistance Unbalance Testing: Easy, Low-Cost Insurance for Your PoE Systems
White Paper: DC Resistance Unbalance Testing: Easy, Low-Cost Insurance for Your PoE Systems Originally ratified by IEEE in 1999 and 2003 respectively, gigabit Ethernet (1000BASE-T) and power over Ethernet
TECHNICAL SPECIFICATION
TECHNICAL SPECIFICATION 4 PAIR UTP CABLE (ENHANCED CATEGORY 5) PVC (CM Grade) Page 1 of 6 1. SCOPE This specification is based on the specifications of UL 444, ANSI/TIA/EIA-568-B.2, UL 1685 and covers
114-22008. 8-Position Cat5e (EMT) Modular Plug Connectors. Application Specification
Application Specification 114-22008 02/May/2008 Rev H 8-Position Cat5e (EMT) Modular Plug Connectors NOTE All numerical values are in metric units [with U.S. customary units in brackets]. Dimensions are
Discussion Paper Category 6 vs Category 5e Cabling Systems and Implications for Voice over IP Networks
Discussion Paper Category 6 vs Category 5e Cabling Systems and Implications for Voice over IP Networks By Galen Udell Belden CDT Networking 2006 Category 6 vs Category 5e Cabling Systems and Implications
The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6 Copper Cabling Standards and Technical Aspects
The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6 Copper Cabling Standards and Technical Aspects White Paper /7/0 Executive Summary Now that the TIA/EIA-568-B.- Category 6 Copper Cabling
Signal Types and Terminations
Helping Customers Innovate, Improve & Grow Application Note Signal Types and Terminations Introduction., H, LV, Sinewave, Clipped Sinewave, TTL, PECL,,, CML Oscillators and frequency control devices come
X2 LR Optical Transponder, 10Km Reach
X2 LR Optical Transponder, 10Km Reach Features Compatible with X2 MSA Rev2.0b Support of IEEE 802.3ae 10GBASE-LR at 10.3125Gbps Transmission Distance up to 10km(SMF) SC Receptacle 1310nm DFB Laser SC Duplex
01. HARTING RJ INDUSTRIAL RJ45 ETHERNET CONNECTORS
. HARTING RJ INDUSTRIAL ETHERNET CONNECTORS Ethernet is is coming up to standard industrial interface. Therefore, automation devices such as controllers, sensors and actuators feature possess on one or
Optical Interconnect Technology for High-bandwidth Data Connection in Next-generation Servers
Optical Interconnect Technology for High-bandwidth Data Connection in Next-generation Servers Tsuyoshi Yamamoto Kazuhiro Tanaka Satoshi Ide Tsuyoshi Aoki In the near future, an improvement in the performance
RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. 0.
Receiver AC-RX2/CS RF data receiver super-reactive ASK modulation, low cost and low consumption ideal for Microchip HCS KEELOQ decoder/encoder family. Pin-out 38.1 3 Component Side 1 2 3 7 11 13 14 15
Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity
Migration to 40/100G in the Data Center with OM3 and OM4 Optical Connectivity Needs in the Data Center With the continued requirement for expansion and growth in the data center, infrastructures must provide
21/03/2013 Center Cable, S.L Camino del Barranco,4-6 P.I. Las Arenas de Pinto 28320 Pinto (Madrid) Tlf.916926030 www.centercable.
1 Centercable, is a leader distributor and cable manufacturing company located in Spain. Centercable offers you a wide range of special cables, optical fiber solutions and tailor made solutions. 2 Our
Copper Patch Cords. Impact On Network Performance and Reliability
Copper Patch Cords Impact On Network Performance and Reliability 1 The Impact of Copper Patch Cords on Network Performance and Reliability As network infrastructures continue to have a higher impact on
EECC694 - Shaaban. Transmission Channel
The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,
HARAX circular connector
Show navigation HARAX circular connector Technical characteristics Specifications IEC 60 352-4 IEC 60 9475-2 Approvals HARAX M8-S/M12-S Rated voltage Rated current Diameter of individual strands Conductor
How To Connect A 10Gbps Sfp+ Bi-Directional Transceiver To A Single Mode Fiber With A Single Power Cell (Sfp+) To A Power Cell With A Power Source (Sf) (Sfl) (
Features 10Gbps SFP+ Bi-Directional Transceiver, 20km Reach 1270/1330nm TX / 1330/1270 nm RX Supports 9.95Gb/s to 10.3Gb/s data rates Simplex LC Connector Bi-Directional SFP+ Optical Transceiver Single
Times Microwave Systems Hermetically Sealed Assemblies
SCOPE This Specification details the Electrical, Mechanical and Environmental Characteristics of Times Microwave Systems MILTECH 340.34 Diameter Hermetically Sealed Coaxial Transmission Lines. This product
INTERNATIONAL STANDARD
INTERNATIONAL STANDARD IEC 61156-5 First edition 2002-03 Multicore and symmetrical pair/quad cables for digital communications Part 5: Symmetrical pair/quad cables with transmission characteristics up
1.1 SYSTEM DESCRIPTION.1 Data system includes data outlets and wiring for office and school applications.
Issued 2005/06/01 Section 16743 Data System Page 1 of 7 PART 1 GENERAL 1.1 SYSTEM DESCRIPTION.1 Data system includes data outlets and wiring for office and school applications..2 Data system equipment
10GBASE -LRM, 220m Reach GX2-31192-LRMC
Features Compatible with X2 MSA Rev2.0b 10GBASE -LRM, 220m Reach GX2-31192-LRMC Support of IEEE 802.3ae 10GBASE-LR at 10.3125Gbps Transmission Distance up to 220m(MMF) SC Receptacle 1310nm DFB Laser SC
What are the Requirements for an Accurate DSL Line Simulator? Paradyne International, France
Title: Source: Author: Contact: What are the Requirements for an Accurate DSL Line Simulator? Paradyne International, France Jack Douglass Jack Douglass Paradyne Networks, Inc. Voice: 949-233-3558 Email:
LOXONE 12 Channel Amplifier
LOXONE 12 Channel Amplifier Item no.: 200110 Thank you for purchasing the Loxone Twelve Channel Amplifier. The versatility of the Amplifier makes it the perfect choice for almost every type of custom multi-room
11. High-Speed Differential Interfaces in Cyclone II Devices
11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the
Solving Signal Problems Effective shielding is key to enhancing the reliability and performance of broadcast cables.
Solving Signal Problems Effective shielding is key to enhancing the reliability and performance of broadcast cables. by Marty Van Der Burgt Belden Article for Broadcast Engineering There is perhaps no
