Computer Automation of STR Scoring for Forensic Databases
|
|
|
- Herbert Beasley
- 10 years ago
- Views:
Transcription
1 Computer Automation of STR Scoring for Forensic Databases Mark W. Perlin * Cybergenetics, Pittsburgh, PA Abstract Forensic databases are becoming an increasingly valuable law enforcement tool for convicting repeat offenders and exonerating the innocent. However, constructing such databases is quite laborious. After generating STR profiles in the lab, people expend even greater effort visually reviewing the data before it enters the database. All artifacts must be detected, and no error can be tolerated. With millions of samples to analyze every year, this has become a formidable task. We have developed software analysis methods that can automate this data review and potentially eliminate 90% of the work. Our fully automated TrueAllele system inputs raw fluorescent DNA sequencer gel files, processes the gel image (separating colors, tracking and sizing lanes), and analyzes the STR experiments (quantitating and sizing peaks, comparing with ladder peaks, calling alleles). For each allele call, TrueAllele assigns a quality score and applies artifact detection rules. These quality checks enable a user to focus on just the 5%-10% of suspect data, thereby eliminating most of the review effort. We are currently developing more powerful extensions to TrueAllele for advanced forensic processing. TrueAllele can already read data from any DNA sequencer, and process it on any computer. Our immediate goal is to have TrueAllele replicate much of the reasoning of the forensic database analyst, and present its focused conclusions visually, rapidly and intuitively. Longer-term, we expect TrueAllele to develop into an intelligent casework assistant. Introduction Assuring the quality of short tandem repeat (STR) (1-4) forensic databases (5, 6) is a demanding, labor-intensive task. For each deoxyribonucleic acid (DNA) sample, an analyst must visually review the STR data, identify artifacts, provide correct designations, and decide whether or not to record it in the database. This repetitive task requires time, patience, and extensive knowledge of the allelic behavior at each STR locus. However, much of this decision making may be automatable by a knowledge-based computer program. Coupling a human data reviewer with such a software assistant would greatly increase both data throughput and database quality. We have developed TrueAllele, an expert system computer program for STR data analysis (7). TrueAllele automates most of the data review process, transforming raw DNA sequencer files into quality-checked allele designations. By focusing an analyst's attention on just the 5%-10% of problematic designations, TrueAllele can eliminate most of the human data review. This overview paper is organized as follows: System. How TrueAllele transforms data from sequencer files to quality-checked designations. Knowledge. Some STR behavior that TrueAllele uses in designating alleles. Example. A typical session of TrueAllele processing and user review. Software. The platform-independent TrueAllele program, user support, and processing results. Conclusion. The implications of TrueAllele for forensic databasing, and future research directions. System TrueAllele is a flexible automated genotyping system that accurately sizes and quantitates DNA fragment data (Figure 1). The TrueAllele software can read data formats from both capillary and gel electrophoresis automated fluorescent DNA sequencers (8). The program runs on Macintosh, Windows, and Unix computers. * Address for correspondence and reprints: Dr. Mark W. Perlin, Cybergenetics, 160 N Craig St, Ste 210, Pittsburgh, PA 15213, USA, [email protected]
2 TrueAllele processing begins with an initial image and/or signal analysis that builds a set of sized electropherogram traces. On capillary data, TrueAllele conducts this analysis separately for each capillary. Acquire data. TrueAllele reads in the raw data from sequencer files. Process signal. The program performs useful signal or image processing, such as removing the baseline, filtering out noise, or eliminating specific signal artifacts. Separate colors. TrueAllele automatically resolves the observed fluorescent data into their component dyes. By determining the color separation matrix directly from the run data (e.g., for each capillary), TrueAllele eliminates the need for prior dye calibration runs. Remove primers. The software strips the primer region from the allele data. Track sizes/lanes. TrueAllele matches the observed size standard peaks (e.g., in the red dye signal) to their expected sizes. With gel data, TrueAllele simultaneously tracks the lanes. Extract profiles. Using the size/lane tracking results, TrueAllele extracts a set of one dimensional (1D) electropherogram profiles, indexed by lane/capillary and color. The extracted 1D profiles are mathematically transformed into a uniform size coordinate system. Since the new domain of each profile is calibrated in base pairs (bps), and not in pixels (e.g., scan lines), TrueAllele can more accurately quantitate the peaks, check for artifacts, and designate alleles. TrueAllele designates alleles using floating windows by comparing quantitated peaks against allelic ladders. Quantitate peaks. TrueAllele models each data peak as a Normal-Cauchy function, and forms a best leastsquared fit of the electropherogram data to a parameterized sum of model peaks (9). This approach accounts for band overlap, and robustly estimates each peak's relative DNA concentration from the modeled peaks (using height or area). Derive ladders. For each locus, the program matches the observed allelic ladder data to the expected ladder sizes. It then forms a virtual ladder to account for designations not in the ladder data. Designate alleles. For each polymerase chain reaction (PCR) experiment, TrueAllele determines which candidate peaks to retain. To designate the alleles, the program matches these peaks against the ladder's floating window. With gel data, each gel loading has a separate floating window. TrueAllele checks the quality of every allele designation by (a) applying rules that detect data artifacts or potential scoring problems and (b) heuristically ranking the remaining data on a scale of 0 (worst) to 1 (best). (a) TrueAllele's rule architecture is quite flexible, and programmers can rapidly modify existing rules or add new ones. Typical rules check for signal strength, dispersed peaks, sizing deviations, and crosstalk artifacts. Alleles that trigger rule firings are presented for visual review to a human analyst. (b) TrueAllele's quality measure enables an analyst to focus on the problematic data. After reviewing rule firings, the human analyst then checks those designations which have low scores. High scoring designations (the vast majority) have a low probability of error, and do not require human review (10). TrueAllele makes it processing results available in several formats. User Interface. The AlleleView navigator interface shows TrueAllele's designations in the context of the appropriate allelic ladder (Figure 2). AlleleView uses rule firings and quality scores to help focus the analyst on problematic data. Other visual interfaces (PrepView, ImageView, MarkerView, SizeStdView, etc.) provide useful data interactions. Computer Output. TrueAllele can generate tabbed text results in diverse formats useful for downstream processing. Programmers can customize these results to include many variables for each allele designation, including internal quality measurements. Database Entry. TrueAllele's tabbed text output can be routed to a forensic database. Knowledge TrueAllele applies considerable knowledge of STR systems to its processing and presentation of genotyping data. A few examples are given here. Floating windows. DNA sequencers can size inconsistently, due to differential migration of the STR PCR products relative to the size standards. This deviation is most evident when comparing different brands or models, but even occurs with runs on the same machine. Therefore, software analysis methods based on fixed size criteria for allele binning can sometimes lead to nonoptimal allele designations (e.g., PE Biosystems Genotyper).
3 To correct for this error, forensic scientists have long used allelic ladders as within-run calibration data (11, 12). When sample peaks are analyzed in the context of allelic ladders (e.g., peak center ± 0.5 bps), comparisons using floating windows can more accurately designate the alleles. This comparison can be done visually, or in software (e.g., Forensic Science Service ALLEATOR). TrueAllele uses such floating windows when analyzing forensic STR data. For every locus, the program sizes each ladder and sample lane relative to its internal lane size standards. TrueAllele then matches the ladder peaks to their designations; even and odd gel loadings are processed separately. The program compares a sample's peaks with the floating allele windows of the appropriate ladder. Large deviations may reduce TrueAllele's quality score for the designation. TrueAllele's AlleleView user interface displays all forensic data in the context of the allelic ladder, making the floating window visually apparent. Stutter artifact. PCR through an STR's tandem repeat region can skip a repeat unit and synthesize a differently sized fragment (13). After many cycles, the PCR then generates a stutter (or "shadow band") artifact comprised of multiple allele sizes. Calibration of this reproducible artifact for a given locus under fixed PCR conditions can mathematically eliminate the artifact (7). Stutter is generally more pronounced with shorter repeat units (e.g., dinucleotide repeats) than with the longer units (e.g., tetranucleotide repeats) used in forensic science. TrueAllele can automatically detect, calibrate, and remove PCR stutter artifact from STR data. TrueAllele does this by (optionally) building a table of locus stutter patterns for each allele, and using this table to deconvolve the stutter from the observed signal (14). The deconvolved signal can more accurately describe the DNA components present in the original sample. Pref amp. Preferential amplification occurs in STR systems when some fragment sizes (e.g., shorter ones) PCR more efficiently than others. The pref amp artifact may mask small allelic peaks, and cause heterozygotic genotypes to appear homozygotic. Forensic analysts use preset allele ratios to reproducibly designate pref amp alleles. TrueAllele can automatically calibrate pref amp for each locus, and then (optionally) use this information in making allele designations. When excessive deviation in allele quantitation ratios triggers a rule, TrueAllele can report this potential designation problem to the analyst. Rule system. TrueAllele has an extensible rule system for representing knowledge of STR artifacts. These rules detect potentially incorrect allele designations, and can report them to the analyst. In processing genotype data, TrueAllele records dozens of variables for each genotype that measure the deviation of observed data from expected behavior. A given rule can use any of these variables, drawn from one or more genotypes. For example, lane-to-lane artifacts require information from two adjacent genotypes. After designating the alleles, TrueAllele applies all rules to every genotype and records the rule firings. When an analyst reviews the annotated results, AlleleView can list the rule firings for each problematic genotype. This information directs the analyst's attention to that genotype's specific artifacts. Quality ranking. The vast majority of allele designations do not fire rules. TrueAllele ranks these good data according to a heuristic that incorporates the most important "quality" features. For example, an informative forensic measure would include peak height and floating window deviations. TrueAllele's AlleleView interface presents this good data set in a worst-first ordering, so that the analyst's attention is centered on the problematic data. Adaptability is a key feature of TrueAllele's knowledge base. TrueAllele's use of flexible rule encodings and adjustable quality measures enables customization of the system over time in an ever-changing STR technology environment. Example A tutorial TrueAllele evaluation package can be downloaded from the Cybergenetics web site ( Example forensic data and forensic panel templates are also available. A detailed visual presentation (over fifty screen snapshots) is provided in the Tutorial user documentation. The example presented here uses processed forensic data from the web site, with ABI/377 electrophoresis (15) of an SGM+ panel.
4 DataDisk Setup. TrueAllele organizes gel (or capillary) run data on a DataDisk. The DataDisk has a "data" folder, which contains a set of gels and their annotations. There is also a "common" folder, which contains reference files for panels, locus information, dyes, and size standards; we provide a reusable template DataDisk for the SGM+ forensic panel. A DataDisk can be set up manually (e.g., using Finder and Excel on the Macintosh), or automatically from a laboratory database. Signal/Image Processing. After setting up a DataDisk with 5-10 gels, the analyst starts TrueAllele and loads the DataDisk. In a typical high-throughput installation, the analyst then runs ImageCall, which (a) performs signal and image analysis, and (b) tracks the vertical lanes and the horizontal size standards simultaneously. The result of this two dimensional (2D) tracking is a 2D grid that the ImageView interface can visually superimpose on the data. After inspecting (and possibly editing) the 2D tracking grid, TrueAllele extracts 1D electropherograms, and is ready to designate alleles. Allele Calling. The AlleleCall program automatically processes the genotyping data across all the gels. AlleleCall quantitates peaks, derives allelic ladders, and designates alleles. The program then applies rules, and assigns a quality measure to every designated allele. Quality Checking. The analyst can check TrueAllele's designation results in the AlleleView interface (Figure 2). Reviewing the genotypes of one locus across all the gels helps the analyst concentrate on locus-dependent features. The analyst starts by reviewing those genotypes which triggered a rule (i.e., bad data); each genotype's fired rules are listed in a pop-up menu. Editing can then continue on the worst data first, since the genotypes are sorted by quality score. With reasonably good STR data, an analyst views the questionable 10% of designated genotypes before moving on to the next locus. The AlleleView program provides additional interfaces (Electropherogram, Quantitation, Genotype, Lanes, Family, etc.) that the analyst can use to inspect specific artifacts. For example, possible dye bleedthrough is best examined in the AlleleView Electropherogram window, which automatically displays every signal in a particular locus size range in its own dye color. Output Formats. The analyst can generate results in many different arrangements (e.g., ordered by locus or by sample). The results are produced in a flexible tabbed text format that can be input to other computer programs, submitted to a database, textually examined in a spreadsheet, or visually presented in AlleleView. Since TrueAllele keeps an audit trail of the dozens of variables (observed and expected behavior) considered in designating each allele, any subset of this information can be programmed into the output files. Software TrueAllele is written in the MATLAB 5.2 visualization and numerical programming language; this enables rapid development and deployment of signal processing algorithms. MATLAB (hence TrueAllele) is crossplatform, running on Macintosh, Windows, and Unix computers. The TrueAllele development process includes a version control system (CVS on Unix). The Cybergenetics web site ( provides a form for user feedback (bug reports, new features, etc.), and visitors can download evaluation software, documentation, and other resources. Automated Unix scripts are used to test the software, and compile it into pcode files. The scripts then assemble the RunTime software for all three computer platforms, with packaging for different user needs (e.g., tutorial, program, update). TrueAllele documentation is distributed as bookmarked PDF files, generated using Abobe FrameMaker. We tested TrueAllele on a suite of ten SGM+ ABI/377 gels. We ran TrueAllele's SizeStdView interface on the first gel to calibrate the GS500 size standards to the electrophoresis run conditions. We ran TrueAllele on a 266 MHz imac computer with 160 MB total RAM. We observed the following results: Signal/Image Processing. After automatically tracking lanes and sizes, half the gels did not require grid editing. The other five gel grids were each edited in under five minutes. Allele Calling. TrueAllele designated all the samples in the ten gels for the SGM+ panel in an overnight run on the Macintosh computer. Quality Checking. TrueAllele's designations were reviewed by a human operator using the AlleleView navigator. The analyst detected all the miscalls either in the rule firings, or in checking the low scoring data. No designation errors were found in the (vast majority) of remaining "good" data.
5 Conclusion Manual review of forensic data is a critical bottleneck in the construction of criminal offender databases. This labor-intensive task consumes considerable resources (time, people, cost, error, effort) that might be better applied elsewhere in the criminal justice system. We have developed a knowledge-based computer program for STR analysis that automates most of this human review process. Our TrueAllele program works with most DNA sequencers, and runs on most computers. We are continuing to develop and refine the TrueAllele software. We have recently incorporated new modules for capillary processing and 96-lane tracking. We have developed new data representations that permit much faster processing of STR sizing data and more customizable display of genotyping results. These improvements in performance and adaptability are essential if software automation is to keep pace with the continuing evolution of STR technology. We expect that this improved TrueAllele will be a useful starting point for developing an intelligent casework software assistant. Acknowledgments The STR data were provided by Richard Pinchin and Declan O'Grady of the Forensic Science Service. TrueAllele programming and testing were done by Meredith A. Clarke and Michael Breen of Cybergenetics. This research was supported in part by SBIR Phase II grant award 2R44 HG from the National Institutes of Health. References [1] Weber J, May P (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet., 44: [2] Fregeau CJ, Fourney RM (1993). DNA typing with fluorescently tagged short tandem repeats: a sensitive and accurate approach to human identification. Biotechniques, 15(1): [3] Kimpton CP, Gill P, Walton A, Urquhart A, Millican ES, Adams M (1993). Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Meth. Appl., 3: [4] Urquhart A, Kimpton CP, Downes TJ, Gill P (1994). Variation in short tandem repeat sequences--a survey of twelve microsatellite loci for use as forensic identification markers. Int. J. Leg. Med., 107: [5] McEwen JE (1995). Forensic DNA data banking by state crime laboratories. Am. J. Hum. Genet., 56: [6] Gill P, Urquhart A, Millican ES, Oldroyd NJ, Watson S, Sparkes R, Kimpton CP (1996). Criminal intelligence databases and interpretation of STRs. Advances in Forensic Haemogenetics, 6: [7] Perlin MW, Lancia G, Ng S-K (1995). Toward fully automated genotyping: genotyping microsatellite markers by deconvolution. Am. J. Hum. Genet., 57(5): [8] Ziegle JS, Su Y, Corcoran KP, Nie L, Mayrand PE, Hoff LB, McBride LJ, Kronick MN, Diehl SR (1992). Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics, 14: [9] Richards DR, Perlin MW (1995). Quantitative analysis of gel electrophoresis data for automated genotyping applications (Abstract). Amer. J. Hum. Genet., 57(4 Supplement): A26. [10] Pálsson B, Pálsson F, Perlin M, Gubjartsson H, Stefánsson K, Gulcher J (1999). Using quality measures to facilitate allele calling in high-throughput genotyping. Genome Research, to appear. [11] Puers C, Hammond H, Jin L, Caskey C, Schumm J (1993). Identification of repeat sequence heterogeneity at the polymorphic short tandem repeat locus HUMTH01[AATG]n and reassignment of alleles in population analysis by using a locus-specific allelic ladder. Am. J. Hum. Genet., 53(4): [12] Griffiths RAL, Barber MD, Johnson PE, Gillbard SM, Haywood MD, Smith CD, Arnold J, Burke T, Urquhart A, Gill P (1998). New reference allelic ladders to improve allelic designation in a multiplex STR system. Int. J. Legal Med., 111(5): [13] Hauge XY, Litt M (1993). A study of the origin of 'shadow bands' seen when typing dinucleotide repeat polymorphisms by the PCR. Hum. Molec. Genet., 2(4): [14] Perlin MW (1999). Method and system for genotyping, U.S. Patent, #5,876,933 [15] Frazier RRE, Millican ES, Watson SK, Oldroyd NJ, Sparkes RL, Taylor KM, Panchal S, Bark L, Kimpton CP, Gill PD (1996). Validation of the Applied Biosystems Prism 377 automated sequencer for forensic short tandem repeat analysis. Electrophoresis, 17:
6 Capillary electrophoresis data file Gel-based DNA sequencer data file image analysis allele designation quality checking Automated analysis: Macintosh Windows Unix User Interface: focused review of 5%-10% suspect data Computer Output: flexible reporting of allele calls and qualities Database Entry: tabbed text file reporting results with qualities Figure 1. TrueAllele is a flexible automated genotyping system. The program can input data from capillary or gel DNA sequencers, and process these data on most computer platforms. Processing entails image/signal analysis, allele designation, and quality checking. The output can be visually presented for user review, or in file formats suitable for downstream computer analysis or database entry.
7 Figure 2. The AlleleView navigator program automatically displays allele designation information. Shown here is a D2 designation of (308, 324) for a sample. The top text region provides navigation data, including the gel, locus, lane, sample, designation, review priority, quality score, rule firings, dye and size range. The first electropherogram pane shows the D2 sample signal superimposed on the odd D2 allelic ladder signal. The second quantitation pane shows the results of DNA quantitation and peak sizing. The third designation pane shows the final (editable) allele designations. The allelic ladder sizes are drawn as dashed vertical lines throughout. Each pane can be opened to reveal additional relevant visual information.
Artisan Scientific is You~ Source for: Quality New and Certified-Used/Pre:-awned ECJuiflment
Looking for more information? Visit us on the web at http://www.artisan-scientific.com for more information: Price Quotations Drivers Technical Specifications. Manuals and Documentation Artisan Scientific
Computer with GeneMapper ID (version 3.2.1 or most current) software Microsoft Excel, Word Print2PDF software
Procedure for GeneMapper ID for Casework 1.0 Purpose-This procedure specifies the steps for performing analysis on DNA samples amplified with AmpFlSTR Identifiler Plus using the GeneMapper ID (GMID) software.
Forensic DNA Testing Terminology
Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.
SeqScape Software Version 2.5 Comprehensive Analysis Solution for Resequencing Applications
Product Bulletin Sequencing Software SeqScape Software Version 2.5 Comprehensive Analysis Solution for Resequencing Applications Comprehensive reference sequence handling Helps interpret the role of each
Commonly Used STR Markers
Commonly Used STR Markers Repeats Satellites 100 to 1000 bases repeated Minisatellites VNTR variable number tandem repeat 10 to 100 bases repeated Microsatellites STR short tandem repeat 2 to 6 bases repeated
DNA Detection. Chapter 13
DNA Detection Chapter 13 Detecting DNA molecules Once you have your DNA separated by size Now you need to be able to visualize the DNA on the gel somehow Original techniques: Radioactive label, silver
DNA Sequence Analysis
DNA Sequence Analysis Two general kinds of analysis Screen for one of a set of known sequences Determine the sequence even if it is novel Screening for a known sequence usually involves an oligonucleotide
Sanger Sequencing and Quality Assurance. Zbigniew Rudzki Department of Pathology University of Melbourne
Sanger Sequencing and Quality Assurance Zbigniew Rudzki Department of Pathology University of Melbourne Sanger DNA sequencing The era of DNA sequencing essentially started with the publication of the enzymatic
DNA for Defense Attorneys. Chapter 6
DNA for Defense Attorneys Chapter 6 Section 1: With Your Expert s Guidance, Interview the Lab Analyst Case File Curriculum Vitae Laboratory Protocols Understanding the information provided Section 2: Interpretation
Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company
Genetic engineering: humans Gene replacement therapy or gene therapy Many technical and ethical issues implications for gene pool for germ-line gene therapy what traits constitute disease rather than just
Troubleshooting Sequencing Data
Troubleshooting Sequencing Data Troubleshooting Sequencing Data No recognizable sequence (see page 7-10) Insufficient Quantitate the DNA. Increase the amount of DNA in the sequencing reactions. See page
Rapid Acquisition of Unknown DNA Sequence Adjacent to a Known Segment by Multiplex Restriction Site PCR
Rapid Acquisition of Unknown DNA Sequence Adjacent to a Known Segment by Multiplex Restriction Site PCR BioTechniques 25:415-419 (September 1998) ABSTRACT The determination of unknown DNA sequences around
Mixture Interpretation: Defining the Relevant Features for Guidelines for the Assessment of Mixed DNA Profiles in Forensic Casework*
J Forensic Sci, July 2009, Vol. 54, No. 4 doi: 10.1111/j.1556-4029.2009.01046.x Available online at: www.blackwell-synergy.com Bruce Budowle, 1 Ph.D.; Anthony J. Onorato, 1 M.S.F.S., M.C.I.M.; Thomas F.
The Techniques of Molecular Biology: Forensic DNA Fingerprinting
Revised Fall 2011 The Techniques of Molecular Biology: Forensic DNA Fingerprinting The techniques of molecular biology are used to manipulate the structure and function of molecules such as DNA and proteins
TOOLS FOR T-RFLP DATA ANALYSIS USING EXCEL
TOOLS FOR T-RFLP DATA ANALYSIS USING EXCEL A collection of Visual Basic macros for the analysis of terminal restriction fragment length polymorphism data Nils Johan Fredriksson TOOLS FOR T-RFLP DATA ANALYSIS
DNA PROFILING IN FORENSIC SCIENCE
DA PROFILIG I FORESIC SCIECE DA is the chemical code that is found in every cell of an individual's body, and is unique to each individual. Because it is unique, the ability to examine DA found at a crime
Data Analysis for Ion Torrent Sequencing
IFU022 v140202 Research Use Only Instructions For Use Part III Data Analysis for Ion Torrent Sequencing MANUFACTURER: Multiplicom N.V. Galileilaan 18 2845 Niel Belgium Revision date: August 21, 2014 Page
Step-by-Step Guide to Bi-Parental Linkage Mapping WHITE PAPER
Step-by-Step Guide to Bi-Parental Linkage Mapping WHITE PAPER JMP Genomics Step-by-Step Guide to Bi-Parental Linkage Mapping Introduction JMP Genomics offers several tools for the creation of linkage maps
DNA Core Facility: DNA Sequencing Guide
DNA Core Facility: DNA Sequencing Guide University of Missouri-Columbia 216 Life Sciences Center Columbia, MO 65211 http://biotech.missouri.edu/dnacore/ Table of Contents 1. Evaluating Sequencing Data..
AFLP System Analysis Getting Started Guide
GeneMapper Software Version 4.1 AFLP System Analysis Getting Started Guide Getting Started Setting Up the Analysis Analyzing and Examining the Data Exporting and Printing the Analyzed Data GeneMapper
Melissa May. NetBio - Vice President Strategic Planning. Date: 22/10/2013
Melissa May NetBio - Vice President Strategic Planning Date: 22/10/2013 Heading Fully automated, Field forward Rapid DNA Typing for Military, Intelligence, and Law Enforcement Applications 090413 Requirements:
A guide to the analysis of KASP genotyping data using cluster plots
extraction sequencing genotyping extraction sequencing genotyping extraction sequencing genotyping extraction sequencing A guide to the analysis of KASP genotyping data using cluster plots Contents of
Introduction to Post PCR Cleanup
Matt Kramer Introduction to Post PCR Cleanup Overview Why post PCR amplification cleanup? Enhancing human identity testing Introduction to QIAGEN MinElute post PCR cleanup technologies MinElute as a tool
NATIONAL GENETICS REFERENCE LABORATORY (Manchester)
NATIONAL GENETICS REFERENCE LABORATORY (Manchester) MLPA analysis spreadsheets User Guide (updated October 2006) INTRODUCTION These spreadsheets are designed to assist with MLPA analysis using the kits
Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology
Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,
Are DNA tests infallible?
International Congress Series 1239 (2003) 873 877 Are DNA tests infallible? G. Penacino *, A. Sala, D. Corach Servicio de Huellas Digitales Genéticas and Cátedra de Genética y Biología Molecular, Fac.
Multiplex your most important
Multiplex your most important genetic assays on one platform GenomeLab GeXP Genetic Analysis System Blood Banking Capillary Electrophoresis Centrifugation Flow Cytometry Genomics Lab Automation Lab Tools
DNA Profiling in Forensic Science
DNA Profiling in Forensic Science Peter Gill, Forensic Science Service, Birmingham, UK Rebecca Sparkes, Forensic Science Service, Birmingham, UK Gillian Tully, Forensic Science Service, Birmingham, UK
Introduction To Real Time Quantitative PCR (qpcr)
Introduction To Real Time Quantitative PCR (qpcr) SABiosciences, A QIAGEN Company www.sabiosciences.com The Seminar Topics The advantages of qpcr versus conventional PCR Work flow & applications Factors
MI Software. Innovation with Integrity. High Performance Image Analysis and Publication Tools. Preclinical Imaging
MI Software High Performance Image Analysis and Publication Tools Innovation with Integrity Preclinical Imaging Molecular Imaging Software Molecular Imaging (MI) Software provides high performance image
DNA FRAGMENT ANALYSIS by Capillary Electrophoresis
DNA FRAGMENT ANALYSIS by Capillary Electrophoresis USER GUIDE DNA Fragment Analysis by Capillary Electrophoresis Publication Number 4474504 Rev. A Revision Date September 2012 For Research Use Only. Not
DNA Sequencing Overview
DNA Sequencing Overview DNA sequencing involves the determination of the sequence of nucleotides in a sample of DNA. It is presently conducted using a modified PCR reaction where both normal and labeled
TaqMan Genotyper Software v1.0.1 TaqMan Genotyping Data Analysis Software
TaqMan Genotyper Software v1.0.1 TaqMan Genotyping Data Analysis Software March 2011 Product Overview TaqMan Genotyper Software TaqMan Genotyper Software Standalone data analysis software for Applied Biosystems
SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories
SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories Scientific Working Group on DNA Analysis Methods (SWGDAM) The Scientific Working Group on DNA Analysis Methods,
Sequencing Guidelines Adapted from ABI BigDye Terminator v3.1 Cycle Sequencing Kit and Roswell Park Cancer Institute Core Laboratory website
Biomolecular Core Facility AI Dupont Hospital for Children, Rockland Center One, Room 214 Core: (302) 651-6712, Office: (302) 651-6707, [email protected] Katia Sol-Church, Ph.D., Director Jennifer Frenck
DNA Sequencing Setup and Troubleshooting
DNA Sequencing Setup and Troubleshooting Lara Cullen, PhD Scientific Applications Specialist Australia and New Zealand Reviewing Sequencing Data Review the Electropherogram Review the Raw Data (Signal
Appendix 2 Molecular Biology Core Curriculum. Websites and Other Resources
Appendix 2 Molecular Biology Core Curriculum Websites and Other Resources Chapter 1 - The Molecular Basis of Cancer 1. Inside Cancer http://www.insidecancer.org/ From the Dolan DNA Learning Center Cold
Real-Time PCR Vs. Traditional PCR
Real-Time PCR Vs. Traditional PCR Description This tutorial will discuss the evolution of traditional PCR methods towards the use of Real-Time chemistry and instrumentation for accurate quantitation. Objectives
Crime Scenes and Genes
Glossary Agarose Biotechnology Cell Chromosome DNA (deoxyribonucleic acid) Electrophoresis Gene Micro-pipette Mutation Nucleotide Nucleus PCR (Polymerase chain reaction) Primer STR (short tandem repeats)
Aurora Forensic Sample Clean-up Protocol
Aurora Forensic Sample Clean-up Protocol 106-0008-BA-D 2015 Boreal Genomics, Inc. All rights reserved. All trademarks are property of their owners. http://www.borealgenomics.com [email protected]
Data Analysis on the ABI PRISM 7700 Sequence Detection System: Setting Baselines and Thresholds. Overview. Data Analysis Tutorial
Data Analysis on the ABI PRISM 7700 Sequence Detection System: Setting Baselines and Thresholds Overview In order for accuracy and precision to be optimal, the assay must be properly evaluated and a few
Gene Mapping Techniques
Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction
Imaging and Bioinformatics Software
Imaging and Bioinformatics Software Software Overview 242 Gel Analysis Software 243 Ordering Information 246 Software Overview Software Overview See Also Imaging systems: pages 232 237. Bio-Plex Manager
July 7th 2009 DNA sequencing
July 7th 2009 DNA sequencing Overview Sequencing technologies Sequencing strategies Sample preparation Sequencing instruments at MPI EVA 2 x 5 x ABI 3730/3730xl 454 FLX Titanium Illumina Genome Analyzer
Technical Note. Roche Applied Science. No. LC 19/2004. Color Compensation
Roche Applied Science Technical Note No. LC 19/2004 Purpose of this Note Color The LightCycler System is able to simultaneously detect and analyze more than one color in each capillary. Due to overlap
SERVICES CATALOGUE WITH SUBMISSION GUIDELINES
SERVICES CATALOGUE WITH SUBMISSION GUIDELINES 3921 Montgomery Road Cincinnati, Ohio 45212 513-841-2428 www.agctsequencing.com CONTENTS Welcome Dye Terminator Sequencing DNA Sequencing Services - Full Service
DNA Separation Methods. Chapter 12
DNA Separation Methods Chapter 12 DNA molecules After PCR reaction produces many copies of DNA molecules Need a way to separate the DNA molecules from similar sized molecules Only way to genotype samples
User Guide for the Genetic Analysis Lab Information Management System (dnalims)
UNIVERSITY CORE DNA SERVICES University Core Genetic Analysis Laboratory Faculty of Medicine Health Sciences Centre, Rm. B104A Tel: (403) 220-4503, Fax: (403) 283-4907, Email: [email protected] www.ucalgary.ca/dnalab
MiSeq: Imaging and Base Calling
MiSeq: Imaging and Page Welcome Navigation Presenter Introduction MiSeq Sequencing Workflow Narration Welcome to MiSeq: Imaging and. This course takes 35 minutes to complete. Click Next to continue. Please
Getting Started Guide
Primer Express Software Version 3.0 Getting Started Guide Before You Begin Designing Primers and Probes for Quantification Assays Designing Primers and Probes for Allelic Discrimination Assays Ordering
Geospiza s Finch-Server: A Complete Data Management System for DNA Sequencing
KOO10 5/31/04 12:17 PM Page 131 10 Geospiza s Finch-Server: A Complete Data Management System for DNA Sequencing Sandra Porter, Joe Slagel, and Todd Smith Geospiza, Inc., Seattle, WA Introduction The increased
CABIOS. Q-RT-PCR: data analysis software for measurement of gene expression by competitive RT-PCR
CABIOS Vol. 73 no. 6 1997 Pages 587-591 Q-RT-PCR: data analysis software for measurement of gene expression by competitive RT-PCR Peter A. Doris 2, Amanda Hayward-Lester and Jon K. Hays Sr 1 Department
Quantifiler Human DNA Quantification Kit Quantifiler Y Human Male DNA Quantification Kit
Product Bulletin Human Identification Quantifiler Human DNA Quantification Kit Quantifiler Y Human Male DNA Quantification Kit The Quantifiler kits produce reliable and reproducible results, helping to
LRmix tutorial, version 4.1
LRmix tutorial, version 4.1 Hinda Haned Netherlands Forensic Institute, The Hague, The Netherlands May 2013 Contents 1 What is LRmix? 1 2 Installation 1 2.1 Install the R software...........................
Sequencing Analysis Software Version 5.1
Applied Biosystems DNA Sequencing Analysis Software Sequencing Analysis Software Version 5.1 The Applied Biosystems DNA Sequencing Analysis Software v5.1 is designed to analyze, display, edit, save, and
Annex to the Accreditation Certificate D-PL-13372-01-00 according to DIN EN ISO/IEC 17025:2005
Deutsche Akkreditierungsstelle GmbH German Accreditation Body Annex to the Accreditation Certificate D-PL-13372-01-00 according to DIN EN ISO/IEC 17025:2005 Period of validity: 26.03.2012 to 25.03.2017
Genotyping by sequencing and data analysis. Ross Whetten North Carolina State University
Genotyping by sequencing and data analysis Ross Whetten North Carolina State University Stein (2010) Genome Biology 11:207 More New Technology on the Horizon Genotyping By Sequencing Timeline 2007 Complexity
Single Nucleotide Polymorphisms (SNPs)
Single Nucleotide Polymorphisms (SNPs) Additional Markers 13 core STR loci Obtain further information from additional markers: Y STRs Separating male samples Mitochondrial DNA Working with extremely degraded
TruSeq Custom Amplicon v1.5
Data Sheet: Targeted Resequencing TruSeq Custom Amplicon v1.5 A new and improved amplicon sequencing solution for interrogating custom regions of interest. Highlights Figure 1: TruSeq Custom Amplicon Workflow
Introduction to transcriptome analysis using High Throughput Sequencing technologies (HTS)
Introduction to transcriptome analysis using High Throughput Sequencing technologies (HTS) A typical RNA Seq experiment Library construction Protocol variations Fragmentation methods RNA: nebulization,
How To Use Gss Software In Trimble Business Center
Trimble Business Center software technical notes Trimble Business Center Software Makes Processing GNSS Survey Data Effortless Trimble Business Center is powerful surveying office software designed to
The Power of Next-Generation Sequencing in Your Hands On the Path towards Diagnostics
The Power of Next-Generation Sequencing in Your Hands On the Path towards Diagnostics The GS Junior System The Power of Next-Generation Sequencing on Your Benchtop Proven technology: Uses the same long
Development of two Novel DNA Analysis methods to Improve Workflow Efficiency for Challenging Forensic Samples
Development of two Novel DNA Analysis methods to Improve Workflow Efficiency for Challenging Forensic Samples Sudhir K. Sinha, Ph.D.*, Anne H. Montgomery, M.S., Gina Pineda, M.S., and Hiromi Brown, Ph.D.
DNA and Forensic Science
DNA and Forensic Science Micah A. Luftig * Stephen Richey ** I. INTRODUCTION This paper represents a discussion of the fundamental principles of DNA technology as it applies to forensic testing. A brief
Automated binning of microsatellite alleles: problems and solutions
Molecular Ecology Notes (2007) 7, 10 14 doi: 10.1111/j.1471-8286.2006.01560.x Blackwell Publishing Ltd TECHNICAL ARTICLE Automated binning of microsatellite alleles: problems and solutions W. AMOS,* J.
Mitochondrial DNA Analysis
Mitochondrial DNA Analysis Lineage Markers Lineage markers are passed down from generation to generation without changing Except for rare mutation events They can help determine the lineage (family tree)
Biotracker TM A Laboratory Information Management System By Ocimum Biosolutions
Biotracker TM A Laboratory Information Management System By Ocimum Biosolutions 1 TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY... 2 2.0 INTRODUCTION... 2 3.0 BIOTRACKER TM GENERAL FEATURES... 4 3.1 LABORATORY
The Chinese University of Hong Kong School of Life Sciences Biochemistry Program CUGEN Ltd.
The Chinese University of Hong Kong School of Life Sciences Biochemistry Program CUGEN Ltd. DNA Forensic and Agarose Gel Electrophoresis 1 OBJECTIVES Prof. Stephen K.W. Tsui, Dr. Patrick Law and Miss Fion
7. Literaturverzeichnis
7. Literaturverzeichnis 1) Aaltonen et al: Clues to the pathogenesis of familial colorectal cancer. Science 260 (1993) 812-816 2) Aaltonen et al: Replikation errors in benign and malignant tumors from
Focusing on results not data comprehensive data analysis for targeted next generation sequencing
Focusing on results not data comprehensive data analysis for targeted next generation sequencing Daniel Swan, Jolyon Holdstock, Angela Matchan, Richard Stark, John Shovelton, Duarte Mohla and Simon Hughes
Use of the Agilent 2100 Bioanalyzer and the DNA 500 LabChip in the Analysis of PCR Amplified Mitochondrial DNA Application
Use of the Agilent 2100 Bioanalyzer and the DNA LabChip in the Analysis of PCR Amplified Mitochondrial DNA Application Homeland Security/Forensics Author Mark Jensen Agilent Technologies, Inc. 2850 Centerville
Enhancing PCR & STR Experiments. Sharron Ohgi Senior Research Associate [email protected]
Enhancing PCR & STR Experiments Sharron Ohgi Senior Research Associate [email protected] Outline PCR experiments Sample challenges Introducing Biomatrica s PCRboost o Performance examples o Summary
FORENSIC SCIENCE COURSE DESCRIPTION
FORENSIC SCIENCE COURSE DESCRIPTION This course is an overview of how science is applied to solving crimes. Topics include history of forensic sciences, collecting of evidence, analyzing results and hands-on
User Bulletin. GeneMapper Software Version 4.0. Installation Options. In This User Bulletin. Overview
User Bulletin Software Version 4.0 February 2006 SUBJECT: Installation Options In This User Bulletin Overview This user bulletin covers:............................... 2 Installation Options for the........
Beginner s Guide to Real-Time PCR
Beginner s Guide to Real-Time PCR 02 Real-time PCR basic principles PCR or the Polymerase Chain Reaction has become the cornerstone of modern molecular biology the world over. Real-time PCR is an advanced
Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA
Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns
Genetic Analysis. Phenotype analysis: biological-biochemical analysis. Genotype analysis: molecular and physical analysis
Genetic Analysis Phenotype analysis: biological-biochemical analysis Behaviour under specific environmental conditions Behaviour of specific genetic configurations Behaviour of progeny in crosses - Genotype
DNA Sequencing Handbook
Genomics Core 147 Biotechnology Building Ithaca, New York 14853-2703 Phone: (607) 254-4857; Fax (607) 254-4847 Web: http://cores.lifesciences.cornell.edu/brcinfo/ Email: [email protected] DNA Sequencing
SeattleSNPs Interactive Tutorial: Web Tools for Site Selection, Linkage Disequilibrium and Haplotype Analysis
SeattleSNPs Interactive Tutorial: Web Tools for Site Selection, Linkage Disequilibrium and Haplotype Analysis Goal: This tutorial introduces several websites and tools useful for determining linkage disequilibrium
TotalChrom. Chromatography Data Systems. Streamlining your laboratory workflow
TotalChrom Chromatography Data Systems Streamlining your laboratory workflow maximize productivity with TotalChrom CDS Acquiring, processing, reporting, reviewing and approving data is a streamlined series
Validation Guide for the DNA IQ Reference Sample Kit for Maxwell 16 Printed in USA. 9/06 Part# GE181
REFERENCE MANUAL Validation Guide for the DNA IQ Reference Sample Kit for Maxwell 16 9/06 Validation Guide for the DNA IQ Reference Sample Kit for Maxwell 16 All technical literature is available on the
Enhance visibility into and control over software projects IBM Rational change and release management software
Enhance visibility into and control over software projects IBM Rational change and release management software Accelerating the software delivery lifecycle Faster delivery of high-quality software Software
A Brief Guide to Interpreting the DNA Sequencing Electropherogram Version 3.0
A Brief Guide to Interpreting the DNA Sequencing Electropherogram Version 3.0 Plant-Microbe Genomics Facility The Ohio State University 484 W.12 th Ave., Columbus, OH 43210 Ph: 614/247-6204 FAX: 614/247-8696
Molecular typing of VTEC: from PFGE to NGS-based phylogeny
Molecular typing of VTEC: from PFGE to NGS-based phylogeny Valeria Michelacci 10th Annual Workshop of the National Reference Laboratories for E. coli in the EU Rome, November 5 th 2015 Molecular typing
Installation and Administration Guide
GeneMapper Software Version 4.0 Installation and Administration Guide Getting Started Installation Requirements and Software Compatibility Performing a New Installation of the GeneMapper Software Upgrading
WebSphere Business Modeler
Discovering the Value of SOA WebSphere Process Integration WebSphere Business Modeler Workshop SOA on your terms and our expertise Soudabeh Javadi Consulting Technical Sales Support WebSphere Process Integration
Authentication of Basmati rice using SSR-PCR and QIAxcel Advanced
Application Note Authentication of Basmati rice using SSR-PCR and QIAxcel Advanced R. Cassier ADGENE Laboratoire, Thury Harcourt, France Introduction Basmati is one of the most popular types of rice in
Touch DNA and DNA Recovery. H. Miller Coyle
Touch DNA and DNA Recovery 1 2 What is the link between cell biology & forensic science? Cells are the trace substances left behind that can identify an individual. Cells contain DNA. There are two forms
AS4.1 190509 Replaces 260806 Page 1 of 50 ATF. Software for. DNA Sequencing. Operators Manual. Assign-ATF is intended for Research Use Only (RUO):
Replaces 260806 Page 1 of 50 ATF Software for DNA Sequencing Operators Manual Replaces 260806 Page 2 of 50 1 About ATF...5 1.1 Compatibility...5 1.1.1 Computer Operator Systems...5 1.1.2 DNA Sequencing
DNA: A Person s Ultimate Fingerprint
A partnership between the UAB Center for Community Outreach Development and McWane Center DNA: A Person s Ultimate Fingerprint This project is supported by a Science Education Partnership Award (SEPA)
Y Chromosome Markers
Y Chromosome Markers Lineage Markers Autosomal chromosomes recombine with each meiosis Y and Mitochondrial DNA does not This means that the Y and mtdna remains constant from generation to generation Except
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Chip-Off and JTAG Analysis
The magazine dedicated exclusively to the technology of evidence collection, processing, and preservation Volume 10, Number 3 May-June 2012 Chip-Off and JTAG Analysis TOPICS IN THIS ISSUE Synthetic Cannabinoid
