DNA Separation Methods. Chapter 12
|
|
|
- Cathleen May
- 9 years ago
- Views:
Transcription
1 DNA Separation Methods Chapter 12
2 DNA molecules After PCR reaction produces many copies of DNA molecules Need a way to separate the DNA molecules from similar sized molecules Only way to genotype samples Multiplex PCR may produce: More than 20 different products Some only 1 or 2 base pairs apart
3 Separation Need to pull DNA molecules apart from each other in their solutions Separation based on size differences Also by color of dye, more on that later Electrophoresis: Using electricity and different sized pores Gel techniques Capillary techniques
4 Electrophoresis Means electricity (or charge) bearer Two key components: 1. Electric charge 1. Pull on the DNA molecules 2. Matrix with pores 1. Separate the molecules based on the size of the DNA and the size of the pores
5 DNA is charged Nucleic acid is an acid = drops off its H+ One phosphorous component on each nucleotide is an acid Other two are taken up with covalent bonds Acids are negatively charged in solution Because H+ has been stripped off Backbone of DNA has negative charge Is attracted to positive charge
6 DNA Backbone: N - O P O-CH 2 N -O O - P = O O-CH 2 N N = O -O O P O-CH 2 = O N N OH Nucleotide O DNA Chain
7 Electrical Charge Electrophoresis uses two charges: Anode Positive charge Attracts DNA molecules Cathode Negative charge DNA will migrate away Voltage = amount of charge Higher voltage faster DNA will move
8 Types of Separation Matrixes Gels Agarose gels Polyacrylamide gels Denaturing or native Capillaries Narrow silica capillary with polymer matrix inside
9 Separation Methods Acrylamide Agarose Capillary
10 Slab Gels Solid matrix with pores Buffer solution goes through pores DNA is separated as it tries to pass through pores Matrix is mixed with buffer solution Poured into a mold A comb is inserted makes holes for the wells where the sample will be added
11 Horizontal Gels Loading Wells - Cathode Anode + - Cathode Gel Buffer Side View of Gel and Gel Box Anode + Top view of gel
12 Slab Gels Agarose gels Sugar from seaweed Large pores quicker travel time ~ 2000 angstroms in diameter Acrylamide gels Polymerization of acrylamide subunits Small pores finer resolution of samples ~200 angstroms in diameter
13 Agarose Large pores ~2000 angstroms Useful for RFLP or DNA quantification Not useful for STRs Weigh out appropriate amount of agarose powder add buffer Heat until agarose goes into solution Pour into gel box define shape and thickness of gel
14 Agarose Add comb before agarose cools Comb is removed after agarose has set Leaving behind loading wells Usually hold around 10 ul of sample Depends on size and depth of comb Number of teeth in comb define number of wells per gel Molecular weight standards and controls are loaded into wells adjacent to samples
15 Agarose Loading dye is added to samples Contains a dark blue dye so that you can see the sample while you load it Also contains something to increase the sample s viscosity so that it will stay in well Have to be very careful not to spill sample out of well or place into wrong well Smaller DNA moves faster through matrix Separating the samples based on size
16 Acrylamide Smaller pores ~ 200 angstroms Useful to separate STRs Resolution down to 1 base pair difference Acrylamide mixture is activated by adding TEMED Starts the polymerization Must pour gel immediately after adding TEMED before it hardens
17 Acrylamide Acrylamide monomer Bisacrylamide cross-linker Figure 12.2, J.M. Butler (2005) Forensic DNA Typing, 2 nd Edition 2005 Elsevier Academic Press
18 Acrylamide Usually vertical gels Pouring gel is actually sliding two glass plates over gel material Making very thin sheet of gel matrix Few mm s thick between glass Bubbles are a huge problem Introduced when sliding plates together Cannot run a sample through a bubble Will push sample into surrounding lanes
19 Vertical Gels - Cathode Loading Wells - Cathode Buffer Gel Anode + Anode + Side View of Gel and Gel Box Front view of gel
20 Combs Shape of wells depends on the combs used Square tooth combs Have square teeth form thick square wells Shark tooth combs Arched divisions between lanes Keep comb in the gel while running samples More often used with vertical acrylamide gels
21 Heat Movement of electrons generates heat Heat must be dissipated while running Buffer is liquid to help absorb heat Excessive heat will cause gel to smile Bands will curve up at each end Makes difficult to correctly call allele size Too much heat will cause gel to melt completely
22 Denaturing Gels In order to get better resolution: Remove any secondary structure between DNA strands Make DNA single stranded Denatured Single stranded DNA is more flexible Secondary structure can stop DNA from traveling through the matrix at all
23 Denaturing Conditions Ways to denature DNA: Chemicals that keep the strands of DNA from forming H-bonds Formamide or urea Heat Opens up DNA just like with 1 st step of PCR Heat sample to 95 immediately before loading gel
24 Problems with Gels Labor intensive And mundane Bubbles waste time and materials Especially if you waste evidence DNA Acrylamide is a neurotoxin Therefore dangerous to work with Have to be careful when loading Cannot spill sample or load into wrong lane!
25 Capillary Electrophoresis Narrow flexible glass capillary Filled with polymer liquid Capillary sucks sample up and through the polymer matrix based on high voltage Buffer held at beginning and end of capillary also sucked through polymer Larger DNA molecules are retarded by the polymer chains travel slower through capillary than smaller DNA molecules
26 Capillaries Polymer is poured by filling capillary Capillary can be thought of as long and narrow gel box Polymer is like liquid gel matrix Voltage can be much higher with capillaries than with a standard gel Because heat is dissipated quickly A laser read the bands as they travel past
27 Capillary Electrophoresis Capillary filled with polymer Laser Detection - Cathode + Anode Buffer Sample Tray Buffer
28 Advantages of Capillaries No gels to pour Saves time, money and sample Can be fully automated Injection, separation and detection Less sample is used Detection of bands is done immediately Separation can be completed within minutes rather than hours Because can run at a higher voltage
29 Disadvantages to Capillaries Throughput Idea is that one capillary can only run one sample at a time Whereas a gel runs 20 or more samples No longer an issue 96 Capillary machines Cost Machines cost more than $ 100,000 All reagents cost more as well
30 DNA separation Two main ideas for how DNA separates as it goes through matrixes 1. Ogston Sieving Behavior of molecules smaller than pores 2. Reptation Behavior of molecules larger than pores Both based on the idea that the larger a molecule is the slower it will travel through matrix
31 DNA Separation
32 Ogston Sieving Regards the DNA molecule like a tangle of thread Or a small sphere Tumbling through the pores Travel as fast as they can find the next pore they can fit through Smaller molecules fit into more pores Therefore travel faster
33 Reptation Regards the long DNA molecule as a snake Slithering through the matrix by stretching out fairly straight without tangles As the DNA winds its way through the pores the longer the DNA strand the longer it takes because its route is more complicated
34 DNA Separation (b) Gel Long DNA molecules Small DNA molecules Ogston Sieving Reptation Figure 12.4, J.M. Butler (2005) Forensic DNA Typing, 2 nd Edition 2005 Elsevier Academic Press
35 Size Standards Electrophoresis and how long it takes DNA to travel through matrix is relative Therefore there must be a size standard run at the same time In a gel Run the size standard in an adjacent lane In a capillary Run the size standard with the sample With a different color florescent dye
36 Any Questions? Read Chapter 13
Objectives: Vocabulary:
Introduction to Agarose Gel Electrophoresis: A Precursor to Cornell Institute for Biology Teacher s lab Author: Jennifer Weiser and Laura Austen Date Created: 2010 Subject: Molecular Biology and Genetics
RAINBOW ELECTROPHORESIS 1 An Introduction to Gel Electrophoresis
RAINBOW ELECTROPHORESIS 1 An Introduction to Gel Electrophoresis INTRODUCTION This laboratory will demonstrate the basics of electrophoresis and the theory behind the separation of molecules on an agarose
DNA Detection. Chapter 13
DNA Detection Chapter 13 Detecting DNA molecules Once you have your DNA separated by size Now you need to be able to visualize the DNA on the gel somehow Original techniques: Radioactive label, silver
Troubleshooting Polyacrylamide Gel Electrophoresis (PAGE)
PIPET TIPS Troubleshooting The IDT gel electrophoresis group runs preparatory polyacrylamide gels to purify certain oligonucleotides and can run up to 500 gels a day based on demand. Running that many
AGAROSE GEL ELECTROPHORESIS:
AGAROSE GEL ELECTROPHORESIS: BEST PRACTICES (BACK TO THE BASICS) Unit of Tropical Laboratory Medicine April 2009 Marcella Mori WORKFLOW OF AGAROSE GEL ELECTROPHORESIS: THREE STEPS Agarose gel electrophoresis
7 Electrophoresis. µ proportional to Q
7 Electrophoresis Objectives: A) To perform agarose gel electrophoresis of the proteins isolated in last week's experiment and B) to interpret the banding patterns produced by these proteins. Introduction:
The Techniques of Molecular Biology: Forensic DNA Fingerprinting
Revised Fall 2011 The Techniques of Molecular Biology: Forensic DNA Fingerprinting The techniques of molecular biology are used to manipulate the structure and function of molecules such as DNA and proteins
Lab 5: DNA Fingerprinting
Lab 5: DNA Fingerprinting You are about to perform a procedure known as DNA fingerprinting. The data obtained may allow you to determine if the samples of DNA that you will be provided with are from the
Electrophoresis and Electroblotting of Proteins
Electrophoresis and Electroblotting of Proteins The purpose of the next lab exercises will be to study the relative amounts of β-actin in cells of the B-16 melanoma, liver and muscle of mice. Electrophoresis
VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy
30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough
DNA Electrophoresis Lesson Plan
DNA Electrophoresis Lesson Plan Primary Learning Outcomes: Students will learn how to properly load a well in an agarose gel. Students will learn how to analyze the results of DNA electrophoresis. Students
Denaturing Gradient Gel Electrophoresis (DGGE)
Laboratory for Microbial Ecology Department of Earth, Ecological and Environmental Sciences University of Toledo Denaturing Gradient Gel Electrophoresis (DGGE) Background information Denaturing gradient
Approaches that can be used to study expression of specific proteins
Approaches that can be used to study expression of specific proteins Receptors and transporters Homogenate binding studies Receptor autoradiography Radiochemical Western blotting Immunohistochemistry/cytochemistry
Protein immunoblotting
Protein immunoblotting (Western blotting) Dr. Serageldeen A. A. Sultan Lecturer of virology Dept. of Microbiology SVU, Qena, Egypt [email protected] Western blotting -It is an analytical technique used to
The Chinese University of Hong Kong School of Life Sciences Biochemistry Program CUGEN Ltd.
The Chinese University of Hong Kong School of Life Sciences Biochemistry Program CUGEN Ltd. DNA Forensic and Agarose Gel Electrophoresis 1 OBJECTIVES Prof. Stephen K.W. Tsui, Dr. Patrick Law and Miss Fion
Discontinuous native protein gel electrophoresis
Discontinuous native protein gel electrophoresis Michael Niepmann and Junfeng Zheng Institute of Biochemistry Friedrichstrasse 24 Faculty of Medicine, JustusLIebigUniversity 35392 Giessen, Germany In this
Troubleshooting Guide for DNA Electrophoresis
Troubleshooting Guide for Electrophoresis. ELECTROPHORESIS Protocols and Recommendations for Electrophoresis electrophoresis problem 1 Low intensity of all or some bands 2 Smeared bands 3 Atypical banding
RESTRICTION ENZYME ANALYSIS OF DNA
University of Massachusetts Medical School Regional Science Resource Center SUPPORTING MATHEMATICS, SCIENCE AND TECHNOLOGY EDUCATION 222 Maple Avenue, Stoddard Building Shrewsbury, MA 01545-2732 508.856.5097
Forensic DNA Testing Terminology
Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.
2D gel electrophoresis
2D gel electrophoresis Required solutions Cathode buffer: TRIS 7.6g Glycine 36g SDS 2.5g Fill up with ddwater to 250ml ESS (equilibration stock solution) SDS 2g Urea 36g EDTA 3mg 50 mm TRIS-HCl ph 6.8
EZ-PAGE Electrophoresis System USER MANUAL
EZ-PAGE Electrophoresis System USER MANUAL Table of Contents Safety Information.. 2 Product Description... 2 Product Contents..... 3 Specifications & Storage Conditions.. 3 Product Use..... 3 Getting Started
1. Molecular computation uses molecules to represent information and molecular processes to implement information processing.
Chapter IV Molecular Computation These lecture notes are exclusively for the use of students in Prof. MacLennan s Unconventional Computation course. c 2013, B. J. MacLennan, EECS, University of Tennessee,
Section XIII: Protein Separation in Agarose Gels
Section XIII: In This Section Introduction 196 Buffers for in Agarose 197 Casting Agarose Gels for 198 Preparation and Loading of Protein Samples 198 Optimal Voltage and Electrophoretic Times 199 Detection
Chemical Basis of Life Module A Anchor 2
Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity
Chapter 5 Student Reading
Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.
SDS-PAGE Protocol Mutated from the SDS-PAGE protocol written by the Lord of the Flies
SDS-PAGE Protocol Mutated from the SDS-PAGE protocol written by the Lord of the Flies Pouring the resolving gel 1. Clean glass plates with soap and water, then with ethanol. Assemble the glass plates and
EZ-Run Protein Gel Solution. EZ-Run Protein Standards. EZ-Run Gel Staining Solution. Traditional SDS-Page Reagents. Protein Electrophoresis
EZ-Run Protein Gel Solution EZ-Run Protein Standards EZ-Run Gel Staining Solution Traditional SDS-Page Reagents Protein Electrophoresis protein electrophoresis Introduction Sodium dodecyl sulfate polyacrylamide
Electrophoresis, cleaning up on spin-columns, labeling of PCR products and preparation extended products for sequencing
Electrophoresis, cleaning up on spin-columns, labeling of PCR products and preparation extended products for sequencing PAGE electrophoresis Polyacrylamide gel electrophoresis (PAGE) is used for separating
Crime Scenes and Genes
Glossary Agarose Biotechnology Cell Chromosome DNA (deoxyribonucleic acid) Electrophoresis Gene Micro-pipette Mutation Nucleotide Nucleus PCR (Polymerase chain reaction) Primer STR (short tandem repeats)
3. Nucleic Acids Electrophoresis. Agaroses Acrylamides Buffers & Reagents for DNA Electrophoresis DNA Ladders Horizontal Electrophoresis System
3. Nucleic Acids Electrophoresis Agaroses Acrylamides Buffers & Reagents for DNA Electrophoresis DNA Ladders Horizontal Electrophoresis System 3 Nucleic Acids Electrophoresis Agaroses EuroClone offers
Chapter 14 SDS-PAGE. Objectives
SDS-PAGE This lab will introduce you to SDS-PAGE, a simple and inexpensive method for resolving proteins in complex mixtures. SDS-PAGE gels provide the starting materials for western blots and for some
serum protein and A/ G ratio
serum protein and A/ G ratio Blood plasma contains at least 125 individual proteins. Serum ( as contrasted with plasma) is deficient in those coagulation protein which are consumed during the process of
Single Nucleotide Polymorphisms (SNPs)
Single Nucleotide Polymorphisms (SNPs) Additional Markers 13 core STR loci Obtain further information from additional markers: Y STRs Separating male samples Mitochondrial DNA Working with extremely degraded
The Biotechnology Education Company
EDVTEK P.. Box 1232 West Bethesda, MD 20827-1232 The Biotechnology 106 EDV-Kit # Principles of DNA Sequencing Experiment bjective: The objective of this experiment is to develop an understanding of DNA
DNA Sequence Analysis
DNA Sequence Analysis Two general kinds of analysis Screen for one of a set of known sequences Determine the sequence even if it is novel Screening for a known sequence usually involves an oligonucleotide
Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water
Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water
2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.
1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence
Agarose Gel Electrophoresis with Food Color- Teacher Guide
Page 1 of 7 Project Home Gateway to the Project Laboratory Activities What the Project can do in the classroom Biotechnology Resources Favorite resources online and in print Agarose Gel Electrophoresis
Mitochondrial DNA Analysis
Mitochondrial DNA Analysis Lineage Markers Lineage markers are passed down from generation to generation without changing Except for rare mutation events They can help determine the lineage (family tree)
DNA SEQUENCING (using an ABI automated sequencer)
DNA SEQUENCING (using an ABI automated sequencer) OBTECTIVE: To label and separate DNA fragments varying by single nucleotides, in order to determine the sequence of nucleotides. INTRODUCTION: Determination
The Analysis of Food Samples for the Presence of Genetically Modified Organisms
The Analysis of Food Samples for the Presence of Genetically Modified Organisms Session 5 Agarose Gel Electrophoresis M. Somma, M. Querci WORLD HEALTH ORGANIZATION REGIONAL OFFICE FOR EUROPE ORGANISATION
Section III: Loading and Running DNA in Agarose Gels
Section III: In This Section DNA Loading 90 Loading Buffers 91 Optimal Voltage and Electrophoretic Times 92 Fast Running Protocols for High Resolution in MetaPhor Agarose Gels 93 References 94 89 Section
Biochemistry Lab SDS PAGE and Western blot General Instructions
Background When an electrical field is applied across a solution, the movement of the charged particles (proteins) is influenced not only by the charge but also the voltage, distance between electrodes,
Electrophoresis Guide
Novex Pre-Cast Gel Electrophoresis Guide Version B January 27, 2003 IM-1002 Novex Pre-Cast Gel Electrophoresis Guide General information and protocols for using Novex pre-cast gels www.invitrogen.com [email protected]
For Chromatography, you must remember Polar Dissolves More, not like dissolves like.
Chromatography In General Separation of compounds based on the polarity of the compounds being separated Two potential phases for a compound to eist in: mobile (liquid or gas) and stationary Partitioning
DNA and Forensic Science
DNA and Forensic Science Micah A. Luftig * Stephen Richey ** I. INTRODUCTION This paper represents a discussion of the fundamental principles of DNA technology as it applies to forensic testing. A brief
SDS-PAGE. (June 23, 2005)
SDS-PAGE (June 23, 2005) GATHER REAGENTS & MATERIALS 30% acrylamide/0.8% bisacrylamide (30:1) 4X Tris. Cl/SDS, ph 8.8 4X Tris. Cl/SDS, ph 6.8 Ammonium persulfate, 10% (Make fresh each time.) SDS electrophoresis
# 12 Condensation Polymerization: Preparation of Two Types of Polyesters
# 12 Condensation Polymerization: Preparation of Two Types of Polyesters Submitted by: Arturo Contreras, Visiting Scholar, Center for Chemical Education, Miami University, Middletown, OH; 1996 1997. I.
A Brief Guide to Interpreting the DNA Sequencing Electropherogram Version 3.0
A Brief Guide to Interpreting the DNA Sequencing Electropherogram Version 3.0 Plant-Microbe Genomics Facility The Ohio State University 484 W.12 th Ave., Columbus, OH 43210 Ph: 614/247-6204 FAX: 614/247-8696
Protocol Micro Lab. K:\Microlab_protocols\Protocols_active\03 Instrument manuals\ml03_001_001 DGGE.doc. Preparation of gels
Preparation of gels Cautions: Wear gloves all times when handling acryl amide and form amide solutions and all work with acryl amide and form amide has to be done in a flow hood. Acryl amide is very toxic.
INJECTION MOLDING PROCESSING GUIDE Polymer
FOAMAZOL Chemical Foaming Agents INJECTION MOLDING PROCESSING GUIDE Polymer Foaming Agent INJECTION MOLDING WITH CHEMICAL FOAMING AGENTS Introduction The injection molding of structural foam molded parts
Replication Study Guide
Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have
Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology
Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,
2D gel Protocol. 2. Determining Protein Concentration of cell lysates
2D gel Protocol 1. Lysis and Protein Extraction from cells Prepare cell lysates with Trizol extraction by following Kathleen Lyons s protocol: AfCS Procedure Protocol PP00000155, Version 1, 05/12/03 (Ref.1).
Sanger Sequencing and Quality Assurance. Zbigniew Rudzki Department of Pathology University of Melbourne
Sanger Sequencing and Quality Assurance Zbigniew Rudzki Department of Pathology University of Melbourne Sanger DNA sequencing The era of DNA sequencing essentially started with the publication of the enzymatic
1/12 Dideoxy DNA Sequencing
1/12 Dideoxy DNA Sequencing Dideoxy DNA sequencing utilizes two steps: PCR (polymerase chain reaction) amplification of DNA using dideoxy nucleoside triphosphates (Figures 1 and 2)and denaturing polyacrylamide
HiPer RT-PCR Teaching Kit
HiPer RT-PCR Teaching Kit Product Code: HTBM024 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 4 hours Agarose Gel Electrophoresis: 45 minutes Storage Instructions: The
LAB 7 DNA RESTRICTION for CLONING
BIOTECHNOLOGY I DNA RESTRICTION FOR CLONING LAB 7 DNA RESTRICTION for CLONING STUDENT GUIDE GOALS The goals of this lab are to provide the biotech student with experience in DNA digestion with restriction
Gel Electrophoresis: How Does It Work? Revised 5/11/96
Introduction: Gel Electrophoresis: How Does It Work? Revised 5/11/96 Simply put, gel electrophoresis uses positive and negative charges to separate charged particles. Particles can be positively charged,
Amersham High Molecular Weight Calibration Kit for native electrophoresis
Amersham High Molecular Weight Calibration Kit for native electrophoresis A lyophilized mixture of five highly purified well-characterized proteins for use in molecular weight estimation under non-denaturing
Fractional Distillation and Gas Chromatography
Fractional Distillation and Gas Chromatography Background Distillation The previous lab used distillation to separate a mixture of hexane and toluene based on a difference in boiling points. Hexane boils
#01 Polyacrylamide Slab Gel Electrophoresis of Proteins Hassan Ahmad, University of Texas-Pan American, Edinburg, TX 78539
#01 Polyacrylamide Slab Gel Electrophoresis of Proteins Hassan Ahmad, University of Texas-Pan American, Edinburg, TX 78539 INTRODUCTION Description Electrophoresis involves the transport of charged molecules
Troubleshooting Sequencing Data
Troubleshooting Sequencing Data Troubleshooting Sequencing Data No recognizable sequence (see page 7-10) Insufficient Quantitate the DNA. Increase the amount of DNA in the sequencing reactions. See page
Separation of Amino Acids by Paper Chromatography
Separation of Amino Acids by Paper Chromatography Chromatography is a common technique for separating chemical substances. The prefix chroma, which suggests color, comes from the fact that some of the
STRUCTURES OF NUCLEIC ACIDS
CHAPTER 2 STRUCTURES OF NUCLEIC ACIDS What is the chemical structure of a deoxyribonucleic acid (DNA) molecule? DNA is a polymer of deoxyribonucleotides. All nucleic acids consist of nucleotides as building
Gel Electrophoresis Teacher Instructions Suggested Grade Level: Grades 7-14 Class Time Required: 1 period (50 minutes)
Biological Sciences Initiative HHMI Gel Electrophoresis Teacher Instructions Suggested Grade Level: Grades 7-14 Class Time Required: 1 period (50 minutes) EQUIPMENT AND MATERIALS NEEDED (per group) Electrophoresis
Electrophoresis EXPERIMENT 4. Theory
( F EXPERIMENT 4 Electrophoresis Theory Basic Principles Electrophoresis is the process of migration of charged molecules through solutions in an applied electric field. Electrophoresis is often classified
Introduction. Preparation of Template DNA
Procedures and Recommendations for DNA Sequencing at the Plant-Microbe Genomics Facility Ohio State University Biological Sciences Building Room 420, 484 W. 12th Ave., Columbus OH 43210 Telephone: 614/247-6204;
Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.
The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type
Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.
Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite
LAB 14 DNA Restriction Analysis
Name: AP Biology Lab 14 LAB 14 DNA Restriction Analysis Introduction: DNA restriction analysis is at the heart of recombinant DNA technology and of the laboratories in this course. The ability to cut DNA
AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis
AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis Analysis of Amino Acid Standards Label free analysis using the HPCE-512 ABSTRACT Capillary electrophoresis using indirect UV detection
Technology. Chapter 15 Processing Resources
Technology Chapter 15 Processing Resources Tools: Printer (color optional) 4 sheets of 8.5 x 11 paper Scissors Directions: 1. Print 2. Fold paper in half vertically 3. Cut along dashed lines These instructions
DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!
Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic
Determination of Melting Points
Determination of Melting Points This experiment consists of three parts. In the first part, you will determine the melting point range of three known compounds. This part is mostly for practice, to make
Chapter 3 Contd. Western blotting & SDS PAGE
Chapter 3 Contd. Western blotting & SDS PAGE Western Blot Western blots allow investigators to determine the molecular weight of a protein and to measure relative amounts of the protein present in different
DNA SPOOLING 1 ISOLATION OF DNA FROM ONION
DNA SPOOLING 1 ISOLATION OF DNA FROM ONION INTRODUCTION This laboratory protocol will demonstrate several basic steps required for isolation of chromosomal DNA from cells. To extract the chromosomal DNA,
Automated DNA Sequencing. Chemistry Guide
Automated DNA Sequencing Chemistry Guide Copyright 2000, Applied Biosystems For Research Use Only. Not for use in diagnostic procedures. ABI PRISM and its design, Applied Biosystems, and MicroAmp are registered
VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J10
Topic J10+11: Molecular-biological methods + Clinical virology I (hepatitis A, B & C, HIV) To study: PCR, ELISA, your own notes from serology reactions Task J10/1: DNA isolation of the etiological agent
Sample Liver Enzyme Lab
Sample Liver Enzyme Lab Design Aspect 1: Research Question This lab will be driven by the research question, Do changes in temperature have an effect on the activity of the enzyme catalase? Pearson Baccalaureate:
Nucleic Acid Electrophoresis Cell
Sequi-Gen GT Sequencing Cell Sequi-Gen GT Nucleic Acid Electrophoresis Cell Instruction Manual Catalog Numbers 165-3860, 165-3861, 165-3862 and 165-3863 For Technical Service Call Your Local Bio-Rad Office
Detection of proteins by lithium dodecyl sulphate polyacrylamide gel electrophoresis
Detection of proteins by lithium dodecyl sulphate polyacrylamide gel electrophoresis During electrophoretic measurements a mixture of compounds in solution is taken into a chamber, two electrodes are joined
Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras
Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue
1. Initial Precautions 2. Technical Precautions and Suggestions 3. General Information and Cure Stages 4. Understanding and Controlling Cure Time
How to apply Arctic Alumina Premium Ceramic Thermal Adhesive 1. Initial Precautions 2. Technical Precautions and Suggestions 3. General Information and Cure Stages 4. Understanding and Controlling Cure
Commonly Used STR Markers
Commonly Used STR Markers Repeats Satellites 100 to 1000 bases repeated Minisatellites VNTR variable number tandem repeat 10 to 100 bases repeated Microsatellites STR short tandem repeat 2 to 6 bases repeated
Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA
Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns
Procedures For DNA Sequencing
Procedures For DNA Sequencing Plant-Microbe Genomics Facility (PMGF) Ohio State University 420 Biological Sciences Building 484 W. 12th Ave., Columbus OH 43210 Telephone: 614/247-6204 FAX: 614/292-6337
Gel Electrophoresis of Proteins
AES Application Focus Gel Electrophoresis of Proteins Page 1 Gel Electrophoresis of Proteins Adapted from Chapter 7, Gel Electrophoresis of Proteins, by David E. Garfin, Pages 197-268, in Essential Cell
Making A Mirror Grinding Tool By Allen Malsburry
Making A Mirror Grinding Tool By Allen Malsburry The average person would never think, I can make my own telescope. Most amateur astronomers believe, I can buy a better telescope than I can build. Neither
General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary
Proteins that function as biological catalysts are called enzymes. Enzymes speed up specific metabolic reactions. Low contamination, low temperature and fast metabolism are only possible with enzymes.
Chapter 1 Student Reading
Chapter 1 Student Reading Chemistry is the study of matter You could say that chemistry is the science that studies all the stuff in the entire world. A more scientific term for stuff is matter. So chemistry
STA DARD OPERATI G PROCEDURE FOR THE DETECTIO OF AFRICA SWI E FEVER VIRUS (ASFV) BY CO VE TIO AL POLYMERASE CHAI REACTIO (PCR)
STA DARD OPERATI G PROCEDURE FOR THE DETECTIO OF AFRICA SWI E FEVER VIRUS (ASFV) BY CO VE TIO AL POLYMERASE CHAI REACTIO (PCR) [email protected] Av/ Puerta de Hierro s/n. 28040 Madrid. Tel: (34) 913944082
Running protein gels and detection of proteins
Running protein gels and detection of proteins 1. Protein concentration determination using the BIO RAD reagent This assay uses a colour change reaction to give a direct measurement of protein concentration.
Solid shape molding is not desired in injection molding due to following reasons.
PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which
Western Blotting. Prepare samples:
Western Blotting Sive Lab Protocol March 2007 Prepare samples: For zebrafish embryos: Option 1: Take live embryos and put into 1.5 ml tube with E3. Centrifuge gently for 1-2 minutes -yolk lipids will rise
Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.
Displays Semiconductor Elements 1 Cathode Ray Tube Basic applications Oscilloscope TV Old monitors 2 1 Idea of Electrostatic Deflection 3 Inside an Electrostatic Deflection Cathode Ray Tube Gun creates
Western Blotting For Protein Analysis
Western Blotting For Protein Analysis Part 1: Laemmli Gel Electrophoresis Using Mini-PROTEAN II Electrophoresis Cell Note: Powder-free gloves should be worn throughout the entire procedure. A. Preparing
Gene Mapping Techniques
Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction
Southern Blot Analysis (from Baker lab, university of Florida)
Southern Blot Analysis (from Baker lab, university of Florida) DNA Prep Prepare DNA via your favorite method. You may find a protocol under Mini Yeast Genomic Prep. Restriction Digest 1.Digest DNA with
Transformation Protocol
To make Glycerol Stocks of Plasmids ** To be done in the hood and use RNase/DNase free tips** 1. In a 10 ml sterile tube add 3 ml autoclaved LB broth and 1.5 ul antibiotic (@ 100 ug/ul) or 3 ul antibiotic
