Spatiotemporal Clustering of Twitter Feeds for Activity Summarization

Size: px
Start display at page:

Download "Spatiotemporal Clustering of Twitter Feeds for Activity Summarization"

Transcription

1 Spatiotemporal Clustering of Twitter Feeds for Activity Summarization N. Wayant 1, A. Crooks 2, A. Stefanidis 3, A. Croitoru 3, J. Radzikowski 3, J. Stahl 2, J. Shine 2 1 US Army ERDC Topographic Engineering Center, 7701 Telegraph Road, Alexandria, VA {Nicole.M.Wayant, Justin.D.Stahl, 2 Dept. of Computational Social Science, George Mason University, 4400 University Drive, MS 6C3, Fairfax, VA Center for Geospatial Intelligence, George Mason University, 4400 University Drive, MS 6C3, Fairfax, VA {astefani, acroitor, 1. Introduction Social media have drastically altered the concept of information contribution and dissemination by empowering the general public to publish and distribute user-generated content. These social media contributions may be viewed as expressions of humans acting as sensors, reporting events and activities in which they participate, or commenting on others that are somehow affecting them, or catching their attention. Thematically, the content of such media is diverse, ranging from reporting events like an earthquake (Crooks et al., 2012) to making mundane comments, pop culture references, or daily activity reports (Mischaud, 2007). Regardless of the topic, this information always has a temporal component, in the form of its submission time. Social media feeds also often have geolocation information associated with them, available in the form of precise coordinates, or as location descriptions listing for example only a city name (Croitoru et al., 2012). In this paper we focus on the spatiotemporal content of twitter feeds in order to assess their use as a hybrid form of a sensor network to monitor evolving events. Our objective is to investigate how social media contributions can be utilized to study the spatiotemporal evolution of dynamic sociocultural events. Towards this goal we use as a representative case the events of the Occupy Wall Street (OWS) movement in New York City, NY, on the International Day of Action of November 17 th, 2011 (OccupyWallSt.org, 2012). We use twitter as a representative example to harvest social media for our study. We collected geolocated tweets during that day, making reference to the Occupy Wall Street movement (e.g. through its associated hashtags and usernames, such as #ows) and analyze them to investigate how well they capture that day s activities. 2. The Events of Day of Action On November 17 th, 2011, on its second month anniversary, the OWS movement planned a series of organized activities across Manhattan and the five boroughs of New York City, as a demonstration and celebration of its commitment to action. This was not a spontaneous demonstration, but rather a well-organized event with a set schedule, advertised broadly through a wide spectrum of communication avenues, ranging from the blogosphere (OccupyWallSt.org, 2012) to facebook (Caren and Gaby, 2012) and even posters (Figure 1). The activities were organized around three key planned events as shown in the event poster as shown in Figure 1 and communicated through social media channels: 7:00am: Shutting down Wall Street 3:00pm: Occupying the subways (with a particular emphasis on Union Square as the subject of a mass student strike)

2 5:00pm: Taking Foley Square, across from New York s City Hall. These events were to be followed by a march towards Brooklyn Bridge to round out this day of action. Figure 1. The poster of the OWS movement announcing the planned demonstrations of Thursday November 17 th in Manhattan, moving from Wall Street at 7:00am (left tank) to the subway stations of the five boroughs at 3:00pm (middle tank) and Foley Square at 5:00pm (right tank). 3. Data Harvesting and Analysis Harvesting information from social media feeds entails in general three operations: extracting data from the data providers (various social media servers) via application programming interfaces (APIs); parsing, integrating, and storing these data in a resident database (e.g. implemented using ProstgresSQL); and then analyzing these data to extract information of interest. Using a system prototype that we developed to harvest such information (Croitoru, 2012) we collected twitter feeds related to the events of the Day of Action in the days leading to it and the day itself. The data were collected through queries to twitter s API, and in these queries we used the three hashtag terms that were widely adopted by the community and were most relevant to the event: #occupywallst, #ows, #occupywallstreet. The emergence and adoption of keywords and terms to refer to events in social media is a complex process that relates to the dynamics of social interactions within this community (see e.g. Kwak et al, 2010). Using these keywords we were able to collect a random worldwide sample of geolocated tweets over a period of two days (November 16 th and 17 th ). Figure 2 shows the global

3 disribution of these tweets, with highest concentration in the US and Western Europe, but spreading as far as Brazil, the Arab peninsula, and Australia. From among these tweets we selected a sample of 1,300 precisely geolocated tweets within New York City for our analysis. Figure 2. A map of the geolocated tweets sample with references to the Occupy Wall Street movement on November 16 th and 17 th. The event we are addressing in this paper is particularly suitable for our analysis for a variety of reasons: Demographics: The average age of twitter users is 39.1 years, with approximately 63% of its user constituency being younger than 44 years (pingdom.com, 2010). This is a good match to the average age of the OWS protesters, which appears to be slightly higher than one would expect, at 33 (Panagopoulos, 2011). It appears that for every college student in the crowd there was also a mid-career professional in their 40s participating in the event (Goodale, 2011). Location: The stage for this protest, New York City, is one of the top cities worldwide in twitter use (Java et al., 2007), ranked 4 th behind London, Los Angeles, and Chicago (Grader.com, 2012). Accordingly we argue that in this particular situation we have a good match of the demographics of the medium twitter users with the demographics of the event, and we also have a sufficiently large volume of information to support our analysis. The geolocated tweets referring to OWS from within New York City are shown in Figure 3. In order to derive a spatiotemporal summarization of the event they communicate we analyzed them to identify spatiotemporal clusters within it. A variety of techniques exist for the spatiotemporal clustering of data streams (see Cao et al, 2006). In our case, as the number

4 of data points was rather small (approx. 1,300) we opted to proceed with a two-step process that comprises an initial spatial clustering of the aggregate group of points using DBSCAN (Ester et al, 1996), followed by a second step, of temporal segmentation and re-clustering of the spatial clusters in order to derive the final spatiotemporal clusters. Figure 3. Geolocated OWS tweets originating from Manhattan on November 17 th, Each dot corresponds to the originating location of a geolocated tweet that contained in its body references to the selected OWS-related hashtags. Figure 4. Spatially clustered geolocated OWS tweets are marked by different dot colors. Spatiotemporal clusters are delineated by colored polygons. In Figure 4 we show the results of both the spatial and temporal clustering processes. A total of 19 spatial clusters were identified (corresponding to the different colors of the dots in

5 this figure) through DBSCAN. Subsequently, these clusters were reconfigured into 5 spatiotemporal clusters (annotated 1-5), which correspond very well to the planned schedule of activities as it was presented in Section 2 above: cluster 1 captures the morning events (shutting down Wall Street), cluster 2 captures the occupy the subways portion, cluster 3 is centered around Foley square, while clusters 4 and 5 show the crossing of Brooklyn Bridge, and the landing on the other borough. Figure 4 demonstrates vividly two important facts, which are rather crucial observations regarding the use of social media feeds to capture the spatiotemporal evolution of activities as they unfold. Firstly, we observe that twitter is being used to provide real-time in-situ reports from the event. In this particular situation we see that people (either protesters or bystanders) are using their cell phones or other mobile devices to tweet during the march. Secondly, we observe that by harvesting this information we get an excellent overview of the activities in the ground, without deploying any local sensors, and we can derive successful summarizations of the individual parts of a composite event. With locals acting as sensors and providing steady feeds in the form of tweets we can gain remotely valuable situational awareness. 4. Outlook While social media lacks the homogeneity and standards of authoritative sources of data, it often captures emerging dynamic events and situations better than official sources. This was demonstrated quite vividly during the Arab Spring events, across North Africa and the Middle East, in early This paper has demonstrated how by using one such type of social media, namely twitter, and without advanced knowledge of the events we can identify evolving patterns of human activity linked directly to place. Through the analysis of individual tweets we can identify clusters of activity related to a specific event, as we demonstrated using the OWS International Day of Action of November 17 th, Through spatiotemporal clustering of social media feeds we can derive an activity summarization that closely matches the planned (and actual) events of the OWS organizers in New York City as shown in Figure 1. We would therefore argue that using people as a distributed sensor system through the use of mobile social media platforms can provide us with a new lens to study the manifestations and complexities of human activity. This opens up a wide range of future research applications for exploring issues relating to human geography and through advances in computing and software architectures one could imagine carrying out such analysis in real time for anywhere around the world thus providing us the ability to monitor events unfolding in space and time. Acknowledgements We would like to thank the US Army Engineer Research and Development Center, Alexandria VA, for their support of this research. References Cao F, Ester M, Qian W and Zhou A, 2006, Density-based clustering over an evolving data stream with noise, In: Gosh J, Lambert D, Skillicorn D and Srivastava J (eds), Proceedings of the 6 th SIAM International Conference on Data Mining, USA, Caren N and Gaby S, 2012, Occupy online: Facebook and the spread of Occupy Wall Street (October 24, 2011). Social Science Research Network, Accessed on 26th April, 2012 Croitoru A, Stefanidis A, Radzikowski J, Crooks A, Stahl J and Wayant N, 2012, Towards a collaborative geosocial analysis workbench. In: Proceedings COM.Geo, Washington, DC (in press) Crooks A, Croitoru A, Stefanidis A and Radzikowski J, 2012, #Earthquake: Twitter as a distributed sensor system. Transactions in GIS (in press)

6 Ester M, Kriegel H-P, Sander J, Xu X, 1996, A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, and Fayyad U (eds) Proceedings of the 2 nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, Goodale G, 2011, Who is Occupy Wall Street? After six weeks, a profile finally emerges. Christian Science Monitor. Available at After-six-weeks-a-profile-finally-emerges. Accessed on 26th April, Grader.com, 2012, Top twitter cities. Available at Java A, Song X, Finin T, Tseng B, 2007, Why we twitter: Understanding microblogging usage and communities. In: Proceedings WEBKDD/SNA-KDD 07, San Jose, CA, Kwak, H.; Lee, C.; Park, H.; and Moon, S. (2010), What is Twitter, a social network or a news media? in WWW 10, Raleigh, NC, pp Mischaud E, 2007, Twitter: expressions of the whole self, Electronic Dissertation Series, London School of Economics and Political Science, UK. Available at OccupyWallSt.org, 2012, November 17 th Day of Action. Available at 17th/. Accessed on 26 th April, Panagopoulos C, 2011, Occupy Wall Street Survey Results October Available at wall street survey results pdf. Accessed on 26 th April, Pingdom.org, 2010, Study: Ages of Social Network Users. Available at study-ages-of-social-network-users/. Accessed on 26 th April, 2012.

Use of GIS in Planning and Asset Management

Use of GIS in Planning and Asset Management Use of GIS in Planning and Asset Management Technology Developments and Practical Uses Jay Adams Oklahoma DOT Pam Jurney Cross Timbers Consulting GIS Is Evolving Rapidly Millions Organizations 100 s

More information

PhoCA: An extensible service-oriented tool for Photo Clustering Analysis

PhoCA: An extensible service-oriented tool for Photo Clustering Analysis paper:5 PhoCA: An extensible service-oriented tool for Photo Clustering Analysis Yuri A. Lacerda 1,2, Johny M. da Silva 2, Leandro B. Marinho 1, Cláudio de S. Baptista 1 1 Laboratório de Sistemas de Informação

More information

A Platform for Supporting Data Analytics on Twitter: Challenges and Objectives 1

A Platform for Supporting Data Analytics on Twitter: Challenges and Objectives 1 A Platform for Supporting Data Analytics on Twitter: Challenges and Objectives 1 Yannis Stavrakas Vassilis Plachouras IMIS / RC ATHENA Athens, Greece {yannis, vplachouras}@imis.athena-innovation.gr Abstract.

More information

Spatio-Temporal Patterns of Passengers Interests at London Tube Stations

Spatio-Temporal Patterns of Passengers Interests at London Tube Stations Spatio-Temporal Patterns of Passengers Interests at London Tube Stations Juntao Lai *1, Tao Cheng 1, Guy Lansley 2 1 SpaceTimeLab for Big Data Analytics, Department of Civil, Environmental &Geomatic Engineering,

More information

Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum

Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Trends and Research Opportunities in Spatial Big Data Analytics and Cloud Computing NCSU GeoSpatial Forum Siva Ravada Senior Director of Development Oracle Spatial and MapViewer 2 Evolving Technology Platforms

More information

Is VGI Big Data? Peter Mooney and Adam C. Winstanley Department of Computer Science, Maynooth University, Co. Kildare, Ireland.

Is VGI Big Data? Peter Mooney and Adam C. Winstanley Department of Computer Science, Maynooth University, Co. Kildare, Ireland. Is VGI Big Data? Peter Mooney and Adam C. Winstanley Department of Computer Science, Maynooth University, Co. Kildare, Ireland. Summary (100 words) Volunteered Geographic Information (VGI) has become a

More information

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data SOLUTION BRIEF Understanding Your Customer Journey by Extending Adobe Analytics with Big Data Business Challenge Today s digital marketing teams are overwhelmed by the volume and variety of customer interaction

More information

Using Social Media Data to Assess Spatial Crime Hotspots

Using Social Media Data to Assess Spatial Crime Hotspots Using Social Media Data to Assess Spatial Crime Hotspots 1 Introduction Nick Malleson 1 and Martin Andreson 2 1 School of Geography, University of Leeds 2 School of Criminology, Simon Fraser University,

More information

Smart Policing Initiative Website and Social Media

Smart Policing Initiative Website and Social Media Smart Policing Initiative Website and Social Media Vivian Chu, CNA Research Specialist Iris Gonzalez, CNA Project Manager February 8, 2012 This project was supported by Grant No. 2009-DG-BX-K021 awarded

More information

Issues in Information Systems Volume 14, Issue 2, pp.289-297, 2013

Issues in Information Systems Volume 14, Issue 2, pp.289-297, 2013 SOCIAL MEDIA WIDGET FOR EMERGENCY RESPONSE Shreeti Banerjee, Illinois State University, sbaner2@ilstu.edu Bryan Hosack, Illinois State University, bhosack@ilstu.edu Billy B. L. Lim, Illinois State University,

More information

Comparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool.

Comparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool. International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 19-24 Comparative Analysis of EM Clustering Algorithm

More information

Context-aware taxi demand hotspots prediction

Context-aware taxi demand hotspots prediction Int. J. Business Intelligence and Data Mining, Vol. 5, No. 1, 2010 3 Context-aware taxi demand hotspots prediction Han-wen Chang, Yu-chin Tai and Jane Yung-jen Hsu* Department of Computer Science and Information

More information

A Near Real-Time Personalization for ecommerce Platform Amit Rustagi arustagi@ebay.com

A Near Real-Time Personalization for ecommerce Platform Amit Rustagi arustagi@ebay.com A Near Real-Time Personalization for ecommerce Platform Amit Rustagi arustagi@ebay.com Abstract. In today's competitive environment, you only have a few seconds to help site visitors understand that you

More information

The STC for Event Analysis: Scalability Issues

The STC for Event Analysis: Scalability Issues The STC for Event Analysis: Scalability Issues Georg Fuchs Gennady Andrienko http://geoanalytics.net Events Something [significant] happened somewhere, sometime Analysis goal and domain dependent, e.g.

More information

Information-Driven Apps. The evolution of the dashboard.

Information-Driven Apps. The evolution of the dashboard. Information-Driven Apps The evolution of the dashboard. Enterprise dashboards that rival the best consumer apps. Designers of personal applications have long understood that a custom built application

More information

The Role of Visualization in Effective Data Cleaning

The Role of Visualization in Effective Data Cleaning The Role of Visualization in Effective Data Cleaning Yu Qian Dept. of Computer Science The University of Texas at Dallas Richardson, TX 75083-0688, USA qianyu@student.utdallas.edu Kang Zhang Dept. of Computer

More information

Essential Communication Methods for Today s Public Social Media 101. Presented by Tom D. Trimble, CIO Tulsa County Government

Essential Communication Methods for Today s Public Social Media 101. Presented by Tom D. Trimble, CIO Tulsa County Government Essential Communication Methods for Today s Public Social Media 101 Presented by Tom D. Trimble, CIO Tulsa County Government What you will learn today Why Social Media is important to you Today s Social

More information

Linking Sensor Web Enablement and Web Processing Technology for Health-Environment Studies

Linking Sensor Web Enablement and Web Processing Technology for Health-Environment Studies Linking Sensor Web Enablement and Web Processing Technology for Health-Environment Studies Simon Jirka 1, Stefan Wiemann 2, Johannes Brauner 2, and Eike Hinderk Jürrens 1 1 52 North Initiative for Geospatial

More information

PrimeDeveloper. Develop Advanced Financial Information Systems

PrimeDeveloper. Develop Advanced Financial Information Systems PrimeDeveloper Develop Advanced Financial Information Systems Develop Financial Information Systems More Quickly and Easily Designing new and complex financial information systems, enhancing existing systems,

More information

Drive Business Further Faster With RetailNext

Drive Business Further Faster With RetailNext Drive Business Further Faster With RetailNext Built especially for retailers, RetailNext is a scalable in-store analytics platform that makes it easy for you to collect, analyze, and visualize data about

More information

Future trends in data mining

Future trends in data mining in data mining 1/16 Good reviews: Baker, R. and Yacef, K. The state of educational data mining in 2009: A review and future visions.journal of Educational (2009) 1:3-17 Hans-Peter Kriegel, Karsten M. Borgwardt,

More information

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QlikView Technical Case Study Series Big Data June 2012 qlikview.com Introduction This QlikView technical case study focuses on the QlikView deployment

More information

The Real-time Monitoring System of Social Big Data for Disaster Management

The Real-time Monitoring System of Social Big Data for Disaster Management The Real-time Monitoring System of Social Big Data for Disaster Management SEONHWA CHOI Disaster Information Research Division National Disaster Management Institute 136 Mapo-daero, Mapo-Gu, Seoul 121-719

More information

Web Archiving and Scholarly Use of Web Archives

Web Archiving and Scholarly Use of Web Archives Web Archiving and Scholarly Use of Web Archives Helen Hockx-Yu Head of Web Archiving British Library 15 April 2013 Overview 1. Introduction 2. Access and usage: UK Web Archive 3. Scholarly feedback on

More information

IBM G-Cloud - IBM Social Media Analytics Software as a Service

IBM G-Cloud - IBM Social Media Analytics Software as a Service IBM G-Cloud - IBM Social Media Analytics Software as a Service Service Definition 1 1. Summary 1.1 Service Description IBM Social Media Analytics Software as a Service is a powerful Cloud-based tool for

More information

Sustainable Development with Geospatial Information Leveraging the Data and Technology Revolution

Sustainable Development with Geospatial Information Leveraging the Data and Technology Revolution Sustainable Development with Geospatial Information Leveraging the Data and Technology Revolution Steven Hagan, Vice President, Server Technologies 1 Copyright 2011, Oracle and/or its affiliates. All rights

More information

EXPLOITING TWITTER IN MARKET RESEARCH FOR UNIVERSITY DEGREE COURSES

EXPLOITING TWITTER IN MARKET RESEARCH FOR UNIVERSITY DEGREE COURSES EXPLOITING TWITTER IN MARKET RESEARCH FOR UNIVERSITY DEGREE COURSES Zhenar Shaho Faeq 1,Kayhan Ghafoor 2, Bawar Abdalla 3 and Omar Al-rassam 4 1 Department of Software Engineering, Koya University, Koya,

More information

**NEW CLIENTS MAY NEED AN INITIAL SET- UP and ANALYSIS

**NEW CLIENTS MAY NEED AN INITIAL SET- UP and ANALYSIS Pricing Structure Social Media Management Packages * Starter Package: Social Media for 2 Channels Starting at: $650 /mo (That s $650 dollars worth of Organic Advertising!) * Business Owner Package: Social

More information

An Analysis on Density Based Clustering of Multi Dimensional Spatial Data

An Analysis on Density Based Clustering of Multi Dimensional Spatial Data An Analysis on Density Based Clustering of Multi Dimensional Spatial Data K. Mumtaz 1 Assistant Professor, Department of MCA Vivekanandha Institute of Information and Management Studies, Tiruchengode,

More information

Tweet! Tweet! Using Twitter to Reach an Audience. Richard Harrington, PMP CEO RHED Pixel. youtube.com/ rhedpixeltv. facebook.com/ RichHarringtonStuff

Tweet! Tweet! Using Twitter to Reach an Audience. Richard Harrington, PMP CEO RHED Pixel. youtube.com/ rhedpixeltv. facebook.com/ RichHarringtonStuff Tweet! Tweet! Using Twitter to Reach an Audience Richard Harrington, PMP CEO RHED Pixel twitter.com/ rhedpixel facebook.com/ RichHarringtonStuff linkedin.com/in/ richardharrington youtube.com/ rhedpixeltv

More information

THE DEVELOPMENT OF A PROTOTYPE GEOSPATIAL WEB SERVICE SYSTEM FOR REMOTE SENSING DATA

THE DEVELOPMENT OF A PROTOTYPE GEOSPATIAL WEB SERVICE SYSTEM FOR REMOTE SENSING DATA THE DEVELOPMENT OF A PROTOTYPE GEOSPATIAL WEB SERVICE SYSTEM FOR REMOTE SENSING DATA Meixia Deng a, *, Peisheng Zhao a, Yang Liu a, Aijun Chen a Liping Di a a George Mason University, Laboratory for Advanced

More information

Location-Based Social Media Intelligence

Location-Based Social Media Intelligence Location-Based Social Media Intelligence ASIS Middle East Conference Dubai, UAE February 23, 2016 Don Zoufal CrowZnest Consulting, Inc. University of Chicago Presenter Donald R. Zoufal, C.P.P., ICAO AVSEC

More information

SPATIAL DATA CLASSIFICATION AND DATA MINING

SPATIAL DATA CLASSIFICATION AND DATA MINING , pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal

More information

Blog Post Extraction Using Title Finding

Blog Post Extraction Using Title Finding Blog Post Extraction Using Title Finding Linhai Song 1, 2, Xueqi Cheng 1, Yan Guo 1, Bo Wu 1, 2, Yu Wang 1, 2 1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 2 Graduate School

More information

Smarter Planet evolution

Smarter Planet evolution Smarter Planet evolution 13/03/2012 2012 IBM Corporation Ignacio Pérez González Enterprise Architect ignacio.perez@es.ibm.com @ignaciopr Mike May Technologies of the Change Capabilities Tendencies Vision

More information

Social Media Marketing

Social Media Marketing { Social Media Marketing An Introduction for Email Marketers { Peter Ghali - Senior Product Manager This white paper provides practical advice and key strategies for beginners looking to incorporate email

More information

Robust Outlier Detection Technique in Data Mining: A Univariate Approach

Robust Outlier Detection Technique in Data Mining: A Univariate Approach Robust Outlier Detection Technique in Data Mining: A Univariate Approach Singh Vijendra and Pathak Shivani Faculty of Engineering and Technology Mody Institute of Technology and Science Lakshmangarh, Sikar,

More information

The Socialtext Enterprise Collaboration Platform

The Socialtext Enterprise Collaboration Platform The Socialtext Enterprise Collaboration Platform Socialtext transforms business processes and organizational culture by bringing real-time collaboration to the enterprise. By unlocking knowledge, expertise,

More information

Big Data and Analytics: Getting Started with ArcGIS. Mike Park Erik Hoel

Big Data and Analytics: Getting Started with ArcGIS. Mike Park Erik Hoel Big Data and Analytics: Getting Started with ArcGIS Mike Park Erik Hoel Agenda Overview of big data Distributed computation User experience Data management Big data What is it? Big Data is a loosely defined

More information

Social Media Business Partner Advertising Kit. Click to add text. 2012 IBM Corporation

Social Media Business Partner Advertising Kit. Click to add text. 2012 IBM Corporation Social Media Business Partner Advertising Kit Click to add text 2012 IBM Corporation Social Media Advertising - Agenda Introduction Keyword Research Facebook Twitter LinkedIn YouTube Sample ad copy and

More information

Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome

Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome Enhance Collaboration and Data Sharing for Faster Decisions and Improved Mission Outcome Richard Breakiron Senior Director, Cyber Solutions Rbreakiron@vion.com Office: 571-353-6127 / Cell: 803-443-8002

More information

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems DATA WAREHOUSING RESEARCH TRENDS Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Data source heterogeneity and incongruence Filtering out uncorrelated data Strongly unstructured

More information

Strategic Video Marketing Capabilities

Strategic Video Marketing Capabilities Strategic Video Marketing Capabilities January 2014 Please address any questions to: Logan Hale logan@v3mm.com 424.646.3456 WHO WE ARE V3 Media Marketing provides video strategy, production, and distribution

More information

Social Media Implementations

Social Media Implementations SEM Experience Analytics Social Media Implementations SEM Experience Analytics delivers real sentiment, meaning and trends within social media for many of the world s leading consumer brand companies.

More information

Identifying erroneous data using outlier detection techniques

Identifying erroneous data using outlier detection techniques Identifying erroneous data using outlier detection techniques Wei Zhuang 1, Yunqing Zhang 2 and J. Fred Grassle 2 1 Department of Computer Science, Rutgers, the State University of New Jersey, Piscataway,

More information

USING THE INTERNET TO MANAGE AND DISTRIBUTE GEOSPATIAL SUBMARINE CABLE DATA

USING THE INTERNET TO MANAGE AND DISTRIBUTE GEOSPATIAL SUBMARINE CABLE DATA USING THE INTERNET TO MANAGE AND DISTRIBUTE GEOSPATIAL SUBMARINE CABLE DATA GIS Database World Wide Web Internet Data Management Cable Marine RPL Protection David Caswell, Bill Gilmour, David Millar Racal

More information

News media analysis at Lab SAPO UPorto. Jorge Teixeira

News media analysis at Lab SAPO UPorto. Jorge Teixeira News media analysis at Lab SAPO UPorto Jorge Teixeira Past deliverables and visualization prototypes Twitómetro Twitteuro Mundo Visto Daqui interativo (MVDi) On-going work Mundo Numa Rede Sapo Notícias

More information

Primavera Project Management System at WVDOT. Presented by Marshall Burgess, WVDOT Stephen Cole, Stephen Cole Consulting Jervetta Bruce, CDP, Inc.

Primavera Project Management System at WVDOT. Presented by Marshall Burgess, WVDOT Stephen Cole, Stephen Cole Consulting Jervetta Bruce, CDP, Inc. : Integrating GIS With Primavera Project Management System at WVDOT Presented by Marshall Burgess, WVDOT Stephen Cole, Stephen Cole Consulting Jervetta Bruce, CDP, Inc. WVDOT Geographic Information System

More information

Softlayer. Team-Enablement. An IBM company. 5th September 2013. 2013 IBM Corporation

Softlayer. Team-Enablement. An IBM company. 5th September 2013. 2013 IBM Corporation Softlayer An IBM company Team-Enablement 5th September 2013 SoftLayer has a global footprint 13 data centers 17 network PoPs Global private network 685 employees (25 in Europe, o/w 4 Sales) 2013 Projected

More information

Croitoru, A., Crooks, A.T., Radzikowski, J., Stefanidis, A., Vatsavai, R. R. and Wayant, N. (2014), Geoinformatics and Social Media: A New Big Data

Croitoru, A., Crooks, A.T., Radzikowski, J., Stefanidis, A., Vatsavai, R. R. and Wayant, N. (2014), Geoinformatics and Social Media: A New Big Data Croitoru, A., Crooks, A.T., Radzikowski, J., Stefanidis, A., Vatsavai, R. R. and Wayant, N. (2014), Geoinformatics and Social Media: A New Big Data Challenge, in Karimi, H. (ed.), Big Data Techniques and

More information

10/14/11. Big data in science Application to large scale physical systems

10/14/11. Big data in science Application to large scale physical systems Big data in science Application to large scale physical systems Large scale physical systems Large scale systems with spatio-temporal dynamics Propagation of pollutants in air, Water distribution networks,

More information

Dynamic accessibility analysis using big data

Dynamic accessibility analysis using big data Dynamic accessibility analysis using big data Juan Carlos García Palomares Javier Gutiérrez María Henar Salas-Olmedo Borja Moya-Gómez tgis Departamento de Geografía Humana Universidad Complutense de Madrid

More information

Understanding Roles of Social Media in Academic Engagement and Satisfaction for Graduate Students

Understanding Roles of Social Media in Academic Engagement and Satisfaction for Graduate Students Understanding Roles of Social Media in Academic Engagement and Satisfaction for Graduate Students Kyungsik Han Pacific Northwest National Laboratory kyungsik.han@pnnl.gov Svitlana Volkova Pacific Northwest

More information

POWERFUL SOFTWARE. FIGHTING HIGH CONSEQUENCE CYBER CRIME. KEY SOLUTION HIGHLIGHTS

POWERFUL SOFTWARE. FIGHTING HIGH CONSEQUENCE CYBER CRIME. KEY SOLUTION HIGHLIGHTS ADVANCED CYBER THREAT ANALYTICS POWERFUL SOFTWARE. FIGHTING HIGH CONSEQUENCE CYBER CRIME. Wynyard Advanced Cyber Threat Analytics (ACTA) is a Pro-active Cyber Forensics solution that helps protect organisations

More information

The Certified Irish Internet Recruiter Course CIIR 1.0

The Certified Irish Internet Recruiter Course CIIR 1.0 The Certified Irish Course CIIR 1.0 The in association with CIPD and Fitzgerald,, Chairman For a long time Ireland has lagged behind the US when it comes to understanding how to harness the full power

More information

Statement of Qualifications

Statement of Qualifications Statement of Qualifications Prepared By: JAYA Corporation 4900 University Square, Suite 30 Huntsville, AL 35816 TEL: (256) 722-0700 FAX: (256) 722-0711 EMAIL: igis@jaya corp.com Small Disadvantaged Business,

More information

Using Social Media to Build Your Business. John Foley, Jr aka @johnfoleyjr Grow Socially/interlinkONE, Wilmington, MA

Using Social Media to Build Your Business. John Foley, Jr aka @johnfoleyjr Grow Socially/interlinkONE, Wilmington, MA Using Social Media to Build Your Business John Foley, Jr aka @johnfoleyjr Grow Socially/interlinkONE, Wilmington, MA Overview Social & Mobile Media generate leads and build relationships What s new with

More information

Information & Data Visualization. Yasufumi TAKAMA Tokyo Metropolitan University, JAPAN ytakama@sd.tmu.ac.jp

Information & Data Visualization. Yasufumi TAKAMA Tokyo Metropolitan University, JAPAN ytakama@sd.tmu.ac.jp Information & Data Visualization Yasufumi TAKAMA Tokyo Metropolitan University, JAPAN ytakama@sd.tmu.ac.jp 1 Introduction Contents Self introduction & Research purpose Social Data Analysis Related Works

More information

An Early Look at Performing Big Data Geo Analytics for Feature and Tabular Datasets

An Early Look at Performing Big Data Geo Analytics for Feature and Tabular Datasets FedGIS Conference February 24 25, 2016 Washington, DC An Early Look at Performing Big Data Geo Analytics for Feature and Tabular Datasets Erik Hoel and Sarah Ambrose ArcGIS 2016 Feature Analytics and Big

More information

An Esri White Paper May 2012 ArcGIS for Emergency Management

An Esri White Paper May 2012 ArcGIS for Emergency Management An Esri White Paper May 2012 ArcGIS for Emergency Management Esri, 380 New York St., Redlands, CA 92373-8100 USA TEL 909-793-2853 FAX 909-793-5953 E-MAIL info@esri.com WEB esri.com Copyright 2012 Esri

More information

Social Market Analytics, Inc.

Social Market Analytics, Inc. S-Factors : Definition, Use, and Significance Social Market Analytics, Inc. Harness the Power of Social Media Intelligence January 2014 P a g e 2 Introduction Social Market Analytics, Inc., (SMA) produces

More information

March 2008. Oracle Spatial User Conference

March 2008. Oracle Spatial User Conference March 13, 2008 Sheraton Seattle Hotel Seattle, Washington USA Robert Murray RL Polk Steven Pierce Johnston McLamb Unobtrusive Spatial Enablement of the Oracle BI Suite R.L. Polk Location Intelligence RL

More information

E-navigation, from sensors to ship behaviour analysis

E-navigation, from sensors to ship behaviour analysis E-navigation, from sensors to ship behaviour analysis Laurent ETIENNE, Loïc SALMON French Naval Academy Research Institute Geographic Information Systems Group laurent.etienne@ecole-navale.fr loic.salmon@ecole-navale.fr

More information

Pulsar TRAC. Big Social Data for Research. Made by Face

Pulsar TRAC. Big Social Data for Research. Made by Face Pulsar TRAC Big Social Data for Research Made by Face PULSAR TRAC is an advanced social intelligence platform designed for researchers and planners by researchers and planners. We have developed a robust

More information

Adobe Insight, powered by Omniture

Adobe Insight, powered by Omniture Adobe Insight, powered by Omniture Accelerating government intelligence to the speed of thought 1 Challenges that analysts face 2 Analysis tools and functionality 3 Adobe Insight 4 Summary Never before

More information

GEOGRAPHIC CONTEXT ANALYSIS OF VOLUNTEERED INFORMATION

GEOGRAPHIC CONTEXT ANALYSIS OF VOLUNTEERED INFORMATION GEOGRAPHIC CONTEXT ANALYSIS OF VOLUNTEERED INFORMATION (GEOCONAVI) Frank O. Ostermann COST Energic Meeting 26.05.2014, Zürich GEOGRAPHIC CONTEXT ANALYSIS OF VOLUNTEERED INFORMATION PRESENTATION OVERVIEW

More information

Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo

Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn apichon@iis.u-tokyo.ac.jp Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network

More information

Experian Cross Channel Marketing Platform. Managing campaigns and reaching consumers in real time

Experian Cross Channel Marketing Platform. Managing campaigns and reaching consumers in real time Experian Cross Channel Marketing Platform Managing campaigns and reaching consumers in real time The relationship between brands and customers has fundamentally changed. Whereas once there was equilibrium

More information

Beyond listening Driving better decisions with business intelligence from social sources

Beyond listening Driving better decisions with business intelligence from social sources Beyond listening Driving better decisions with business intelligence from social sources From insight to action with IBM Social Media Analytics State of the Union Opinions prevail on the Internet Social

More information

Reading News with Maps p.1/13

Reading News with Maps p.1/13 Reading News with Maps Hanan Samet hjs@cs.umd.edu Department of Computer Science University of Maryland College Park, MD 20742, USA Reading News with Maps p.1/13 Extend GIS Notions to Textually Specified

More information

Fogbeam Vision Series - The Modern Intranet

Fogbeam Vision Series - The Modern Intranet Fogbeam Labs Cut Through The Information Fog http://www.fogbeam.com Fogbeam Vision Series - The Modern Intranet Where It All Started Intranets began to appear as a venue for collaboration and knowledge

More information

Spatial Data Preparation for Knowledge Discovery

Spatial Data Preparation for Knowledge Discovery Spatial Data Preparation for Knowledge Discovery Vania Bogorny 1, Paulo Martins Engel 1, Luis Otavio Alvares 1 1 Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) Caixa Postal

More information

United Nations Economic Commission for Europe Statistical Division

United Nations Economic Commission for Europe Statistical Division United Nations Economic Commission for Europe Statistical Division CONFERENCE OF EUROPEAN STATISTICIANS Workshop on Statistical Data Collection: Riding the Data Deluge 29 April 1 May, Washington D.C.,

More information

ON24 Webinar Benchmarks Report

ON24 Webinar Benchmarks Report ON24 BENCHMARK REPORT TABLE OF CONTENTS ON24 Webinar Benchmarks Report 2013 EDITION THE ON24 BRAND 2 THE NEW ON24 BLUE 2 THE ON24 LOGO 2 THE ON24 BRAND 2 THE ON24 BRAND 2 THE ON24 BRAND 2 THE ON24 BRAND

More information

Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control

Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control Andre BERGMANN Salzgitter Mannesmann Forschung GmbH; Duisburg, Germany Phone: +49 203 9993154, Fax: +49 203 9993234;

More information

A Spatial Decision Support System for Property Valuation

A Spatial Decision Support System for Property Valuation A Spatial Decision Support System for Property Valuation Katerina Christopoulou, Muki Haklay Department of Geomatic Engineering, University College London, Gower Street, London WC1E 6BT Tel. +44 (0)20

More information

Measure Social Media like a Pro: Social Media Analytics Uncovered SOCIAL MEDIA LIKE SHARE. Powered by

Measure Social Media like a Pro: Social Media Analytics Uncovered SOCIAL MEDIA LIKE SHARE. Powered by 1 Measure Social Media like a Pro: Social Media Analytics Uncovered # SOCIAL MEDIA LIKE # SHARE Powered by 2 Social media analytics were a big deal in 2013, but this year they are set to be even more crucial.

More information

ORACLE SOCIAL ENGAGEMENT AND MONITORING CLOUD SERVICE

ORACLE SOCIAL ENGAGEMENT AND MONITORING CLOUD SERVICE ORACLE SOCIAL ENGAGEMENT AND MONITORING CLOUD SERVICE INTELLIGENT SOCIAL LISTENING KEY FEATURES Cross-network publishing Post scheduling Message targeting Assignments and workflow Roles and teams Audit

More information

GLOBALIZATION, COLLABORATION, AND SOCIAL NETWORKING: AN EXPLORATORY STUDY

GLOBALIZATION, COLLABORATION, AND SOCIAL NETWORKING: AN EXPLORATORY STUDY GLOBALIZATION, COLLABORATION, AND SOCIAL NETWORKING: AN EXPLORATORY STUDY Robert L. Totterdale, Robert Morris University, rtotterdale@tbconsulting.biz ABSTRACT Individuals utilize a variety of tools to

More information

WEBTRENDS + SITRION SOCIAL ENTERPRISE SOLUTION

WEBTRENDS + SITRION SOCIAL ENTERPRISE SOLUTION COLLABORATION OPTIMIZATION WEBTRENDS + SITRION SOCIAL ENTERPRISE SOLUTION Road to Engagement: Measuring the Success of the Social Enterprise SOLUTION BRIEF 2014 2014 WEBTRENDS, INC. WWW.WEBTRENDS.COM WEBTRENDS

More information

How are your business programs adapting admissions content to meet today s mobile demands?

How are your business programs adapting admissions content to meet today s mobile demands? How are your business programs adapting admissions content to meet today s mobile demands? Surveying the Mobile Habits of MBA Applicants Introduction: Mobile Is Even More Important Than You Think Although

More information

Instagram for business Strategy guide

Instagram for business Strategy guide @coach @fab @oscraprgirl @sightglass @burberry @benandjerrys @generalelectric @gopro Instagram for business Strategy guide Businesses of all sizes and across industries are finding marketing success on

More information

Crime Hotspots Analysis in South Korea: A User-Oriented Approach

Crime Hotspots Analysis in South Korea: A User-Oriented Approach , pp.81-85 http://dx.doi.org/10.14257/astl.2014.52.14 Crime Hotspots Analysis in South Korea: A User-Oriented Approach Aziz Nasridinov 1 and Young-Ho Park 2 * 1 School of Computer Engineering, Dongguk

More information

Interactive Intelligence

Interactive Intelligence Interactive Intelligence Customer Service Experience Study (Wave II) by Joe Staples Chief Marketing Officer Interactive Intelligence, Inc. and Thomas Bailey Content Editor Interactive Intelligence, Inc.

More information

Aggregating IaaS Service

Aggregating IaaS Service Aggregating IaaS Service Bu Sung Lee, Shixing Yan, Ding Ma, Guopeng Zhao HP Laboratories HPL-2011-22 Keyword(s): Cloud computing, service management, IaaS Abstract: Infrastructure-as-a-Service (IaaS) is

More information

Avalanche: Prepare, Manage, and Understand Crisis Situations Using Social Media Analytics

Avalanche: Prepare, Manage, and Understand Crisis Situations Using Social Media Analytics Avalanche: Prepare, Manage, and Understand Crisis Situations Using Social Media Analytics Sven Schaust AGT Group (R&D) GmbH sschaust@agtinternational.com Maximilian Walther AGT Group (R&D) GmbH mwalther@agtinternational.com

More information

Information Visualization WS 2013/14 11 Visual Analytics

Information Visualization WS 2013/14 11 Visual Analytics 1 11.1 Definitions and Motivation Lot of research and papers in this emerging field: Visual Analytics: Scope and Challenges of Keim et al. Illuminating the path of Thomas and Cook 2 11.1 Definitions and

More information

Can Twitter Predict Royal Baby's Name?

Can Twitter Predict Royal Baby's Name? Summary Can Twitter Predict Royal Baby's Name? Bohdan Pavlyshenko Ivan Franko Lviv National University,Ukraine, b.pavlyshenko@gmail.com In this paper, we analyze the existence of possible correlation between

More information

BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES

BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES Relational vs. Non-Relational Architecture Relational Non-Relational Rational Predictable Traditional Agile Flexible Modern 2 Agenda Big Data

More information

Quick Guide to Getting Started: Twitter for Small Businesses and Nonprofits

Quick Guide to Getting Started: Twitter for Small Businesses and Nonprofits Quick Guide to Getting Started: Twitter for Small Businesses and Nonprofits Social Media www.constantcontact.com 1-866-876-8464 Insight provided by 2011 Constant Contact, Inc. 11-2168 What is Twitter?

More information

Scalable Cluster Analysis of Spatial Events

Scalable Cluster Analysis of Spatial Events International Workshop on Visual Analytics (2012) K. Matkovic and G. Santucci (Editors) Scalable Cluster Analysis of Spatial Events I. Peca 1, G. Fuchs 1, K. Vrotsou 1,2, N. Andrienko 1 & G. Andrienko

More information

Informatica and the Vibe Virtual Data Machine

Informatica and the Vibe Virtual Data Machine White Paper Informatica and the Vibe Virtual Data Machine Preparing for the Integrated Information Age This document contains Confidential, Proprietary and Trade Secret Information ( Confidential Information

More information

REVIEW AND ANALYSIS OF INTERNET TRAFFIC AND ITS IMPLICATIONS ON THE ROOT NAME SERVER ARCHITECTURE

REVIEW AND ANALYSIS OF INTERNET TRAFFIC AND ITS IMPLICATIONS ON THE ROOT NAME SERVER ARCHITECTURE REVIEW AND ANALYSIS OF INTERNET TRAFFIC AND ITS IMPLICATIONS ON THE ROOT NAME SERVER ARCHITECTURE Rami Khasawneh, Interim Dean, College of Business, Lewis University, khasawra@lewisu.edu Eveann Lovero,

More information

5 Big Data Use Cases to Understand Your Customer Journey CUSTOMER ANALYTICS EBOOK

5 Big Data Use Cases to Understand Your Customer Journey CUSTOMER ANALYTICS EBOOK 5 Big Data Use Cases to Understand Your Customer Journey CUSTOMER ANALYTICS EBOOK CUSTOMER JOURNEY Technology is radically transforming the customer journey. Today s customers are more empowered and connected

More information

IT Service & Asset Management

IT Service & Asset Management IT Service & Asset Management in the Cloud EasyVistaTM CMC Cloud Management Centers Cloud IT Operations Management users should expect great service The cloud is powerful and dynamic, enabling global workforces

More information

Advancing Sustainability with Geospatial Steven Hagan, Vice President, Server Technologies João Paiva, Ph.D. Spatial Information and Science

Advancing Sustainability with Geospatial Steven Hagan, Vice President, Server Technologies João Paiva, Ph.D. Spatial Information and Science Advancing Sustainability with Geospatial Steven Hagan, Vice President, Server Technologies João Paiva, Ph.D. Spatial Information and Science Engineering 1 Copyright 2011, Oracle and/or its affiliates.

More information

Combining Global Load Balancing and Geo-location with Emissary TM

Combining Global Load Balancing and Geo-location with Emissary TM Combining Global Load Balancing and Geo-location with Emissary TM A New Kind of Global Internet Traffic Management Appliance from Coyote Point Systems and Digital Envoy Establishing a Geo-Sensitive, Highly

More information

IBM Social Media Analytics

IBM Social Media Analytics IBM Social Media Analytics Analyze social media data to better understand your customers and markets Highlights Understand consumer sentiment and optimize marketing campaigns. Improve the customer experience

More information

Social Sentiment Analysis Financial IndeXes ICT-15-2014 Grant: 645425. D3.1 Data Requirement Analysis and Data Management Plan V1

Social Sentiment Analysis Financial IndeXes ICT-15-2014 Grant: 645425. D3.1 Data Requirement Analysis and Data Management Plan V1 Social Sentiment Analysis Financial IndeXes ICT-15-2014 Grant: 645425 D3.1 Data Requirement Analysis and Data Management Plan V1 Project Coordinator Dr. Brian Davis (NUI Galway) Document Authors Mr. Angelo

More information

Big Data Collection Study for Providing Efficient Information

Big Data Collection Study for Providing Efficient Information , pp. 41-50 http://dx.doi.org/10.14257/ijseia.2015.9.12.03 Big Data Collection Study for Providing Efficient Information Jun-soo Yun, Jin-tae Park, Hyun-seo Hwang and Il-young Moon Computer Science and

More information