Chapter = 3000 ( ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization"

Transcription

1 Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve terest rate order to be able to wthdraw equal amouts from the accout the future utl o moey remas the accout. Here s a example: How much moey must you depost ow at 6% terest compouded quarterly order to be able to wthdraw $3,000 at the ed of each quarter year for two years? 2 Dervato of Formula Preset Value of the Frst Four Paymets We beg by solvg for P the compoud terest formula: ( 1 ) A= P + P = A(1 + ) Iterest rate each perod s 0.06/4 06/4= P1 = P 2 = 3000 ( ) 3 P3 = 3000(1.015) 4 P = 3000(1.015)

2 Dervato of Short Cut Formula Preset Value of a Ordary Auty We could proceed to calculate the ext four paymets ad the smply fd the total of the 8 paymets. There are 8 paymets sce there wll be 8 total wthdrawals: (2 years) (four wthdrawals per year) = 8 wthdrawals. Ths method s tedous ad tme cosumg so we seek a short cut method. 1 (1+ ) PV = PMT PV = preset value of all paymets PMT = perodc paymet = rate per perod = umber of perods Note: Paymets are made at the ed of each perod. 5 6 Back to Our Orgal Problem Back to Our Orgal Problem How much moey must you depost ow at 6% terest compouded quarterly order to be able to wthdraw $3,000 at the ed of each quarter year for two years? How much moey must you depost ow at 6% terest compouded quarterly order to be able to wthdraw $3,000 at the ed of each quarter year for two years? : R = 3000, = 0.06/4 = 0.015, = 8 1 (1 + ) P= R 8 1 (1.015) P = 3000 = 22,

3 Iterest Eared Amortzato Problem The preset value of all paymets s $22, The total amout of moey wthdraw over two years s 3000(4)(2)=24,000. Thus, the accrued terest s the dfferece betwee the two amouts: $24,000 $22, =$1, Problem: A bak loas a customer $50, at 4.5% terest per year to purchase a house. The customer agrees to make mothly paymets for the ext 15 years for a total of 180 paymets. How much should the mothly paymet be f the debt s to be retred 15 years? 9 10 Amortzato Problem Problem: A bak loas a customer $50, at 4.5% terest per year to purchase a house. The customer agrees to make mothly paymets for the ext 15 years for a total of 180 paymets. How much should the mothly paymet be f the debt s to be retred 15 years? : The bak has bought a auty from the customer. Ths auty pays the bak a $PMT per moth at 4.5% terest compouded mothly for 180 moths. We use the prevous formula for preset value of a auty ad solve for PMT: 1 (1 + ) PV = PMT PMT = PV 1 (1 )

4 Care must be take to perform the correct order of operatos. 1. eter dvded by step 1 result 3. Rase aswer to -180 power step 3 result 5. Take recprocal (1/x) of step 4 result. Multply l by ad dvde by Fally, multply that result by 50,000 to obta PMT = PV 1 (1 + ) PMT = 50, = If the customer makes a mothly paymet of $ to the bak for 180 paymets, the the total amout pad to the bak s the product of $ ad 180 = $68,850. Thus, the terest eared by the bak s the dfferece betwee $68,850 ad $50,000 (orgal loa) = $18, Costructg a Amortzato Schedule If you borrow $500 that you agree to repay sx equal mothly paymets at 1% terest per moth o the upad balace, how much of each mothly paymet s used for terest ad how much s used to reduce the upad balace? Amortzato Schedule If you borrow $500 that you agree to repay sx equal mothly paymets at 1% terest per moth o the upad balace, how much of each mothly paymet s used for terest ad how much s used to reduce the upad balace? : Frst, we compute the requred mothly paymet usg the formula PMT = PV 1 (1 + ) 0.01 = (1.01) 6 = $

5 At the ed of the frst moth, the terest due s $500(0.01) = $5.00. The amortzato paymet s dvded to two parts, paymet of the terest due ad reducto of the upad balace. Mothly Paymet Iterest Due Upad Balace Reducto $86.27 = $ $81.27 The upad balace for the ext moth s Prevous Upad Bal Upad Bal Reducto New Upad Bal $ $81.27 = $ Ths process cotues utl all paymets have bee made ad the upad balace s reduced to zero. The calculatos for each moth are lsted the followg table, whch was doe o a spreadsheet. Paymet Paymet Iterest Ipad Bal Upad Number Reducto Balace 0 $ $5.00 $81.27 $ $4.19 $82.08 $ $3.37 $82.90 $ $2.54 $83.73 $ $1.70 $84.57 $ $0.85 $85.42 $0.03 I realty, the last paymet would be creased by $0.03, so that the balace s zero Strategy for Solvg Mathematcs of Face Problems Strategy Step 1. Determe whether the problem volves a sgle paymet or a sequece of equal perodc paymets. Smple ad compoud terest problems volve a sgle preset value ad a sgle future value. Ordary autes may be cocered wth a preset value or a future value but always volve a sequece of equal perodc paymets. Step 2. If a sgle paymet s volved, ved, determe e whether e smple or compoud terest s used. Smple terest s usually used for duratos of a year or less ad compoud terest for loger perods. Step 3. If a sequece of perodc paymets s volved, determe whether the paymets are beg made to a accout that s creasg value -a future value problem - or the paymets are beg made out of a accout that s decreasg value - a preset value problem. Remember that amortzato problems always volve the preset value of a ordary auty

10.5 Future Value and Present Value of a General Annuity Due

10.5 Future Value and Present Value of a General Annuity Due Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

FINANCIAL MATHEMATICS 12 MARCH 2014

FINANCIAL MATHEMATICS 12 MARCH 2014 FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.

More information

10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof AnaNEvans@virginia.edu http://people.virginia.

10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof AnaNEvans@virginia.edu http://people.virginia. Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof AaNEvas@vrga.edu http://people.vrga.edu/~as5k/

More information

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R = Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

Future Value of an Annuity

Future Value of an Annuity Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%

More information

The Time Value of Money

The Time Value of Money The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

of the relationship between time and the value of money.

of the relationship between time and the value of money. TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp

More information

Mathematics of Finance

Mathematics of Finance CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of

More information

Section 2.3 Present Value of an Annuity; Amortization

Section 2.3 Present Value of an Annuity; Amortization Secton 2.3 Present Value of an Annuty; Amortzaton Prncpal Intal Value PV s the present value or present sum of the payments. PMT s the perodc payments. Gven r = 6% semannually, n order to wthdraw $1,000.00

More information

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0 Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may

More information

The Present Value of an Annuity

The Present Value of an Annuity Module 4.4 Page 492 of 944. Module 4.4: The Preset Value of a Auty Here we wll lear about a very mportat formula: the preset value of a auty. Ths formula s used wheever there s a seres of detcal paymets

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

Time Value of Money. (1) Calculate future value or present value or annuity? (2) Future value = PV * (1+ i) n

Time Value of Money. (1) Calculate future value or present value or annuity? (2) Future value = PV * (1+ i) n Problem 1 Happy Harry has just bought a scratch lottery tcket ad wo 10,000. He wats to face the future study of hs ewly bor daughter ad vests ths moey a fud wth a maturty of 18 years offerg a promsg yearly

More information

ANNEX 77 FINANCE MANAGEMENT. (Working material) Chief Actuary Prof. Gaida Pettere BTA INSURANCE COMPANY SE

ANNEX 77 FINANCE MANAGEMENT. (Working material) Chief Actuary Prof. Gaida Pettere BTA INSURANCE COMPANY SE ANNEX 77 FINANCE MANAGEMENT (Workg materal) Chef Actuary Prof. Gada Pettere BTA INSURANCE COMPANY SE 1 FUNDAMENTALS of INVESTMENT I THEORY OF INTEREST RATES 1.1 ACCUMULATION Iterest may be regarded as

More information

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1 akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of

More information

Construction Economics & Finance. Module 1

Construction Economics & Finance. Module 1 NTEL Cvl Eeer Costructo Ecoomcs & ace Costructo Ecoomcs & ace Module Eeer ecoomcs Lecture- Basc prcples: Tme value of moey: The tme value of moey s mportat whe oe s terested ether vest or borrow the moey.

More information

FINANCIAL FORMULAE. Amount of One or Future Value of One ($1, 1, 1, etc.)... 2. Present Value (or Present Worth) of One ($1, 1, 1, etc.)...

FINANCIAL FORMULAE. Amount of One or Future Value of One ($1, 1, 1, etc.)... 2. Present Value (or Present Worth) of One ($1, 1, 1, etc.)... Amout of Oe or Future Value of Oe ($,,, etc.)... 2 Preset Value (or Preset Worth) of Oe ($,,, etc.)... 2 Amout of Oe per Perod... 3 or Future Value of Oe per Perod Preset Value (or Preset Worth) of Oe

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

MEASURES OF CENTRAL TENDENCY

MEASURES OF CENTRAL TENDENCY MODULE - 6 Statstcs Measures of Cetral Tedecy 25 MEASURES OF CENTRAL TENDENCY I the prevous lesso, we have leart that the data could be summarsed to some extet by presetg t the form of a frequecy table.

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are : Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

FI A CIAL MATHEMATICS

FI A CIAL MATHEMATICS CHAPTER 7 FI A CIAL MATHEMATICS Page Cotets 7.1 Compoud Value 117 7.2 Compoud Value of a Auity 118 7.3 Sikig Fuds 119 7.4 Preset Value 122 7.5 Preset Value of a Auity 122 7.6 Term Loas ad Amortizatio 123

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

Simple Linear Regression

Simple Linear Regression Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8

More information

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable

More information

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

More information

Performance Attribution. Methodology Overview

Performance Attribution. Methodology Overview erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace

More information

Sequences and Series

Sequences and Series Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

More information

Electricity Test Review

Electricity Test Review Please aswer the questos o a separate sheet of paper. ocepts: Electrcty Test evew 1. What s your rule for determg how addg bulbs to a crcut affects resstace? Look at secto 3 of the lab.. What s your role

More information

Terminology for Bonds and Loans

Terminology for Bonds and Loans ³ ² ± Termiology for Bods ad Loas Pricipal give to borrower whe loa is made Simple loa: pricipal plus iterest repaid at oe date Fixed-paymet loa: series of (ofte equal) repaymets Bod is issued at some

More information

Commercial Pension Insurance Program Design and Estimated of Tax Incentives---- Based on Analysis of Enterprise Annuity Tax Incentives

Commercial Pension Insurance Program Design and Estimated of Tax Incentives---- Based on Analysis of Enterprise Annuity Tax Incentives Iteratoal Joural of Busess ad Socal Scece Vol 5, No ; October 204 Commercal Peso Isurace Program Desg ad Estmated of Tax Icetves---- Based o Aalyss of Eterprse Auty Tax Icetves Huag Xue, Lu Yatg School

More information

MMQ Problems Solutions with Calculators. Managerial Finance

MMQ Problems Solutions with Calculators. Managerial Finance MMQ Problems Solutios with Calculators Maagerial Fiace 2008 Adrew Hall. MMQ Solutios With Calculators. Page 1 MMQ 1: Suppose Newma s spi lads o the prize of $100 to be collected i exactly 2 years, but

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter Sstematc Samplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

10.2 Future Value and Present Value of an Ordinary Simple Annuity

10.2 Future Value and Present Value of an Ordinary Simple Annuity 348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are

More information

Recurrence Relations

Recurrence Relations CMPS Aalyss of Algorthms Summer 5 Recurrece Relatos Whe aalyzg the ru tme of recursve algorthms we are ofte led to cosder fuctos T ( whch are defed by recurrece relatos of a certa form A typcal example

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

1. Math 210 Finite Mathematics

1. Math 210 Finite Mathematics 1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Section 5.3 Annuities, Future Value, and Sinking Funds

Section 5.3 Annuities, Future Value, and Sinking Funds Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

More information

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Credibility Premium Calculation in Motor Third-Party Liability Insurance Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143 1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

Section 2.2 Future Value of an Annuity

Section 2.2 Future Value of an Annuity Secton 2.2 Future Value of an Annuty Annuty s any sequence of equal perodc payments. Depost s equal payment each nterval There are two basc types of annutes. An annuty due requres that the frst payment

More information

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

The Analysis of Development of Insurance Contract Premiums of General Liability Insurance in the Business Insurance Risk

The Analysis of Development of Insurance Contract Premiums of General Liability Insurance in the Business Insurance Risk The Aalyss of Developmet of Isurace Cotract Premums of Geeral Lablty Isurace the Busess Isurace Rsk the Frame of the Czech Isurace Market 1998 011 Scetfc Coferece Jue, 10. - 14. 013 Pavla Kubová Departmet

More information

FINANCIAL MATHEMATICS DEFINITIONS GENERAL

FINANCIAL MATHEMATICS DEFINITIONS GENERAL FINANCIAL MATHEMATICS DEFINITIONS GENERAL Verso 10/1/2002 Prepare by Dav Forfar, MA, FFA wth the assstace of Dav Rayot, Lbrara, Isttute of Actuares, Loo Iterest:-the rewar pa by the borrower to the leer

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information

Finite Math Chapter 10: Study Guide and Solution to Problems

Finite Math Chapter 10: Study Guide and Solution to Problems Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

More information

2 Time Value of Money

2 Time Value of Money 2 Time Value of Moey BASIC CONCEPTS AND FORMULAE 1. Time Value of Moey It meas moey has time value. A rupee today is more valuable tha a rupee a year hece. We use rate of iterest to express the time value

More information

Question 2: How is a loan amortized?

Question 2: How is a loan amortized? Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

Time Value of Money, NPV and IRR equation solving with the TI-86

Time Value of Money, NPV and IRR equation solving with the TI-86 Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira sedgh@eetd.ktu.ac.r,

More information

Online Appendix: Measured Aggregate Gains from International Trade

Online Appendix: Measured Aggregate Gains from International Trade Ole Appedx: Measured Aggregate Gas from Iteratoal Trade Arel Burste UCLA ad NBER Javer Cravo Uversty of Mchga March 3, 2014 I ths ole appedx we derve addtoal results dscussed the paper. I the frst secto,

More information

Models for Selecting an ERP System with Intuitionistic Trapezoidal Fuzzy Information

Models for Selecting an ERP System with Intuitionistic Trapezoidal Fuzzy Information JOURNAL OF SOFWARE, VOL 5, NO 3, MARCH 00 75 Models for Selectg a ERP System wth Itutostc rapezodal Fuzzy Iformato Guwu We, Ru L Departmet of Ecoomcs ad Maagemet, Chogqg Uversty of Arts ad Sceces, Yogchua,

More information

Speeding up k-means Clustering by Bootstrap Averaging

Speeding up k-means Clustering by Bootstrap Averaging Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg

More information

Chapter 3 3-1. Chapter Goals. Summary Measures. Chapter Topics. Measures of Center and Location. Notation Conventions

Chapter 3 3-1. Chapter Goals. Summary Measures. Chapter Topics. Measures of Center and Location. Notation Conventions Chapter 3 3- Chapter Goals Chapter 3 umercal Descrptve Measures After completg ths chapter, you should be able to: Compute ad terpret the mea, meda, ad mode for a set of data Fd the rage, varace, ad stadard

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value 8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at

More information

Curve Fitting and Solution of Equation

Curve Fitting and Solution of Equation UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed

More information

Fix or Evict? Loan Modifications Return More Value Than Foreclosures

Fix or Evict? Loan Modifications Return More Value Than Foreclosures Fx or Evct? Loa Modfcatos etur More Value Tha Foreclosures We L ad Soa arrso March, 0 www.resposbleledg.org Fx or Evct? Loa Modfcatos etur More Value Tha Foreclosures We L ad Soa arrso Ceter for esposble

More information

3. Present value of Annuity Problems

3. Present value of Annuity Problems Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1-.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = -

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

22. The accompanying data describe flexural strength (Mpa) for concrete beams of a certain type was introduced in Example 1.2.

22. The accompanying data describe flexural strength (Mpa) for concrete beams of a certain type was introduced in Example 1.2. . The accompayg data descrbe flexural stregth (Mpa) for cocrete beams of a certa type was troduced Example.. 9. 9.7 8.8 0.7 8.4 8.7 0.7 6.9 8. 8.3 7.3 9. 7.8 8.0 8.6 7.8 7.5 8.0 7.3 8.9 0.0 8.8 8.7.6.3.8.7

More information

Checklist. Assignment

Checklist. Assignment Checklist Part I Fid the simple iterest o a pricipal. Fid a compouded iterest o a pricipal. Part II Use the compoud iterest formula. Compare iterest growth rates. Cotiuous compoudig. (Math 1030) M 1030

More information

Chapter 11 Regression Analysis

Chapter 11 Regression Analysis Chapter Regresso Aalyss Defto: Whe the values of two varables are measured for each member of a populato or sample, the resultg data s called bvarate. Whe both varables are quattatve, we may represet the

More information

The simple linear Regression Model

The simple linear Regression Model The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg

More information

Measures of Dispersion, Skew, & Kurtosis (based on Kirk, Ch. 4) {to be used in conjunction with Measures of Dispersion Chart }

Measures of Dispersion, Skew, & Kurtosis (based on Kirk, Ch. 4) {to be used in conjunction with Measures of Dispersion Chart } Percetles Psych 54, 9/8/05 p. /6 Measures of Dsperso, kew, & Kurtoss (based o Krk, Ch. 4) {to be used cojucto wth Measures of Dsperso Chart } percetle (P % ): a score below whch a specfed percetage of

More information

Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts

Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts Optmal replacemet ad overhaul decsos wth mperfect mateace ad warraty cotracts R. Pascual Departmet of Mechacal Egeerg, Uversdad de Chle, Caslla 2777, Satago, Chle Phoe: +56-2-6784591 Fax:+56-2-689657 rpascual@g.uchle.cl

More information

In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A

In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A Amortzed loans: Suppose you borrow P dollars, e.g., P = 100, 000 for a house wth a 30 year mortgage wth an nterest rate of 8.25% (compounded monthly). In ths type of loan you make equal payments of A dollars

More information

Report 52 Fixed Maturity EUR Industrial Bond Funds

Report 52 Fixed Maturity EUR Industrial Bond Funds Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:

More information

On some special nonlevel annuities and yield rates for annuities

On some special nonlevel annuities and yield rates for annuities On some specal nonlevel annutes and yeld rates for annutes 1 Annutes wth payments n geometrc progresson 2 Annutes wth payments n Arthmetc Progresson 1 Annutes wth payments n geometrc progresson 2 Annutes

More information

Chapter 12 Polynomial Regression Models

Chapter 12 Polynomial Regression Models Chapter Polyomal Regresso Models A model s sad to be lear whe t s lear parameters. So the model ad y = + x+ x + β β β ε y= β + β x + β x + β x + β x + β xx + ε are also the lear model. I fact, they are

More information

The Digital Signature Scheme MQQ-SIG

The Digital Signature Scheme MQQ-SIG The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese

More information

Beta. A Statistical Analysis of a Stock s Volatility. Courtney Wahlstrom. Iowa State University, Master of School Mathematics. Creative Component

Beta. A Statistical Analysis of a Stock s Volatility. Courtney Wahlstrom. Iowa State University, Master of School Mathematics. Creative Component Beta A Statstcal Aalyss of a Stock s Volatlty Courtey Wahlstrom Iowa State Uversty, Master of School Mathematcs Creatve Compoet Fall 008 Amy Froelch, Major Professor Heather Bolles, Commttee Member Travs

More information

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression. Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

More information

On formula to compute primes and the n th prime

On formula to compute primes and the n th prime Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: ssam.addoura@lu.edu.lb amh Abdul-Nab Lebaese Iteratoal

More information

Texas Instruments 30Xa Calculator

Texas Instruments 30Xa Calculator Teas Instruments 30Xa Calculator Keystrokes for the TI-30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

One way to organize workers that lies between traditional assembly lines, where workers are specialists,

One way to organize workers that lies between traditional assembly lines, where workers are specialists, MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 7, No. 2, Sprg 2005, pp. 121 129 ss 1523-4614 ess 1526-5498 05 0702 0121 forms do 10.1287/msom.1040.0059 2005 INFORMS Usg Bucket Brgades to Mgrate from

More information

Capacitated Production Planning and Inventory Control when Demand is Unpredictable for Most Items: The No B/C Strategy

Capacitated Production Planning and Inventory Control when Demand is Unpredictable for Most Items: The No B/C Strategy SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NY 4853-380 TECHNICAL REPORT Jue 200 Capactated Producto Plag ad Ivetory Cotrol whe Demad s Upredctable

More information

U t + u U x µ 2 U = 0. (101)

U t + u U x µ 2 U = 0. (101) Chapter 3 Fte Dfferece Methods I the prevous chapter we developed fte dfferece appromatos for partal dervatves. I ths chapter we wll use these fte dfferece appromatos to solve partal dfferetal equatos

More information

CDs Bought at a Bank verses CD s Bought from a Brokerage. Floyd Vest

CDs Bought at a Bank verses CD s Bought from a Brokerage. Floyd Vest CDs Bought at a Bak verses CD s Bought from a Brokerage Floyd Vest CDs bought at a bak. CD stads for Certificate of Deposit with the CD origiatig i a FDIC isured bak so that the CD is isured by the Uited

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is

In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns

More information

Report 19 Euroland Corporate Bonds

Report 19 Euroland Corporate Bonds Rep19, Computed & Prted: 17/06/2015 11:38 Report 19 Eurolad Corporate Bods From Dec 1999 to Dec 2014 31/12/1999 31 December 1999 31/12/2014 Bechmark 100% IBOXX Euro Corp All Mats. TR Defto of the frm ad

More information

BAYEH's theoretical periodic table of elements

BAYEH's theoretical periodic table of elements CLAUDE ZIAD BAYEH Idepedet Researcher LEBANON Emal: claude_bayeh_cbegrd@hotmal.com Abstract: The s a orgal study troduced by the author Chemstry 00. I the past, may scetsts ad researchers have developed

More information

A Single Machine Scheduling with Periodic Maintenance

A Single Machine Scheduling with Periodic Maintenance A Sgle Mache Schedulg wth Perodc Mateace Fracsco Ágel-Bello Ada Álvarez 2 Joaquí Pacheco 3 Irs Martíez Ceter for Qualty ad Maufacturg, Tecológco de Moterrey, Eugeo Garza Sada 250, 64849 Moterrey, NL, Meco

More information