Solutions of All Homework Problems, CS/EE 143, Fall 2014


 Amos Melton
 2 years ago
 Views:
Transcription
1 Solutions of All Homework Problems, CS/EE 43, Fall 4 Prof. Steven Low. TAs: Changhong Zhao, Jianchi Chen Last updated: /3/4 Introduction to Internet. W&P, P. Points. How many hosts can one have on the Internet if each one needs a distinct IP address? Since the IP(v4) address is 4byte, there can potentially be 3 distinct addresses.. Adapted from W&P, P.3 8 Points. Imagine that all routers have 7 ports. There are 6 hosts to be connected. Assume you can organize the hosts and routers any way you like. Your goal is to design the network structure as well as the assignment of addresses so as to (i) minimize the number of routers required, (ii) minimize the size of the routing table required in each router. (a) 4 Points. Describe your network structure and explain why your design gives the minimum number of routers. (b) 4 Points. Describe your scheme for assigning addresses and routing. Explain why your design gives the minimum routing table size in each router. The routers will be arranged in a tree topology, with each of 6 of the ports representing the next halfbyte in the network address. The 7th port would be the link to the parent router. The root router would have a dead 7th port, and so there would be a routing table of size 6 on the first router, and 7 on every other router. This would be of the form: (prefix, halfbyte, unmatched) routes to the port indexed by halfbyte, where prefix is the total specified address on the parent router that points to this router on its 7th port; default route goes to port 7; the root router is just: (halfbyte, unmatched) routes to the port indexed by halfbyte. The total number of routers we use is = This is optimal because: (a) Consider all the routers and hosts as vertex and links as edge. Then in the result graph, it should be a tree, otherwise we can further remove edges and/or vertexes to simplify the graph. Assume we have N routers. For each router, we have 7 ports. For each host, we have port. The total number of edges should be no less than the total number of vertex minus, which is (N + 6 ) to provide
2 connectivity. Also we have the number of edges should be no larger than half of the total ports, which is (7N + 6 )/. Hence we have (7N + 6 )/ (N + 6 ), so N (b) The routing table at every router except the root has only 7 entries, which is minimum with a router fanout of 7..3 W&P, P.4 3 Points. Assume that a host A in Berkeley sends packets with a bit rate of Mbps to a host B in Boston. Assume also that it takes 3ms for the first acknowledgment to come back after A sends the first packet. Say that A sends one packet of Kbyte and then waits for an acknowledgment before sending the next packet, and so on. What is the longterm average bit rate of the connection? Assume now that A sends N packets before it waits for the first acknowledgment. Express the longterm average bit rate of the connection as a function of N. [Note: Mbps = 6 bits per second; ms = millisecond = 3 second.] It takes KB/Mbps =.8ms to transmit one packet. When N =, the connection transfers packet per RTT, i.e., KB per 3.8ms 3ms. This represents a throughput of KB/.3s = 6.5 kbps. (If you use KB =,4 bits instead of, bits, then the throughput will be 63 kbps.) It is OK to ignore the packet transmission time (.8ms) since it is order of magnitude smaller than the propagation delay of 3ms. When N is small enough (see below), the sender sends N packets, and then stops and waits for the first ACK which arrives after one RTT of 3.8ms 3ms. Therefore the throughput is N KB/3ms = 6.5N kbps. KB Let K be the largest integer such that K Mbps 3.8 ms, i.e., K =, 66. When N K, the sender would have already received the first ACK when it finishes transmitting N packets, and therefore can immediately transmit the N + st packet. In this case, the throughput is Mbps. In summary, the throughput is: { 6.5N kbps if N <, 66 throughput = Mbps if N, 66 = min {6.5N kbps, Mbps}.4 B&G,.9: Horizontal and vertical parity checks 4 Points. A horizontal and vertical parity check of size K by L takes (K ) binary sequences each of length (L ) bits and outputs K binary sequences each of length L bits such that if these sequences are arranged into an K by L matrix, then each row and each column will have an even number of s. The parity check works as follows. To send (K ) data sequences each of length (L ) bits, the sender sends the K by L matrix. The receiver checks the parity of each row and each column. If there is any row or column that has odd parity, an error is detected. (a) Points. Give an example of a pattern of six errors that cannot be detected by horizontal and vertical parity checks. (b) Points. Find the number of different patterns of four errors that will not be detected by horizontal and vertical parity checks. (a) Any 6 bit errors in the following entry of the K L matrix will not be detected: (i, j ), (i, j ), (i, j ), (i, j 3 ), (i 3, j 3 ), (i 3, j ), because every row and every column has zero or bit errors which maintains valid parity of the matrix. (b) Any 4 bit errors distributed such that every row and every column has zero or bit errors will not
3 be detected. There are such configurations. ( K ) ( ) L = KL(K )(L ) 4.5 Adapted from B&G, P3. Points. Customers arrive at a fast food restaurant at a rate of five per minute and wait to receive their order for an average of minutes. Customers eat in the restaurant with probability / and carry out their order without eating with probability /. A meal requires an average of minutes. What is the average number of customers in the restaurant? For customers who carry out their orders, the average time spent in the restaurant is minutes; for those who eat in, the average time spent is 3 minutes. Therefore, the average time spent in the restaurant over all customers equals minutes. Applying Littles law, this means the average number of customers in the restaurant equals 5 =..6 Capacity constrained network design 3 Points. Two nodes A and B need to be connected via a communication link. On average, it is estimated that packets will arrive at A destined for B each second, each packet having an average size of Kbyte. There are two design choices: (i) you build a single link with rate Mbps between A and B, (ii) you build two parallel 5Mbps links, and send a packet arriving at A randomly via either link. Assume each link is equipped with an infinite sized buffer. Assuming the M/M/ formula for the delay on a link, compute the average packet delay in each case. Which design choice is better? Can you explain why? You may ignore packet propagation times. In case (i), the link service rate equals Mbps/8Kb = 5 pkts/sec. Therefore, the mean delay equals /(5) = 4 ms. In case (ii), each link has a service rate of 65 pkts/sec, and sees an arrival rate of 5 pkts/sec. The mean delay therefore is /(655) = 8ms. The first design choice is better since if you double the arrival rate as well as the service rate in an M/M/ queue, the average waiting time decreases by a factor of /..7 W&P: P.6 3 Points. Consider a router in the backbone of the Internet. Assume that the router has 4 ports, each attached to a Gbps link. Say that each link is used at 5% of its capacity by connections that have an average throughput of kbps. How many connections go through the router at any given time? Say that the connections last an average of minute. How many new connections are set up that go through the router in any given second, on average? Aggregate average throughput per link is Gbps 5% = 5Mbps. Hence average number of connections per link is 5Mbps/kbps = 75, and average number of connections at the router is 75 4 = 8,. Then Littles Law implies the number of new connections set up at the router: λ = N/T = 8, /6 = 3 connections/sec. 3
4 CS/EE43 Networking Fall WF: :3 :55am Professor Steven Low Aggregate average throughput per link = Gbps x 5% = 5Mbps. Hence, average #connections per link = 5Mbps / kbps = 75, and average #connections/router = 75 x 4 = 8,. Little s Law then implies: = N / T = 8, / 6 = 3 connections/sec..8 W&P, P.7 8. W&P, P.7 [4 points] We would like to transfer KB ( Byte=8 bits) file across a network from node A to node F. Packets have a length of KB (neglecting header). The path from node A to node F passes through 5 links, and 4 intermediate nodes. Each of the links is a Km optical fiber with a rate 4 Points. We would like to transfer KB ( Byte=8 bits) file across a network from node A to node of Mbps (assume speed of light in optical fiber is.x F. Packets have a length of KB (neglecting header). The 8 m/s). The 4 intermediate nodes are path from node A to node F passes through store and forward devices, and each intermediate node must perform a 5 s routing table 5 links, and 4 intermediate look up after receiving nodes. a packet Eachbefore of the it can links is a Km optical fiber with a rate of Mbps (assume speed of light in optical fiber is. 8 begin sending it on the outgoing link. How long does it take to send the entire file across the network? m/s). The 4 intermediate nodes are storeandforward devices, and each intermediate node must perform a 5 µs routing table look up after receiving a packet before it can begin sending it on the outgoing link. How long does it take to send the entire file across the network? Timing diagram: Look at the time diagram Figure. A B C D T T T3 T T T3 Let: Let: link propagation delay = T = km / (x 8 m/s) =.5 ms packet transmission time = T = kb/mbps =.8 ms Figure : Time diagram of packets transferred through 5 links and 4 intermediate nodes. link propagation delay = T = km / ( 8 m/s) =.5 ms packet transmission time = T = kb/mbps =.8 ms node processing time = T 3 =.5 ms. Assume A starts transmission at time, then: The time at which B receives and finishes processing first packet is T B = T + T + T 3. The time at which C receives and finishes processing first packet is T C = T B + T + T + T 3 = T B. The time at which D receives and finishes processing first packet is T D = 3T B. 5 The time at which F receives the first packet is T F = 4T B + T + T since F does not need to look up the routing table. Therefore, the time at which F receives all packets is T F + 9T = 4(T + T + T 3 ) + T + T = 5T + 4T + 4T 3 = = 9.65 ms. 4
5 .9 W&P, P.9 3 Points. Consider the case of GSM cell phones. GSM operates at 7.88 Kbps and uses a spectrum spanning KHz. What is the theoretical SNR (in db) that these phones need for operation? In reality, the phones use a SNR of db. Use Shannons theorem to calculate the theoretical capacity of the channel, under this signaltonoise ratio. How does the utilized capacity compare with the theoretical capacity? (a) By Shannon s formula C = W log ( + SNR), we have 7.88kbps = khz log ( + SNR). Hence, required SNR is 7.88 =.557 = log (.557) db =.9 db. (b) With SNR = db, Shannon capacity = khz log (+) = 69 kbps. Therefore, the utilization is 7.88/69 = 39%.. IP addresses Points. Consider an IPv4 subnet with private IP address space /4. If each IP interface in the subnet needs a distinct IP address, then how many IP interfaces can there be in the subnet? [Hint: to obtain the right answer, please look up what is a broadcast address online.] There is a total of 8 = 56 IP addresses in this subnet. One of these IP addresses (the one whose last 8 digits are all ) should be reserved for broadcasting, leaving 55 IP addresses for physical interfaces. Hence, a maximum number of 55 IP interfaces is allowed in the subnet.. Network operations 6 Points. Assume that host A sends a file of KByte ( Byte=8 bits) to host F. Host A segments the file into packets, each of KB (why packets instead of?). The path from A to F passes through 5 links and 4 routers. Each link is a km optical fiber with Mbps capacity (the speed of light in an optical fiber is. 8 m/s). East router performs a 5µs routing table look up after receiving a whole packet, before forwarding the packet to an output port. How long does it take for the file to reach F? (Assume that a router can look up the routing table for multiple packets simultaneously.) The KByte file is segmented into packets of KB instead of, since each packet has header (so that the data in a packet is less than KB) and redundant packets may be introduced for forward error correction. Let B, C, D, E denote the four intermediate routers on the path from A to F, and let t p, t s, t l denote the propagation time of a link, transmission time of a packet, and table lookup time respectively. The timeline of the overall data transmission is shown in Figure 9. It is clear from the figure that the overall transmission time is T = 4(t p + t s + t l ) + t p + t s = 5t p + 6t s + 4t l km KB = m/s Mbps + 4 5µs = 5.5ms + 6.8ms + 4.5ms =.5ms. 5
6 A B C D E F t p t s t l t p t s t l t p t s t l t p t s t l t p t s t s Figure : Timeline of the data transfer from A to F. Here B, C, D, E represent the four routers on the path from A to F, and t p, t s, t l represent the propagation time of a link, transmission time of a packet, and table lookup time, respectively. 6
7 Ethernet. W&P, P3. 3 Points. Consider the Slotted ALOHA MAC protocol. There are N nodes sharing a medium, and time is divided into slots. Each packet takes up a single slot. If a node has a packet to send, it attempts transmission with a certain probability. The transmission succeeds if no other node attempts transmission in that slot. Now, suppose that we want to give differentiated services to these nodes, i.e., we want different nodes to get a different share of the medium. The scheme we choose works as follows: If node i has a packet to send, it will try to send the packet with probability p i. Assume that every node has a packet to send all times. In such a situation, will the nodes indeed get a share of the medium in the ratio of their probability of access? Consider a given slot. Since every node has a packet to send and transmits with probability p i, the probability of success for any node i is p i ( p j ) = p i β p i j i where β := N j= ( p j) is independent of any user j. Therefore, the share of the media any user i gets is proportional to. W&P, P3.4 pi p i, not to p i. 4 Points. Consider a commercial Mbps Ethernet configuration with one hub (i.e., all end stations are in a single collision domain). (a) Point. Find the Ethernet efficiency for transporting 5 byte packets (including Ethernet overhead) assuming that the propagation delay between the communicating end stations is always 5.6 µs, and that there are many pairs of end stations trying to communicate. (b) Points. Recall that the maximum efficiency of Slotted Aloha is /e. Find the threshold for the frame size (including Ethernet overhead) such that Ethernet is more efficient than Slotted Aloha if the fixed frame size is larger than this threshold. Explain why Ethernet becomes less efficient as the frame size becomes smaller. (a) Following the derivation of efficiency of the text, we have where Now Therefore A = η = + 3.4A A := PROP TRANS. TRANS = packet transmission time = 5.6 µs 49.6 µs =.65, and hence efficiency η = 5 8 bits Mbps = 8%. 7 = 49.6 µs.
8 (b) Let the Ethernet frame size be s bits, then and We want s such that which implies s TRANS = s bits Mbps = s µs A = PROP TRANS = PROP. s η = 34 PROP e PROP s = e = 56.6 bits..78 A smaller frame size implies a larger A, which implies a smaller efficiency. Note that on average, an interval of length (e )PROP gets wasted between successful transmissions. A smaller frame size implies therefore that the fraction of time spent transmitting data successfully is smaller..3 W&P, P3.5 4 Point. Ethernet standards require a minimum frame size of 5 bits in order to ensure that a node can detect any possible collision while it is still transmitting. This corresponds to the number of bits that can be transmitted at Mbps in one roundtrip time. It only takes one propagation delay, however, for the first bit of an Ethernet frame to traverse the entire length of the network, and during this time, 56 bits are transmitted. Why, then, is it necessary that the minimum frame size be 5 bits instead of 56? A station detects collision by listening and comparing what it hears on the wire with what it transmits. Therefore, if it transmits for a roundtrip time, it can compare the signal it detects on the wire with what it just transmitted onto the wire, and a collision is detected if they are different. If it transmits only for RTT, it would have stopped transmitting before the signal from the other end reaches it, and hence miss the detection. This is illustrated in Figure 3..4 Switch vs Hub, W&P, P3.7 6 Points. In the network shown in Figure 4, all of the devices want to transmit at an average rate of R Mbps, with equal amounts of traffic going to every other node. Assume that all of the links are halfduplex and operate at Mbps and that the medium access control protocol is perfectly efficient. Thus, each link can only be used in one direction at a time, at Mbps. There is no delay to switch from one direction to the other. (a) 3 Points. What is the maximum value of R? (b) 3 Points. The hub is now replaced with another switch. What is the maximum value of R now? Denote the flows on links as in Figure 5. (a) There are two potential bottlenecks: the switchhub link or the hub. Switchhub link bottleneck: Each node generates 7 flows, each of rate R/7, to each of the other nodes. Therefore the rate crossing the link from switch to link is X = R = 6 7 R. 8
9 CS/EE43 Networking Fall WF: :3 :55am Professor Steven Low CS/EE43 Networking Fall WF: :3 :55am Professor Steven Low from the root; the rest are all blocked ports), no LAN segment will use Bridge 8 to send or receive Ethernet frames. Therefore, removing Bridge 8 has no effect on the spanning tree, except that it has one fewer leaf node now. 5. W&P, P3.7 [4 points.] In the network shown below, all of the devices want to transmit at an average rate of R Mbps, with equal amounts of traffic going to every other node. Assume that all of the links are halfduplex W&P, and P3.6 operate [4 points] at Mbps and that the media access control protocol is perfectly 4. Figure 3: Diagram Consider efficient. demonstrating the Thus, corporate each link Ethernet can only why shown be used the minimum the in one figure direction frame below. at should Each a time, switch at be transmitted is Mbps. labeled There with is its no for ID. RTT in order to delay to switch from one direction to the other. successfully detect collision. (a) What is the maximum value of R? [ points] (a) Determine which links get deactivated after the Spanning Tree Algorithm runs, and indicate (b) The hub is now replaced with another switch. What is the maximum value of R now? [ them points] on the diagram by putting a small X through the deactivated links. [3 points] Figure 4: An ethernet. Each circle represents a host, that wants to send an aggregate of R Mbps traffic, (b) A disgruntled employee wishes to disrupt the network, so she plans on unplugging central evenly to other hosts. Bridge 8. How does this affect the spanning tree and the paths that Ethernet frames follow? [ point] Figure 5: Flows in the hubswitch ethernet. 9
10 The rate crossing the link from hub to switch is Y = 4R since the hub repeats all input flows on all links except from they come from. Then we have X + Y Mbps = R 5.9 Mbps. Hub bottleneck: Take any link, say, from hub to node A. The total rate of traffic on this link is the sum of all input traffic to the link except its own: S A = 3R + X = ( )R = 37 7 R. This traffic shares the link with the traffic from A to hub, which has the rate R. Therefore, S A + R Mbps = ( )R Mbps = R 5.9 Mbps. Hence, both bottlenecks impose the same upper bound for R. (b) When the hub is replace with a switch, then X = Y and the switchswitch link is the only bottleneck. X = 3 R Mbps = R.875 Mbps. 7.5 Spanning Tree Protocol, W&P, P3.6 6 Points. Consider the network topology shown in Figure 6, where,,..., 8 denote 8 switches interconnecting 9 Ethernets. Figure 6: Each circle represents a switch, interconnecting 9 Ethernets. (a) 3 Points. Determine which links get deactivated after the Spanning Tree protocol runs, and indicate them on the diagram by putting a small X through the deactivated links. (b) 3 Points. A disgruntled employee wishes to disrupt the network, so she plans on unplugging central bridge switch 8. How does this affect the spanning tree and the paths that Ethernet packets follow? (a) The STP operates as follows:
11 CS/EE43 Networking Fall WF: :3 :55am Professor Steven Low (a) The STP operates as follows:. The bridge with the smallest ID will be the root (Bridge ). The. bridge Each with bridge the finds smallest a shortest ID will path be to the root, where (Bridge link ). cost is simply hop count (# bridges en route to root). The port on a bridge through which it roots is called a root. Each bridge finds a shortest path to the root, where link cost is simply hop count (# bridges en port (RP). route to root). The port on a bridge through which it roots is called a root port (RP). 3. A tie is broken by choosing the port / path where the next hop (bridge) has a smallest 3. A tie isid. broken by choosing the port / path where the next hop (bridge) has a smallest ID. 4. Each LAN segment will choose a bridge towards the root; the port on the bridge that s 4. Each LAN chosen segment by the will LAN choose segment a is bridge called towards a designated the root; port (DP). the port on the bridge thats chosen by the5. LAN A tie segment is broken is by called the LAN a designated choosing a bridge port (DP). with the smallest ID. 5. A tie is broken by the LAN choosing a bridge with the smallest ID. For the following figure, In Figure 7: BP: blocked port BP: blocked port DP: designated DP: designated port (incoming port (incoming chosen chosen by LAN) by LAN) RP: rootrp: port root (outgoing port (outgoing chosen chosen by bridge). by bridge) Note that LAN chooses Bridge over 8 become of smaller bridge ID. (b) Since Bridge 8 has no DP (it only has RP which will be used by Bridge 8 to send / receive Figure 7: Spanning Tree Protocol. Note that LAN chooses Bridge over 8 because of smaller bridge ID. (b) Since Bridge 8 has no DP (it only has RP which will be used by Bridge 8 to send / receive from the root; the rest are all blocked ports), no LAN segment will use Bridge 8 to send or receive Ethernet frames. Therefore, removing Bridge 8 has no effect on the spanning tree, except that it has one fewer leaf node now.
12 .6 Aloha (a) (Equal Share). Assume that n hosts share a medium using the slotted ALOHA protocol: at every time slot, each host attempts to send a packet with probability p. A host succeeds to send a packet at a given time slot if and only if it is the only host that sends a packet at that time slot.. Points. What is the probability that a host sends a packet successfully at a give time slot?. Points. What is the probability P{a packet sent} that a packet be sent at a given time slot? 3. 4 Points. What choice of p maximizes the probability P{a packet sent}? How does this maximum probability behave as n? (b) (Unequal Share). Assume that n hosts share a medium using the slotted ALOHA protocol, but at every time slot, each host attempts to send a packet with a different probability. More specifically, let N := {,..., n} denote the collection of hosts and assume that host i attempts to send a packet with probability p i (, ) at every time slot for i =,..., n.. Points. What is the probability P i := P{i sends a packet successfully} that host i N sends a packet successfully at a given time slot?. Points. What is the ratio P : P : P 3 : : P n? This ratio characterizes the share of medium among the hosts. Is the share of medium proportional to the probabilities p i that hosts attempt to send packets, i.e., is the ratio P : P : P 3 : : P n equal to p : p : p 3 : : p n? 3. (*) 5 Points. Assume n i= p i = and let P := n i= P i denote the probability that a packet gets successfully transmitted at a given time slot. Prove that (p, p, p 3,..., p n ) = (/n, /n,..., /n) minimizes P, i.e., (/n, /n,..., /n) is the solution to min n p i ( p j ) i= j i s.t. p i, i =,..., n; n p i =. It means that equal share of the medium minimizes the throughput. (a) Answers given in the lecture/textbook. i= (b) same answer as Problem. in this set; 3. Consider the nontrivial case where n 3. Let P (p) := n i= p i j i ( p j). Consider any p = (p,..., p n ) ( n,..., n ) which satisfies n i= p i = and p i, i Let M := max i=,...,n p i, and m := min i=,...,n p i. Hence we have M > n > m. Without loss of generality, let p = M and p = m, then p = (M, m,..., p n ). Let p = ( M+m, M+m,..., p n ). It is
13 sufficient to show P (p) > P (p ). We have n P (p) P (p ) = [M( m) + ( M)m] n ( p j ) + ( m)( M) = > = = M + m ( M + m ( (M + m) Mm) 4 j=3 i=3 n ) ( p j ) + ( M + m n ) j=3 i=3 n n ( p j ) ( p j ) j=3 ( (M + m) Mm) n 4 n p i i=3 j=3 i=3 p i ( p j ) j,,i n i=3 p i j,,i ( (M + m) Mm) n p i ( p i ) ( p j ) 4 i=3 j,,i ( (M + m) Mm) n ( p i )p i ( p j ) 4 i=3 j,,i p i ( p j ) ( p j ) j,,i p i j,,i ( p j ) () n i=3 p i j,,i ( p j ) () where the inequality in () is because (M + m) 4Mm > for M m and n i=3 p i <, and the inequality in () is because p i since otherwise p i > M, which leads to a contradiction. 3
14 3 Routing 3. Longest prefix matching (exercise) Point. Consider the following routing table. IP output port / /6 Which outport should a packet be forwarded to, if its destination IP address is ? The IP address matches the first 4 bits of the first entry, and only 6 bits for the second entry. Hence, the packet should be forwarded to port according to longest prefix matching. 3. Static routing, W&P, P5. Consider the network topology depicted in Figure 8. Each link is marked with its weight/cost. Figure 8: Network topology with link weights. (a) 3 points. Run Dijkstras algorithm on the above network to determine the routing table for node 3. (b) 3 points. Repeat (a) using BellmanFord algorithm. (a) The steps of Dijkatra s algorithm are: steps F D, pred D, pred D4, pred D5, pred D6, pred D7, pred 3 inf,, 3 8, 3 inf, inf, inf, 3, 3, 8, 3 inf, inf, inf, 3,, 8, 3 7, inf, 6, 3 3,,,7 8, 3 7,, 7 4 3,,,7,5 8, 3 9, 5 5 3,,,7,5,4 9,5 6 3,,,7,5,4,6 where F is the set of points for which the shortest distance and path to node 3 have been determined, Di 4
15 denotes the currentstep shortest distance from node i to node 3, and pred stands for the predecessor of node i on its shortest path to node 3. D3 = at initialization. Hence the routing table for node 3 is: (b) The steps of BellmanFord algorithm are: destination next node steps D, pred D, pred D4, pred D5, pred D6, pred D7, pred inf,, 3 8, 3 inf, inf, inf, 3,, 3 8, 3 9, 4 inf, inf, 3,, 3 8, 3 7,, 5 6, 3 3,, 3 8, 3 7, 9, 5 6, 4 3,, 3 8, 3 7, 9, 5 6, where D3 = at initialization. The resulting routing table of node 3 is the same as (a). 3.3 Dynamic routing Consider 5 stations connected in a bidirectional ring, as shown in Figure 9. Suppose station is Figure 9: A bidirectional ring topology. the only sender, and it sends packets to all other stations,, 3, 4 at rates 4, 3,, packets/sec, respectively. Note that these are endtoend traffic rates between source and all destinations, not the link flow rates which depend on the routing. These endtoend sourcetodestination rates and the routing decision jointly induce a traffic pattern on the network and hence flow rates on the links. (a) 3 points. Table shows the routing tables at each station. For each station, the first column is D (destination) and the second column is NN (next node). Indicate in a diagram the routes from station to stations,, 3, 4 as implemented by the routing table. 5
16 These end to end source to destination rates and the routing decision jointly induce a traffic pattern on the network and hence flow rates on the links. (a) The routing tables at each station is as shown below (for each station, the first column is D (destination) and the second column is NN (next node)). Table : Routing tables of stations Station Station Station Station Station Station Station 3 Station 3 Station 4 4 D NN D NN D NN D NN D NN NN D NN D NN 3 D NN 4 D NN Indicate in 3a diagram the 3 routes from 3 station 3 to stations 4,, 3, 4 as implemented by the routing table (b) Suppose the flow rate on a link is used as the cost of that link ( of them). Use the Dijkstra (b) 3 points. Suppose algorithm the to compute flow ratethe onshortest a link is paths usedfrom as the station cost of to that all other link stations. (there are links in total). Use the Dijkstra algorithm to compute the (new) shortest paths from station to all other stations. (c) Compute the new flow rates and then the shortest paths from station to all other stations, (c) 3 points. using Compute the Bellman Ford the new flow algorithm. rates and Will thenrouting shortest ever converge? paths from station to all other stations, using the BellmanFord algorithm. If this procedure is repeated, will the routing ever converge? (a) The shortestpath (a) The tree shortest path from station tree implemented is such that by that the routing all traffic table goes is: all clockwise, traffic goes asclockwise, shown inas Fig.. shown: Figure : Shortestpath tree in P3.3 (a). (b) The costs (flow rates) on the links induced by the routing table are as shown in Fig.. Note that all links in the counterclockwise direction have zero costs. The steps of Dijkstra s algorithm are shown in the table below: steps F D, pred D, pred D3, pred D4, pred, inf, inf,,,4, inf,, 4,4,3,, 3 3,4,3,, 4,4,3,, Therefore, all traffic is routed in the counterclockwise direction in the shortestpath tree, exactly opposite to the routing used in (a), as shown in Fig.. (c) The costs (flow rates) on the links induced by the routing in (b) are as shown in Fig. 3. Note that all links in the clockwise direction have zero costs. The steps of BellmanFord algorithm are: 6
17 that all links in the counter clockwise direction have zero costs. CS/EE43 Networking Fall WF: :3 :55am Professor Steven Low 4 6 CS/EE43 Networking 3 Fall WF: :3 :55am Professor Steven Low 3 Dijkstra computation: 4 Figure : t F Network D, topology pred D, with predlink D3, costs pred(flow D4, rates) pred in P3.3 (b)., Inf, Inf,,, 4, 3 Inf,, 4, 4, 3 4,, 3 3, 4, 3,, (c) The 4 costs, (flow 4, 3,, rates) on the links induced by the routing table are as shown below. Note that all links in the clockwise direction now have zero cost. 3 Therefore, all traffic is routed in the counter clockwise direction in the shortest path tree, exactly opposite to the routing used in the previous period, as shown: Figure : New shortest path tree calculated in P3.3 (b). (c) The costs (flow rates) on the links induced by the routing table are as shown below. Note that all links in the clockwise direction now have zero 9 cost Bellman Ford computation: Figure 3: t D, pred D, Network pred 9 topology D3, pred with D4, link 4 pred costs (flow rates) in P3.3 (c). 7, steps D, Inf, pred Inf, D, pred, D3, pred D4, pred 3, inf, inf,,,, 9, 4,,,,, Bellman Ford computation: 3,,,, 3 4,,,, 3 t D, pred D, pred D3, pred D4, pred, Inf, Inf, 7,
18 Therefore, all traffic is routed in the clockwise direction in the shortestpath tree, exactly the same as the routing used in (a), as shown in Fig.. Indeed, the routing updates will continue to oscillate across routing update periods, between the results of (a) and (b), and will never converge. 3.4 Dynamic routing (exercise) Consider the case where H sends Mbps traffic to H via one of two links as in Figure 4, either through R or through R. Consider the dynamic routing case where the routing table is updated every 3 minutes. When the routing table is updated, the link weight at a link is computed by the following equation: weight = Mbps + average throughput over the past 3 minutes. capacity Assume that at t =, the routing table is updated, and at t = ms, H starts sending traffic to H. Mbps R Mbps H H 4Mbps R 4Mbps Figure 4: A sends packets of KB to B via a Mbps link with KB buffer. Give the traffic throughput through Routers R and R at t =, 4, 7,... minutes. At t =, the traffic is on both paths (H R H and H R H). Therefore the link weights are t = H H R / / R /4 /4 After running the shortest algorithm, H decides to choose the path via R, during 3 minutes. At t = 3, the traffic is on the path via R and Mbps on the path via R. Therefore the link weights are t = 3 H H R / / R 3/4 3/4 After running the shortest algorithm, H decides to choose the path via R, during 3 6 minutes. At t = 6, the traffic is Mbps on the path via R and on the path via R. Therefore the link weights are t = 6 H H R 3/ 3/ R /4 /4 8
19 After running the shortest algorithm, H decides to choose the path via R, during 6 9 minutes. Then at t = 9, the situation is the same as t = 3, and routing starts oscillating every 6 minutes. As a result, the traffic throughput is shown below. t R Mbps Mbps R Mbps Mbps Mbps 3.5 Routing on a continuum of nodes (exercise) Consider the network given in Figure 5. Each point represents a router, connected to its neighbors Figure 5: Network topology for problem 3.5. via links of capacity. The links form the ring. Lable the routers by x [, ), and give router two labels: and. Assume that all traffic have the same destination: router. Let r(x) denote the source rate at x for x [, ), and assume r(x) = x. (a) (Static Routing). Consider the following static routing strategy: pick a y (, ), let every router x (, y) forwards packets clockwise, and every router x (y, ) forwards packets counterclockwise. What is the traffic throughput f (x, y) at link x for x (, y), and what is the traffic throughput f + (x, y) at link x for x (y, )? Use the expression of the queueing delay for the M/M/ queue. What is the queueing delay d s (x, y) at link x for x (, y), and what is the queueing delay d + s (x, y) at link x for x (y, )? Let d s (y) := sup x (,y) d s (x, y) denote the maximum queueing delay over links x (, y), i.e., over the links that forward packets clockwise. And let d + s (y) := sup x (y,) d + s (x, y) denote the maximum queueing delay over links x (y, ), i.e., over the links that forward packets counterclockwise. What is d + s (y) and d s (y)? Assume that the propagation delay d i (x) from x to (clockwise) is x, and that the propagation delay d + i (x) from x to (counterclockwise) is x. Each router x has two paths, clockwise or counterclockwise, to forward packets to the destination router (). Label the clockwise path by superscript  and the counterclockwise path by superscript +, and define costs D + (x, y) := d + s (y) + d + i (x), D (x, y) := d s (y) + d i (x) 9
20 for the two paths. For what values of x is D + (x, y) equal to D (x, y)? Let x(y) denote the x where D + (x, y) = D (x, y). Use matlab (or other tools) to draw x(y) as y increases from to, when does the line intersect z(y) = y? Let y denote the y (, ) where x(y) intersects z(y). Show that < x < y D (x, y) < D + (x, y), y < x < D (x, y) > D + (x, y) when y = y. That is, when x < y, the left path has smaller cost, and the right path has bigger cost. This is considered stationary. Give an interpretation of why this is called stationary. (b) (Dynamic Routing). Let s extend (a) to the dynamic routing case where routing y is updated over time. Let y k denote the routing strategy at time k =,,... and assume y k+ = x(y k ) for k =,,,... For what initial values of y does the sequence {y k } y converge? (a). Hence we have f (x, y) = f + (x, y = y x x y r(s)ds = y x, x (, y) r(s)ds = x y, x (y, ) d s (x, y) = f (x, y) = y, + x x (, y) d + s (x, y) = f + (x, y) = x, + y x (y, ) d s (y) = d s (, y) = y. Let, and hence we have. d + s (y) = d + s (, y) = y D (x, y) = y + x = y + x = D+ (x, y) x(y) = ( + y y ) See Fig. 6. The unique solution of x(y) = y on [, ] is y = When < x < y we have D (x, y ) < D (y, y ) = D (x(y ), y ) = D + (x(y ), y ) = D + (y, y ) < D + (x, y ) We can show D (x, y ) > D + (x, y ) when y < x <, in a similar way. When y = y, the routing protocol happens to guarantee that all the nodes select the shorter path, and there is no motivation for them to deviate to any other routing. (b) Let y := sup{y [, ] x(y) = } and y := inf{y [, ] x(y) = }. From Fig. 6 we see that x (y) > for y [y, y], which implies that y k+ = x(y k ) will not converge, unless y = y.
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker 
More informationAnswer: that dprop equals dtrans. seconds. a) d prop. b) d trans
Chapter 1 1) p. 98: P6 This elementary problem begins to explore propagation delay and transmission delay, two central concepts in data networking. Consider two hosts, A and B, connected by single link
More informationEINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h12.00h. First read the entire examination. There
More information6.1. Why do LANs tend to use broadcast networks? Why not use networks consisting of multiplexers and switches?
TUTORIAL 2 (EKT 332) 6.1. Why do LANs tend to use broadcast networks? Why not use networks consisting of multiplexers and switches? Why broadcast network? The computers in a LAN are separated by a short
More informationEXAMPLES AND PROBLEMS. Competence Based Education Internet Protocols
EXAMPLES AND PROBLEMS Competence Based Education Internet Protocols Example 1 In following figure frames are generated at node A and sent to node C through node B. Determine the minimum transmission rate
More informationData Networks Summer 2007 Homework #3
Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.
More informationNote! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages
Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages
More informationCS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 Important: The solutions to the homework problems from the course book have been provided by the authors.
More informationDATA COMMUNICATIONS AND NETWORKING. Solved Examples
Page 1 of 10 DATA COMMUNICATIONS AND NETWORKING Solved Examples References: STA: Stallings, Data and Computer Communications, 6 th ed. TAN: Tannenbaum, Computer Networks, 4 th ed.) 1. Given the following
More informationComputer Networks Homework 1
Computer Networks Homework 1 Reference Solution 1. (15%) Suppose users share a 1 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 10 percent of the time.
More informationIntroduction to LAN/WAN. Network Layer
Introduction to LAN/WAN Network Layer Topics Introduction (55.1) Routing (5.2) (The core) Internetworking (5.5) Congestion Control (5.3) Network Layer Design Isues StoreandForward Packet Switching Services
More informationIntroduction to Local Area Networks
For Summer Training on Computer Networking visit Introduction to Local Area Networks Prepared by : Swapan Purkait Director Nettech Private Limited swapan@nettech.in + 91 93315 90003 Introduction A local
More informationTransport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
More informationLocal Area Networks (LANs)
Local Area Networks (LANs) Broadcast Networks Multiple Access Protocols Ethernet (IEEE 802.3) Token Ring (IEEE 802.5, FDDI) Introduction So far, we have dealt with switched communication networks. Recall
More informationBased on Computer Networking, 4 th Edition by Kurose and Ross
Computer Networks Ethernet Hubs and Switches Based on Computer Networking, 4 th Edition by Kurose and Ross Ethernet dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology Simpler,
More informationCS/ECE 438: Communication Networks for Computers Spring 2014 Midterm Study Guide
CS/ECE 438: Communication Networks for Computers Spring 2014 Midterm Study Guide 1. Channel Rates and Shared Media You are entrusted with the design of a network to interconnect a set of geographically
More informationComputer Network. Interconnected collection of autonomous computers that are able to exchange information
Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.
More informationESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK
VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK Contemporary Control Systems, Inc. Understanding Ethernet Switches and Routers This extended article was based on a twopart article that was
More informationLatency on a Switched Ethernet Network
Application Note 8 Latency on a Switched Ethernet Network Introduction: This document serves to explain the sources of latency on a switched Ethernet network and describe how to calculate cumulative latency
More informationBasic Multiplexing models. Computer Networks  Vassilis Tsaoussidis
Basic Multiplexing models? Supermarket?? Computer Networks  Vassilis Tsaoussidis Schedule Where does statistical multiplexing differ from TDM and FDM Why are buffers necessary  what is their tradeoff,
More informationExam 1 Review Questions
CSE 473 Introduction to Computer Networks Exam 1 Review Questions Jon Turner 10/2013 1. A user in St. Louis, connected to the internet via a 20 Mb/s (b=bits) connection retrieves a 250 KB (B=bytes) web
More informationGATE CS Topic wise Questions Computer Network
www.gatehelp.com GATE CS Topic wise Questions YEAR 23 Question. 1 Which of the following assertions is false about the internet Protocol (IP)? (A) It is possible for a computer to have multiple IP addresses
More informationNote! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages
Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages
More informationDIN 2012 Tutorial. physical links between primary and secondary stations: Synchronous Connection Oriented (SCO); Asynchronous Connection Link (ACL).
DIN 2012 Tutorial (Q1a) In the IEEE 802.15 standard (Bluetooth), describe the following two types of : physical links between primary and secondary stations: (i) (ii) Synchronous Connection Oriented (SCO);
More informationFaculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION
Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List
More informationTCP over Multihop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multihop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
More informationCH.1. Lecture # 2. Computer Networks and the Internet. Eng. Wafaa Audah. Islamic University of Gaza. Faculty of Engineering
Islamic University of Gaza Faculty of Engineering Computer Engineering Department Networks Discussion ECOM 4021 Lecture # 2 CH1 Computer Networks and the Internet By Feb 2013 (Theoretical material: page
More informationRegion 10 Videoconference Network (R10VN)
Region 10 Videoconference Network (R10VN) Network Considerations & Guidelines 1 What Causes A Poor Video Call? There are several factors that can affect a videoconference call. The two biggest culprits
More informationDatagrambased network layer: forwarding; routing. Additional function of VCbased network layer: call setup.
CEN 007C Computer Networks Fundamentals Instructor: Prof. A. Helmy Homework : Network Layer Assigned: Nov. 28 th, 2011. Due Date: Dec 8 th, 2011 (to the TA) 1. ( points) What are the 2 most important networklayer
More informationComputer Networks  CS132/EECS148  Spring 2013 
Computer Networks  CS132/EECS148  Spring 2013 Instructor: Karim El Defrawy Assignment 3  Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) 
More information4. MAC protocols and LANs
4. MAC protocols and LANs 1 Outline MAC protocols and sublayers, LANs: Ethernet, Token ring and Token bus Logic Link Control (LLC) sublayer protocol Bridges: transparent (spanning tree), source routing
More informationComputer Networks. Definition of LAN. Connection of Network. Key Points of LAN. Lecture 06 Connecting Networks
Computer Networks Lecture 06 Connecting Networks Kuanghua Chen Department of Library and Information Science National Taiwan University Local Area Networks (LAN) 5 kilometer IEEE 802.3 Ethernet IEEE 802.4
More informationSwitches and Bridges. COS 461: Computer Networks Spring 2009 (MW 1:302:50 in COS 105) Guest Lecture Jennifer Rexford 1
Switches and Bridges COS 461: Computer Networks Spring 2009 (MW 1:302:50 in COS 105) Guest Lecture Jennifer Rexford 1 Goals of Todayʼs Lecture Devices that shuttle data at different layers Repeaters and
More informationUSN 06EC71 Seventh Semester D.E. Degree Examination, December 2010 Computer Communication Networks Time: 3 hrs. Note: Answer any FIVE full questions, selecting at least TWO questions/rom each part. Max.
More informationHomework Assignment #1 Solutions
Homework Assignment #1 Solutions EE122: Introduction to Communication Networks (Fall 2007) Department of Electrical Engineering and Computer Sciences College of Engineering University of California, Berkeley
More informationCS263: Wireless Communications and Sensor Networks
CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA
More informationQoS issues in Voice over IP
COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This
More informationAnswers to Sample Questions on Network Layer
Answers to Sample Questions on Network Layer ) IP Packets on a certain network can carry a maximum of only 500 bytes in the data portion. An application using TCP/IP on a node on this network generates
More informationCSE 123: Computer Networks Fall Quarter, 2014 MIDTERM EXAM
CSE 123: Computer Networks Fall Quarter, 2014 MIDTERM EXAM Instructor: Alex C. Snoeren Name SOLUTIONS Student ID Question Score Points 1 15 15 2 35 35 3 25 25 4 15 15 5 10 10 Total 100 100 This exam is
More informationFirst Midterm for ECE374 03/24/11 Solution!!
1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your
More informationNetwork Performance: Networks must be fast. What are the essential network performance metrics: bandwidth and latency
Network Performance: Networks must be fast What are the essential network performance metrics: bandwidth and latency Transmission media AS systems Input'signal'f(t) Has'bandwidth'B System'with'H() Output'signal'g(t)
More informationR2. The word protocol is often used to describe diplomatic relations. How does Wikipedia describe diplomatic protocol?
Chapter 1 Review Questions R1. What is the difference between a host and an end system? List several different types of end systems. Is a Web server an end system? 1. There is no difference. Throughout
More informationComputer Networks  CS132/EECS148  Spring 2013 
Computer Networks  CS132/EECS148  Spring 2013 Instructor: Karim El Defrawy Assignment 2 Deadline : April 25 th 9:30pm (hard and soft copies required) 
More informationProfessor: Ian Foster TAs: Xuehai Zhang, Yong Zhao. Winter Quarter. www.classes.cs.uchicago.edu/classes/archive/2003/winter/540011
Professor: Ian oster Ts: Xuehai Zhang, Yong Zhao Winter Quarter www.classes.cs.uchicago.edu/classes/archive//winter/5411 alculate the total time required to transfer a 1 KB file (RTT=1 ms, packet size
More informationPrefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes:
Data Transfer Consider transferring an enormous file of L bytes from Host A to B using a MSS of 1460 bytes and a 66 byte header. What is the maximum value of L such that TCP sequence numbers are not exhausted?
More informationFirst Semester Examinations 2011/12 INTERNET PRINCIPLES
PAPER CODE NO. EXAMINER : Martin Gairing COMP211 DEPARTMENT : Computer Science Tel. No. 0151 795 4264 First Semester Examinations 2011/12 INTERNET PRINCIPLES TIME ALLOWED : Two Hours INSTRUCTIONS TO CANDIDATES
More informationFirst Midterm for ECE374 02/25/15 Solution!!
1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
More informationCollege 5, Routing, Internet. Host A. Host B. The Network Layer: functions
CSNs 5/1 College 5, Routing, Internet College stof 1 Inleiding: geschiedenis, OSI model, standaarden, ISOC/IETF/IRTF structuur Secties: 1.2, 1.3, 1.4, 1.5 2 Fysieke laag: Bandbreedte/bitrate Secties:
More information15441: Computer Networks Homework 2 Solution
544: omputer Networks Homework 2 Solution Assigned: September 25, 2002. Due: October 7, 2002 in class. In this homework you will test your understanding of the TP concepts taught in class including flow
More informationEECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers
EECS 122: Introduction to Computer Networks Multiaccess Protocols Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 947201776
More informationRing Local Area Network. Ring LANs
Ring Local Area Network Ring interface (1bit buffer) Ring interface To station From station Ring LANs The ring is a series of bit repeaters, each connected by a unidirectional transmission link All arriving
More informationAttenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction
Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit
More informationEdges = communication links Vertices = computers, switches, routers, etc. For packet inbound at a particular vertex, determine what output edge to use
IP Routing Networks as Graphs Networks are graphs Edges = communication links Vertices = computers, switches, routers, etc For packet inbound at a particular vertex, determine what output edge to use Routers
More informationReferring to the above question, the endtoend delay (transmission delay plus propagation delay) is
CS326e Quiz 3 The first correct 10 answers will be worth 1 point each. Each subsequent correct answer will be worth 0.2 points. Circle the correct answer. UTEID In the following 7 problems, we are sending
More informationRouting in packetswitching networks
Routing in packetswitching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call
More informationPictureTel H.323 Videoconferencing Network Bandwidth Analysis
PictureTel H.323 Videoconferencing Network Bandwidth Analysis by John Bartlett NSD Engineering PictureTel Corporation August 25, 1997 Introduction This document evaluates the network bandwidth required
More informationAPPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM
152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented
More informationCSE3214 Computer Network Protocols and Applications. Chapter 1 Examples and Homework Problems
CSE3214 Computer Network Protocols and Applications Chapter 1 Examples and Homework Problems Example 1 (review question 18) (1) How long does it take a packet of length 1000 bytes to propagate over a link
More informationFirst Midterm for ECE374 03/09/12 Solution!!
1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
More informationLAN Switching. 15441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs
LAN Switching 15441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when
More informationWilliam Stallings Data and Computer Communications. Chapter 15 Internetwork Protocols
William Stallings Data and Computer Communications Chapter 15 Internetwork Protocols Internetworking Terms (1) Communications Network Facility that provides data transfer service An internet Collection
More informationTCOM 370 NOTES 9912 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL
1. Local Area Networks TCOM 370 NOTES 9912 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL These are networks spanning relatively short distances (e.g. within one building) for local pointtopoint and pointtomultipoint
More informationInternet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering
Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls
More informationPerformance Evaluation of Linux Bridge
Performance Evaluation of Linux Bridge James T. Yu School of Computer Science, Telecommunications, and Information System (CTI) DePaul University ABSTRACT This paper studies a unique network feature, Ethernet
More informationTransport and Network Layer
Transport and Network Layer 1 Introduction Responsible for moving messages from endtoend in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a
More informationRouting in Switched Networks
Routing in Switched Networks Chapter 12 CS420/520 Axel Krings Page 1 Routing in Circuit Switched Network Many connections will need paths through more than one switch Need to find a route Efficiency Resilience
More informationSeamless Congestion Control over Wired and Wireless IEEE 802.11 Networks
Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Vasilios A. Siris and Despina Triantafyllidou Institute of Computer Science (ICS) Foundation for Research and Technology  Hellas
More informationCROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING
CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network autoconfiguration and mobility
More informationOptimization of Communication Systems Lecture 6: Internet TCP Congestion Control
Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Professor M. Chiang Electrical Engineering Department, Princeton University ELE539A February 21, 2007 Lecture Outline TCP
More informationOscillations of the Sending Window in Compound TCP
Oscillations of the Sending Window in Compound TCP Alberto Blanc 1, Denis Collange 1, and Konstantin Avrachenkov 2 1 Orange Labs, 905 rue Albert Einstein, 06921 Sophia Antipolis, France 2 I.N.R.I.A. 2004
More informationPerformance of networks containing both MaxNet and SumNet links
Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for
More informationCS 421: Computer Networks FALL MIDTERM I November 22, minutes
CS 421: Computer Networks FALL 2004 MIDTERM I November 22, 2004 120 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with
More informationIP Addressing A Simplified Tutorial
Application Note IP Addressing A Simplified Tutorial July 2002 COMPAS ID 92962 Avaya Labs 1 All information in this document is subject to change without notice. Although the information is believed to
More informationApplications. Network Application Performance Analysis. Laboratory. Objective. Overview
Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying
More informationFinal Exam. Route Computation: One reason why link state routing is preferable to distance vector style routing.
UCSD CSE CS 123 Final Exam Computer Networks Directions: Write your name on the exam. Write something for every question. You will get some points if you attempt a solution but nothing for a blank sheet
More informationStar topology. Ethernet. Ethernet Frame Structure (more) Ethernet Frame Structure. Ethernet uses CSMA/CD. Unreliable, connectionless service
thernet dominant wired LN technology: cheap $0 for 00Mbs! first widely used LN technology Simpler, cheaper than token LNs and TM Kept up with speed race: 0 Mbps 0 bps Star topology us topology popular
More informationCSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache keyvalues pairs for 60
More informationRTT 60.5 msec receiver window size: 32 KB
RealWorld ARQ Performance: TCP Ex.: Purdue UCSD Purdue (NSL): web server UCSD: web client traceroute to planetlab3.ucsd.edu (132.239.17.226), 30 hops max, 40 byte packets 1 switchlwsn2133z1r11 (128.10.27.250)
More informationRequirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork RealTime Voice in a BestEffort IP Internetwork This topic lists problems associated with implementation of realtime voice traffic in a besteffort IP internetwork.
More informationCOMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination
COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm 19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This
More informationThe Internet software layers
The Internet software layers SMTP, Telnet, FTP, POP3, IMAP TCP, UDP IP: RIP, BGP, OSPF Ethernet, Wireless LAN, Token Ring Twisted pair, coaxial, microwave, optical fiber Ethernet 1973 Xerox s researcher
More informationWritten examination in Computer Networks
Written examination in Computer Networks February 14th 2014 Last name: First name: Student number: Provide on all sheets (including the cover sheet) your last name, rst name and student number. Use the
More informationInterconnection Networks. Interconnection Networks. Interconnection networks are used everywhere!
Interconnection Networks Interconnection Networks Interconnection networks are used everywhere! Supercomputers connecting the processors Routers connecting the ports can consider a router as a parallel
More information>>> SOLUTIONS <<< c) The OSI Reference Model has two additional layers. Where are these layers in the stack and what services do they provide?
Midterm Exam for Computer Networks (CNT 4004) Fall 2013 >>> SOLUTIONS
More informationObjectives. The Role of Redundancy in a Switched Network. Layer 2 Loops. Broadcast Storms. More problems with Layer 2 loops
ITE I Chapter 6 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Implement Spanning Tree Protocols LAN Switching and Wireless Chapter 5 Explain the role of redundancy in a converged
More informationProtocol Stack: ISO OSI Model. Layer 2: Data Link Layer. Layer 1: Physical Layer. Layer 4: Transport Layer. Layer 3: Network Layer
Protocol Stack: ISO OSI Model CSCE 515: Computer Programming OSI Models & layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina Some slides are made by Dave Hollinger
More informationLecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage
Lecture 16: Quality of Service CSE 123: Computer Networks Stefan Savage Final Next week (trust Blink wrt time/location) Will cover entire class Style similar to midterm I ll post a sample (i.e. old) final
More informationFrom the previous lecture
CS 640: Introduction to Computer Networks Aditya Akella Lecture 7  IP: Addressing and Forwarding From the previous lecture We will cover spanning tree from the last lecture 2 Spanning Tree Bridges More
More informationEKSAMEN / EXAM TTM4100 18 05 2007
1.1 1.1.1...... 1.1.2...... 1.1.3...... 1.1.4...... 1.1.5...... 1.1.6...... 1.1.7...... 1.1.8...... 1.1.9...... 1.1.10.... 1.1.11... 1.1.16.... 1.1.12... 1.1.17.... 1.1.13... 1.1.18.... 1.1.14... 1.1.19....
More informationCSE331: Introduction to Networks and Security. Lecture 6 Fall 2006
CSE331: Introduction to Networks and Security Lecture 6 Fall 2006 Open Systems Interconnection (OSI) End Host Application Reference model not actual implementation. Transmits messages (e.g. FTP or HTTP)
More informationHomework 2 assignment for ECE374 Posted: 02/20/15 Due: 02/27/15
1 Homework 2 assignment for ECE374 Posted: 02/20/15 Due: 02/27/15 ote: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit
More informationQuality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?
18345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/netsece Overview What is QoS? Queuing discipline and scheduling Traffic
More informationEECS 489 Winter 2010 Midterm Exam
EECS 489 Winter 2010 Midterm Exam Name: This is an openbook, openresources exam. Explain or show your work for each question. Your grade will be severely deducted if you don t show your work, even if
More informationLevel 2 Routing: LAN Bridges and Switches
Level 2 Routing: LAN Bridges and Switches Norman Matloff University of California at Davis c 2001, N. Matloff September 6, 2001 1 Overview In a large LAN with consistently heavy traffic, it may make sense
More informationSolutions to the Sample Questions on Introduction
Solutions to the Sample Questions on Introduction NOTE: Pay close attention to units. A byte of storage is 8bits, and 1 kilobits of storage is1024 bits. By convention, the rules are different between
More informationCongestion Control Review. 15441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
More informationSTANDPOINT FOR QUALITYOFSERVICE MEASUREMENT
STANDPOINT FOR QUALITYOFSERVICE MEASUREMENT 1. TIMING ACCURACY The accurate multipoint measurements require accurate synchronization of clocks of the measurement devices. If for example time stamps
More informationConfiguring Network Address Translation (NAT)
8 Configuring Network Address Translation (NAT) Contents Overview...................................................... 83 Translating Between an Inside and an Outside Network........... 83 Local and
More information(Refer Slide Time: 02:17)
Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,
More informationData Communication and Computer Network
1 Data communication principles, types and working principles of modems, Network principles, OSI model, functions of data link layer and network layer, networking components, communication protocols X
More information