Sistemas com saturação no controle  VII. VII. Discussões e extensões


 Claud Carpenter
 1 years ago
 Views:
Transcription
1 1 Sistemas com saturação no controle VII. Discussões e extensões Sophie Tarbouriech LAAS  CNRS, Toulouse, France Colaboradores principais : J.M. Gomes da Silva Jr (UFRGS), G. Garcia (LAASCNRS), I. Queinnec (LAASCNRS)
2 Outline 2 Few comments and discussions relative to analysis and synthesis of saturated systems 1. General question 2. Complexity analysis 3. Main remarks 4. Some applications 5. Some extensions 6. Further extensions
3 1. General question 3 Question Is it the effective saturation useful to enlarge the ellipsoidal estimates of the domain of attraction? [Iwasaki, SCL 2002] NO The larger ellipsoidal stability set is achieved for a linear control law (unsaturated) [Gomes da Silva Jr. et al, IEEETAC 2003] YES The larger ellipsoidal stability set is achieved for a linear control law (u = Kx), but in this case K is such that the eigenvalues of (A + BK) have real part ɛ 0 poor performance. If timedomain performances constraints are taken into account, the best ellipsoidal domain is obtained with saturating control laws. Tradeoffs: performance size of the stability region.
4 2. Complexity analysis 4 Saturation regions approaches: BMI (if the set E(c) is unknown) LMI otherwise 3 m constraints Polytopic LDI approaches: BMI (approach 1) LMI (approach 2) 2 m + m constraints Sector Nonlinearities approaches: BMI (approach 1) LMI (approach 2) 1+m constraints
5 2. Complexity analysis 5 Relative to the complexity analysis of the different approaches, the computation of the number of lines and number of variables (elements of the variables) of the LMIs considered is crucial. Indeed, the computation becomes more complex as these numbers increase. In the contexts of the polytopic LDI approaches (1 and 2) and saturation region approaches, one can verify that the complexity analysis exponentially increases. In the context of the sector nonlinearities approach, the complexity only linearly increases. The approach 2 in the context of sector nonlinearities approaches is very interesting and allows to obtain less complex numerical procedures. Generally, the sector nonlinearities approaches allow to obtain larger domains of stability, but there is no mathematical proof they outclass the other ones.
6 Saturation regions approaches: Useful only for stability analysis. Conditions difficult to test. Conservatism of the method. Polytopic LDI approaches: 3. Main remarks 6 Synthesis conditions similar to analysis condition with the classical change of variables K = YW 1. Approach 1 allows: to deal with global asymptotic stability; to consider LPV problems in the discretetime case. Approach 2 main advantage is that it provides LMIs conditions. Sector Nonlinearities approaches: Synthesis conditions similar to analysis condition with the classical change of variables K = YW 1. The computation of global stabilizing gains is direct. Lure type domains of stability can be considered, but only approximation can be plotted.
7 4. Some applications 7 Aeronautics (GARTEUR projects): avoidance of PIO Polytopic LDI approaches (past project) Sector nonlinearities approaches (current project) Spatial (Launcher Ariane 5+) Sector nonlinearities approaches Telecommunication networks Sector nonlinearities approaches
8 5. Some extensions 8 Discretetime systems Control laws via output feedback Static Dynamic It is possible to deal with performance taken into account through LMI regions For example by using Finsler Lemma to do multiobjective Additive disturbance and L 2 problems. Systems subject to uncertainties Timedelay systems Other limitations can be considered such as limitations on the state: Linear limitations Saturation
9 6. Further extensions 9 An interesting problem is to consider systems presenting nested saturations. Such functions appear in: The modelling of nonlinear actuators actuators presenting both amplitude and dynamics saturations [Tarbouriech et al], [Bateman & Lin] The modelling of systems presenting both actuator and sensor amplitude saturation [Tarbouriech et al] The context of some nonlinear control laws [Sontag], [Sussman], [Castelan et al] The forwarding techniques for cascade systems [Teel], [Kokotovic]
10 6. Further extensions 10 To study such systems we use an extension of Lemma 4 of chapter III. Lemma 1 A generic nonlinearity ψ(v) =sat(v) v satisfies the sector condition: ψ(v) T [ψ(v)+w] 0, v, w S(v 0 ) (1) where T is a positive diagonal matrix and the set S(u 0 ) isapolyhedralsetdefinedas follows: S(v 0 )={v R m,w R m ; v 0(i) v (i) w (i) v 0(i), i =1,...,m}
11 6. Further extensions 11 Example. Consider the system: ẋ = A 2 x + B 2 sat u2 (A 1 x + B 1 sat u1 (A 0 x)) This system reads: ẋ =[A 2 + B 2 (A 1 + B 1 A 0 )]x + B 2 ψ 2 + B 2 B 1 ψ 1 with ψ 1 = sat u1 (A 0 x) A 0 x ψ 2 = sat u2 (A 1 x + B 1 sat u1 (A 0 x)) (A 1 x + B 1 sat u1 (A 0 x)) = sat u2 ((A 1 + B 1 A 0 )x + B 1 ψ 1 ) ((A 1 + B 1 A 0 )x + B 1 ψ 1 ) Relation (1) applies for ψ 1 with: Relation (1) applies for ψ 2 with: T = T 1 ; v = A 0 x ; w = G 0 x ; v 0 = u 1 T = T 2 ; v =(A 1 + B 1 A 0 )x + B 1 ψ 1 ; w = G 1 x + G 2 ψ 1 ; v 0 = u 2
Università degli Studi di Roma Tor Vergata. Facoltà di Ingegneria
Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di laurea in ingegneria dell Automazione Tesi di Laurea Magistrale On Quantization in Control Systems: Stabilization of Saturated
More information4.1 Learning algorithms for neural networks
4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch Pitts units and perceptrons, but the question of how to
More informationTHE PROBLEM OF finding localized energy solutions
600 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997 Sparse Signal Reconstruction from Limited Data Using FOCUSS: A Reweighted Minimum Norm Algorithm Irina F. Gorodnitsky, Member, IEEE,
More informationRealTime Systems Versus CyberPhysical Systems: Where is the Difference?
RealTime Systems Versus CyberPhysical Systems: Where is the Difference? Samarjit Chakraborty www.rcs.ei.tum.de TU Munich, Germany Joint work with Dip Goswami*, Reinhard Schneider #, Alejandro Masrur
More informationWMR Control Via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 6, NOVEMBER 2002 835 WMR Control Via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation Giuseppe Oriolo, Member,
More informationAircraft Pitch Control Via Second Order Sliding Technique
Aircraft Pitch Control Via Second Order Sliding Technique A. Levant and A. Pridor Institute for Industrial Mathematics, BeerSheva, Israel R. Gitizadeh and I. Yaesh Israel Military Industries, RamatHasharon,
More informationIEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005 577. Least Mean Square Algorithms With Markov RegimeSwitching Limit
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005 577 Least Mean Square Algorithms With Markov RegimeSwitching Limit G. George Yin, Fellow, IEEE, and Vikram Krishnamurthy, Fellow, IEEE
More informationFeedback Control Theory
Feedback Control Theory John Doyle, Bruce Francis, Allen Tannenbaum c Macmillan Publishing Co., 1990 Contents Preface iii 1 Introduction 1 1.1 Issues in Control System Design.............................
More informationOverview of Missile Flight Control Systems
Overview of Missile Flight Control Systems Paul B. Jackson he flight control system is a key element that allows the missile to meet its system performance requirements. The objective of the flight control
More informationSubspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity
Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at UrbanaChampaign
More informationFeedback Control of a Nonholonomic Carlike Robot
Feedback Control of a Nonholonomic Carlike Robot A. De Luca G. Oriolo C. Samson This is the fourth chapter of the book: Robot Motion Planning and Control JeanPaul Laumond (Editor) Laboratoire d Analye
More informationIEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1 ActiveSet Newton Algorithm for Overcomplete NonNegative Representations of Audio Tuomas Virtanen, Member,
More informationGaussian Processes in Machine Learning
Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany carl@tuebingen.mpg.de WWW home page: http://www.tuebingen.mpg.de/ carl
More informationPID Control. 6.1 Introduction
6 PID Control 6. Introduction The PID controller is the most common form of feedback. It was an essential element of early governors and it became the standard tool when process control emerged in the
More informationFEEDBACK CONTROL OF A NONHOLONOMIC CARLIKE ROBOT
FEEDBACK CONTROL OF A NONHOLONOMIC CARLIKE ROBOT Alessandro De Luca Giuseppe Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Via Eudossiana 8, 84 Rome, Italy {deluca,oriolo}@labrob.ing.uniroma.it
More informationNew Results on Hermitian Matrix RankOne Decomposition
New Results on Hermitian Matrix RankOne Decomposition Wenbao Ai Yongwei Huang Shuzhong Zhang June 22, 2009 Abstract In this paper, we present several new rankone decomposition theorems for Hermitian
More informationNonhomogeneous nilpotent approximations for systems with singularities
REVISED VERSION OF PAPER TN021029, SUBMITTED TO IEEETAC, July 24, 2003 1 Nonhomogeneous nilpotent approximations for systems with singularities Marilena Vendittelli, Giuseppe Oriolo, Frédéric Jean,
More informationThe Method of Least Squares
The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the
More informationFactor Graphs and the SumProduct Algorithm
498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001 Factor Graphs and the SumProduct Algorithm Frank R. Kschischang, Senior Member, IEEE, Brendan J. Frey, Member, IEEE, and HansAndrea
More informationApproximately Detecting Duplicates for Streaming Data using Stable Bloom Filters
Approximately Detecting Duplicates for Streaming Data using Stable Bloom Filters Fan Deng University of Alberta fandeng@cs.ualberta.ca Davood Rafiei University of Alberta drafiei@cs.ualberta.ca ABSTRACT
More informationControllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationA Case Study in Approximate Linearization: The Acrobot Example
A Case Study in Approximate Linearization: The Acrobot Example Richard M. Murray Electronics Research Laboratory University of California Berkeley, CA 94720 John Hauser Department of EESystems University
More informationSampling 50 Years After Shannon
Sampling 50 Years After Shannon MICHAEL UNSER, FELLOW, IEEE This paper presents an account of the current state of sampling, 50 years after Shannon s formulation of the sampling theorem. The emphasis is
More informationDiscreteTime Signals and Systems
2 DiscreteTime Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior
More informationIdentification à temps continu sur structure continue
0 ème Congrès Français de écanique Besançon, 9 août au septembre 011 Identification à temps continu sur structure continue Abstract : C. CHOCHOL, S. CHESNE, D. REOND Université de Lyon, CNRS INSALyon,
More informationThe Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
More informationGaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
: No Regret and Experimental Design Niranjan Srinivas Andreas Krause California Institute of Technology, Pasadena, CA, USA Sham Kakade University of Pennsylvania, Philadelphia, PA, USA Matthias Seeger
More informationSampling Signals With Finite Rate of Innovation
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 50, NO 6, JUNE 2002 1417 Sampling Signals With Finite Rate of Innovation Martin Vetterli, Fellow, IEEE, Pina Marziliano, and Thierry Blu, Member, IEEE Abstract
More informationWHEN listening to music, humans experience the sound
116 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 16, NO. 1, JANUARY 2008 InstrumentSpecific Harmonic Atoms for MidLevel Music Representation Pierre Leveau, Emmanuel Vincent, Member,
More informationHow to Use Expert Advice
NICOLÒ CESABIANCHI Università di Milano, Milan, Italy YOAV FREUND AT&T Labs, Florham Park, New Jersey DAVID HAUSSLER AND DAVID P. HELMBOLD University of California, Santa Cruz, Santa Cruz, California
More information