LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera

Size: px
Start display at page:

Download "LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera"

Transcription

1 LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera, Politecnico di Milano {tanelli, ardagna,

2 Outline 2 Reference scenario: autonomic computing LPV modelling for web server dynamics State space LPV model identification Experimental setting Validation results Conclusions

3 Reference scenario 3 Large service centers providing computational capacity on demand Problems: Workload fluctuations Quality of Service (QoS) guarantees Energy (and related) costs Solutions: Autonomic self-management techniques Reconfiguration of service center infrastructures in order to determine Performance vs. Energy trade-off

4 Autonomic computing infrastruncture 4 ws 1 ws 2 ws 3 Free server pool Internet

5 Autonomic self-management techniques 5 Utility Based Approach: Queueing Network model + Optimization framework (e.g., IBM s Tivoli) Multiple decision variables Long term time horizon (several minutes) Control Theory Approach Short time frame (minutes, seconds) System identification used to develop models for: Capturing system transients Taking into account workload variability Advanced control design techniques used to: Ensure closed-loop stability Guarantee performance (QoS) levels a priori

6 System Identification: problem statement 6 Use experimental data to construct dynamical models for performance control of Web services Single class Web server with FIFO scheduling λ k : requests arrival rate s k : service time, CPU time required to serve a single request T k : response time, overall time a request stays in the system X k : system throughput, requests service rate Dynamic voltage scaling (DVS) modeling: s u,k =s k /u k effective service time Queuing theory: Steady state assumption Average response time:

7 LPV state-space models 7 Linear Parameter Varying systems are a class of time-varying systems. In discrete-time state space form: δκ u k LPV System y k Time varying systems, the dynamics of which are functions of a measurable, time varying parameter vector δ. Models for LTV systems or linearizations of non linear systems along the trajectory of δ gain scheduling control problems.

8 LPV state-space models for web server dynamics 8 w k T k s k δκ λ k Arrival rate X k U Throughput Utilization u k LPV System y k We use models with: Affine parameter dependence (LPV-A), that is and similarly for the B, C and D matrices Input-Affine (LPV-IA) parameter dependence, i.e., only the B and D matrices are parametrically varying

9 State space LPV identification algorithms 9 The problem is set up as in the classical output error minimization framework The system is described by a set of parameters θ, identification is perfomed minimising the cost function with respect to θ Minimization carried out via a gradient search method (Levenberg-Marquardt algorithm)

10 Iterative refinement of the estimates 10 The SMI-LPV estimates can be used as a starting point for an iterative refinement: where (see Verdult, Lovera, Verhaegen 2004 for details).

11 Experimental setting 11 A workload generator Apache JMeter custom extension Micro benchmarking web application CPU service time generated according to deterministic (identification), exponential, lognormal, Pareto (validation) distributions Application instrumentation (otherwise, ARM API or kernelbased measurement) Validation: synthetic workload inspired by a real-world usage (Politecnico di Milano Web site, 24 hours)

12 Workload and performance metrics 12 Performance metrics: Variance accounted for (VAF) Average simulation error (e avg )

13 Results: validation data, sampling time 1 min 13 light load heavy load

14 Results: validation data, sampling time 10s 14 light load heavy load

15 Conclusions and future work 15 LPV model identification seems suitable to model Web-servers dynamics Also tested recursive identification algorithms (i.e., for on-line application), with promising results Future work along two different lines Control design for single-class systems Extension to multi-class virtualized environments (MIMO systems) benchmark application implementation design of experiments identification and modeling

Black-box Performance Models for Virtualized Web. Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang ardagna@elet.polimi.it

Black-box Performance Models for Virtualized Web. Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang ardagna@elet.polimi.it Black-box Performance Models for Virtualized Web Service Applications Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang ardagna@elet.polimi.it Reference scenario 2 Virtualization, proposed in early

More information

PARVIS - Performance management of VIrtualized Systems

PARVIS - Performance management of VIrtualized Systems PARVIS - Performance management of VIrtualized Systems Danilo Ardagna joint work with Mara Tanelli and Marco Lovera, Politecnico di Milano ardagna@elet.polimi.it Milan, November 23 2010 Data Centers, Virtualization,

More information

Run-time Resource Management in SOA Virtualized Environments. Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang

Run-time Resource Management in SOA Virtualized Environments. Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang Run-time Resource Management in SOA Virtualized Environments Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang Amsterdam, August 25 2009 SOI Run-time Management 2 SOI=SOA + virtualization Goal:

More information

Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems

Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Danilo Ardagna 1, Sara Casolari 2, Barbara Panicucci 1 1 Politecnico di Milano,, Italy 2 Universita` di Modena e

More information

Self-Tuning Memory Management of A Database System

Self-Tuning Memory Management of A Database System Self-Tuning Memory Management of A Database System Yixin Diao diao@us.ibm.com IM 2009 Tutorial: Recent Advances in the Application of Control Theory to Network and Service Management DB2 Self-Tuning Memory

More information

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age.

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age. Volume 3, Issue 10, October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Load Measurement

More information

State-Space Feedback Control for Elastic Distributed Storage in a Cloud Environment

State-Space Feedback Control for Elastic Distributed Storage in a Cloud Environment State-Space Feedback Control for Elastic Distributed Storage in a Cloud Environment M. Amir Moulavi Ahmad Al-Shishtawy Vladimir Vlassov KTH Royal Institute of Technology, Stockholm, Sweden ICAS 2012, March

More information

Adventures in Middleware Database Abuse

<Insert Picture Here> Adventures in Middleware Database Abuse Adventures in Middleware Database Abuse Graham Wood Architect, Real World Performance, Server Technologies Real World Performance Real-World Performance Who We Are Part of the Database

More information

CPU SCHEDULING. Scheduling Objectives. Outline. Basic Concepts. Enforcement of fairness in allocating resources to processes

CPU SCHEDULING. Scheduling Objectives. Outline. Basic Concepts. Enforcement of fairness in allocating resources to processes Scheduling Objectives CPU SCHEDULING Enforcement of fairness in allocating resources to processes Enforcement of priorities Make best use of available system resources Give preference to processes holding

More information

Web Applications Engineering: Performance Analysis: Operational Laws

Web Applications Engineering: Performance Analysis: Operational Laws Web Applications Engineering: Performance Analysis: Operational Laws Service Oriented Computing Group, CSE, UNSW Week 11 Material in these Lecture Notes is derived from: Performance by Design: Computer

More information

Scheduling. Reading: Silberschatz chapter 6 Additional Reading: Stallings chapter 9 EEL 358 1

Scheduling. Reading: Silberschatz chapter 6 Additional Reading: Stallings chapter 9 EEL 358 1 Scheduling Reading: Silberschatz chapter 6 Additional Reading: Stallings chapter 9 EEL 358 1 Outline Introduction Types of Scheduling Scheduling Criteria FCFS Scheduling Shortest-Job-First Scheduling Priority

More information

Performance Workload Design

Performance Workload Design Performance Workload Design The goal of this paper is to show the basic principles involved in designing a workload for performance and scalability testing. We will understand how to achieve these principles

More information

CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION

CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION 31 CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION 3.1 INTRODUCTION In this chapter, construction of queuing model with non-exponential service time distribution, performance

More information

CS533 Modeling and Performance Evaluation of Network and Computer Systems

CS533 Modeling and Performance Evaluation of Network and Computer Systems Let s Get Started! CS533 Modeling and Performance Evaluation of Network and Computer Systems Introduction (Chapters 1 and 2) Describe a performance study you have done Work or School or Describe a performance

More information

Operation of Manufacturing Systems with Work-in-process Inventory and Production Control

Operation of Manufacturing Systems with Work-in-process Inventory and Production Control Operation of Manufacturing Systems with Work-in-process Inventory and Production Control Yuan-Hung (Kevin) Ma, Yoram Koren (1) NSF Engineering Research Center for Reconfigurable Manufacturing Systems,

More information

Comparing two Queuing Network Solvers: JMT vs. PDQ

Comparing two Queuing Network Solvers: JMT vs. PDQ Comparing two Queuing Network Solvers: JMT vs. PDQ A presentation for the report of the Course CSI 5112 (W11) Adnan Faisal (CU100841800) Mostafa Khaghani Milani (CU100836314) University of Ottawa 25 March

More information

5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. stadler@ee.kth.

5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. stadler@ee.kth. 5 Performance Management for Web Services Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology stadler@ee.kth.se April 2008 Overview Service Management Performance Mgt QoS Mgt

More information

1. Simulation of load balancing in a cloud computing environment using OMNET

1. Simulation of load balancing in a cloud computing environment using OMNET Cloud Computing Cloud computing is a rapidly growing technology that allows users to share computer resources according to their need. It is expected that cloud computing will generate close to 13.8 million

More information

Case Study I: A Database Service

Case Study I: A Database Service Case Study I: A Database Service Prof. Daniel A. Menascé Department of Computer Science George Mason University www.cs.gmu.edu/faculty/menasce.html 1 Copyright Notice Most of the figures in this set of

More information

Web Server Software Architectures

Web Server Software Architectures Web Server Software Architectures Author: Daniel A. Menascé Presenter: Noshaba Bakht Web Site performance and scalability 1.workload characteristics. 2.security mechanisms. 3. Web cluster architectures.

More information

QoS-driven Web Services Selection in Autonomic Grid Environments. Danilo Ardagna Gabriele Giunta Nunzio Ingraffia Raffaela Mirandola Barbara Pernici

QoS-driven Web Services Selection in Autonomic Grid Environments. Danilo Ardagna Gabriele Giunta Nunzio Ingraffia Raffaela Mirandola Barbara Pernici QoS-driven Web Services Selection in Autonomic Grid Environments Danilo Ardagna Gabriele Giunta Nunzio Ingraffia Raffaela Mirandola Barbara Pernici Introduction In SOA, complex applications can be composed

More information

Recent Advances in Web System Performance Modeling with Queueing Networks. Author: Nikola Janevski Class: CS 736 Software Performance Engineering

Recent Advances in Web System Performance Modeling with Queueing Networks. Author: Nikola Janevski Class: CS 736 Software Performance Engineering Recent Advances in Web System Performance Modeling with Queueing Networks Author: Nikola Janevski Class: CS 736 Software Performance Engineering 1 How are Web systems different Many users Multi-tier architecture

More information

1. Implementation of a testbed for testing Energy Efficiency by server consolidation using Vmware

1. Implementation of a testbed for testing Energy Efficiency by server consolidation using Vmware 1. Implementation of a testbed for testing Energy Efficiency by server consolidation using Vmware Cloud Data centers used by service providers for offering Cloud Computing services are one of the major

More information

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition,

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition, Chapter 5: CPU Scheduling, Silberschatz, Galvin and Gagne 2009 Objectives To introduce CPU scheduling, which is the basis for multiprogrammed operating systems To describe various scheduling algorithms

More information

Optimal Dynamic Resource Allocation in Multi-Class Queueing Networks

Optimal Dynamic Resource Allocation in Multi-Class Queueing Networks Imperial College London Department of Computing Optimal Dynamic Resource Allocation in Multi-Class Queueing Networks MEng Individual Project Report Diagoras Nicolaides Supervisor: Dr William Knottenbelt

More information

Characterizing Task Usage Shapes in Google s Compute Clusters

Characterizing Task Usage Shapes in Google s Compute Clusters Characterizing Task Usage Shapes in Google s Compute Clusters Qi Zhang 1, Joseph L. Hellerstein 2, Raouf Boutaba 1 1 University of Waterloo, 2 Google Inc. Introduction Cloud computing is becoming a key

More information

Process simulation. Enn Õunapuu enn.ounapuu@ttu.ee

Process simulation. Enn Õunapuu enn.ounapuu@ttu.ee Process simulation Enn Õunapuu enn.ounapuu@ttu.ee Content Problem How? Example Simulation Definition Modeling and simulation functionality allows for preexecution what-if modeling and simulation. Postexecution

More information

Agile Performance Testing

Agile Performance Testing Agile Performance Testing Cesario Ramos Independent Consultant AgiliX Agile Development Consulting Overview Why Agile performance testing? Nature of performance testing Agile performance testing Why Agile

More information

1: B asic S imu lati on Modeling

1: B asic S imu lati on Modeling Network Simulation Chapter 1: Basic Simulation Modeling Prof. Dr. Jürgen Jasperneite 1 Contents The Nature of Simulation Systems, Models and Simulation Discrete Event Simulation Simulation of a Single-Server

More information

Towards energy-aware scheduling in data centers using machine learning

Towards energy-aware scheduling in data centers using machine learning Towards energy-aware scheduling in data centers using machine learning Josep Lluís Berral, Íñigo Goiri, Ramon Nou, Ferran Julià, Jordi Guitart, Ricard Gavaldà, and Jordi Torres Universitat Politècnica

More information

Chapter 5: CPU Scheduling. Operating System Concepts 7 th Edition, Jan 14, 2005

Chapter 5: CPU Scheduling. Operating System Concepts 7 th Edition, Jan 14, 2005 Chapter 5: CPU Scheduling Operating System Concepts 7 th Edition, Jan 14, 2005 Silberschatz, Galvin and Gagne 2005 Outline Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling

More information

Current Performance Analysis. "State of the Union"

Current Performance Analysis. State of the Union Current Performance Analysis "State of the Union" By: MPG For: Midrange Performance Group, Inc. System Analyzed: test Report Date: --------- Time: 10:23 This document contains the 'State of the Union'

More information

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements Outline Lecture 8 Performance Measurements and Metrics Performance Metrics Performance Measurements Kurose-Ross: 1.2-1.4 (Hassan-Jain: Chapter 3 Performance Measurement of TCP/IP Networks ) 2010-02-17

More information

Service Management Capacity Planning and Queuing Models

Service Management Capacity Planning and Queuing Models Service Management Capacity Planning and Queuing Models Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Economics Information and Service Systems (ISS) Saarland University, Saarbrücken, Germany WS 2011/2012

More information

Scheduling for uniprocessor systems Introduction

Scheduling for uniprocessor systems Introduction Politecnico di Milano Introduction Lecturer: William Fornaciari Politecnico di Milano william.fornaciari@elet.polimi.it Home.dei.polimi.it/fornacia SUMMARY Basic Concepts Scheduling Criteria Scheduling

More information

The Data Center as a Grid Load Stabilizer

The Data Center as a Grid Load Stabilizer The Data Center as a Grid Load Stabilizer Hao Chen *, Michael C. Caramanis ** and Ayse K. Coskun * * Department of Electrical and Computer Engineering ** Division of Systems Engineering Boston University

More information

Dynamic request management algorithms for Web-based services in Cloud computing

Dynamic request management algorithms for Web-based services in Cloud computing Dynamic request management algorithms for Web-based services in Cloud computing Riccardo Lancellotti Mauro Andreolini Claudia Canali Michele Colajanni University of Modena and Reggio Emilia COMPSAC 2011

More information

A Game Theoretic Formulation of the Service Provisioning Problem in Cloud Systems

A Game Theoretic Formulation of the Service Provisioning Problem in Cloud Systems A Game Theoretic Formulation of the Service Provisioning Problem in Cloud Systems Danilo Ardagna 1, Barbara Panicucci 1, Mauro Passacantando 2 1 Politecnico di Milano,, Italy 2 Università di Pisa, Dipartimento

More information

PID Controller Design for Nonlinear Systems Using Discrete-Time Local Model Networks

PID Controller Design for Nonlinear Systems Using Discrete-Time Local Model Networks PID Controller Design for Nonlinear Systems Using Discrete-Time Local Model Networks 4. Workshop für Modellbasierte Kalibriermethoden Nikolaus Euler-Rolle, Christoph Hametner, Stefan Jakubek Christian

More information

Introduction. John C.S. Lui. Department of Computer Science & Engineering The Chinese University of Hong Kong

Introduction. John C.S. Lui. Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction John C.S. Lui Department of Computer Science & Engineering The Chinese University of Hong Kong www.cse.cuhk.edu.hk/ cslui John C.S. Lui (CUHK) Computer Systems Performance Evaluation 1 / 13

More information

Objectives. Chapter 5: Process Scheduling. Chapter 5: Process Scheduling. 5.1 Basic Concepts. To introduce CPU scheduling

Objectives. Chapter 5: Process Scheduling. Chapter 5: Process Scheduling. 5.1 Basic Concepts. To introduce CPU scheduling Objectives To introduce CPU scheduling To describe various CPU-scheduling algorithms Chapter 5: Process Scheduling To discuss evaluation criteria for selecting the CPUscheduling algorithm for a particular

More information

Periodic Capacity Management under a Lead Time Performance Constraint

Periodic Capacity Management under a Lead Time Performance Constraint Periodic Capacity Management under a Lead Time Performance Constraint N.C. Buyukkaramikli 1,2 J.W.M. Bertrand 1 H.P.G. van Ooijen 1 1- TU/e IE&IS 2- EURANDOM INTRODUCTION Using Lead time to attract customers

More information

There are a number of factors that increase the risk of performance problems in complex computer and software systems, such as e-commerce systems.

There are a number of factors that increase the risk of performance problems in complex computer and software systems, such as e-commerce systems. ASSURING PERFORMANCE IN E-COMMERCE SYSTEMS Dr. John Murphy Abstract Performance Assurance is a methodology that, when applied during the design and development cycle, will greatly increase the chances

More information

The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com

The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Efficient Parallel Processing on Public Cloud Servers using Load Balancing Manjunath K. C. M.Tech IV Sem, Department of CSE, SEA College of Engineering

More information

Supplement to Call Centers with Delay Information: Models and Insights

Supplement to Call Centers with Delay Information: Models and Insights Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290

More information

C21 Model Predictive Control

C21 Model Predictive Control C21 Model Predictive Control Mark Cannon 4 lectures Hilary Term 216-1 Lecture 1 Introduction 1-2 Organisation 4 lectures: week 3 week 4 { Monday 1-11 am LR5 Thursday 1-11 am LR5 { Monday 1-11 am LR5 Thursday

More information

QoS-Aware Storage Virtualization for Cloud File Systems. Christoph Kleineweber (Speaker) Alexander Reinefeld Thorsten Schütt. Zuse Institute Berlin

QoS-Aware Storage Virtualization for Cloud File Systems. Christoph Kleineweber (Speaker) Alexander Reinefeld Thorsten Schütt. Zuse Institute Berlin QoS-Aware Storage Virtualization for Cloud File Systems Christoph Kleineweber (Speaker) Alexander Reinefeld Thorsten Schütt Zuse Institute Berlin 1 Outline Introduction Performance Models Reservation Scheduling

More information

A Hierarchical Quality of Service Control Architecture. for Configurable Multimedia Applications

A Hierarchical Quality of Service Control Architecture. for Configurable Multimedia Applications A Hierarchical Quality of Service Control Architecture for Configurable Multimedia Applications Baochun Li Electrical and Computer Engineering University of Toronto bli@eecg.toronto.edu William Kalter,

More information

A probabilistic multi-tenant model for virtual machine mapping in cloud systems

A probabilistic multi-tenant model for virtual machine mapping in cloud systems A probabilistic multi-tenant model for virtual machine mapping in cloud systems Zhuoyao Wang, Majeed M. Hayat, Nasir Ghani, and Khaled B. Shaban Department of Electrical and Computer Engineering, University

More information

Managing Adaptability in Heterogeneous Architectures through Performance Monitoring and Prediction

Managing Adaptability in Heterogeneous Architectures through Performance Monitoring and Prediction Managing Adaptability in Heterogeneous Architectures through Performance Monitoring and Prediction Cristina Silvano cristina.silvano@polimi.it Politecnico di Milano HiPEAC CSW Athens 2014 Motivations System

More information

Programma della seconda parte del corso

Programma della seconda parte del corso Programma della seconda parte del corso Introduction Reliability Performance Risk Software Performance Engineering Layered Queueing Models Stochastic Petri Nets New trends in software modeling: Metamodeling,

More information

Can We Beat DDoS Attacks in Clouds?

Can We Beat DDoS Attacks in Clouds? GITG342 Can We Beat DDoS Attacks in Clouds? Shui Yu, Yonghong Tian, Song Guo, Dapeng Oliver Wu IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 9, SEPTEMBER 2014 정보통신대학원 49기 정보보호 전공

More information

MTAT.03.231 Business Process Management (BPM) Lecture 6 Quantitative Process Analysis (Queuing & Simulation)

MTAT.03.231 Business Process Management (BPM) Lecture 6 Quantitative Process Analysis (Queuing & Simulation) MTAT.03.231 Business Process Management (BPM) Lecture 6 Quantitative Process Analysis (Queuing & Simulation) Marlon Dumas marlon.dumas ät ut. ee Business Process Analysis 2 Process Analysis Techniques

More information

OPTIMIZED PERFORMANCE EVALUATIONS OF CLOUD COMPUTING SERVERS

OPTIMIZED PERFORMANCE EVALUATIONS OF CLOUD COMPUTING SERVERS OPTIMIZED PERFORMANCE EVALUATIONS OF CLOUD COMPUTING SERVERS K. Sarathkumar Computer Science Department, Saveetha School of Engineering Saveetha University, Chennai Abstract: The Cloud computing is one

More information

Chapter 6: CPU Scheduling. Previous Lectures. Basic Concepts. Alternating Sequence of CPU And I/O Bursts

Chapter 6: CPU Scheduling. Previous Lectures. Basic Concepts. Alternating Sequence of CPU And I/O Bursts Previous Lectures Multithreading Memory Layout Kernel vs User threads Representation in OS Difference between thread and process Thread scheduling Mapping between user and kernel threads Multithreading

More information

Performance Evaluation Approach for Multi-Tier Cloud Applications

Performance Evaluation Approach for Multi-Tier Cloud Applications Journal of Software Engineering and Applications, 2013, 6, 74-83 http://dx.doi.org/10.4236/jsea.2013.62012 Published Online February 2013 (http://www.scirp.org/journal/jsea) Performance Evaluation Approach

More information

Objectives. 5.1 Basic Concepts. Scheduling Criteria. Multiple-Processor Scheduling. Algorithm Evaluation. Maximum CPU.

Objectives. 5.1 Basic Concepts. Scheduling Criteria. Multiple-Processor Scheduling. Algorithm Evaluation. Maximum CPU. Chapter 5: Process Scheduling Objectives To introduce CPU scheduling To describe various CPU-scheduling algorithms To discuss evaluation criteria for selecting the CPU-scheduling algorithm for a particular

More information

Q-Clouds: Managing Performance Interference Effects for QoS-Aware Clouds

Q-Clouds: Managing Performance Interference Effects for QoS-Aware Clouds : Managing Performance Interference Effects for QoS-Aware Clouds Ripal Nathuji and Aman Kansal Microsoft Research Redmond, WA 98052 {ripaln, kansal}@microsoft.com Alireza Ghaffarkhah University of New

More information

Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads

Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads G. Suganthi (Member, IEEE), K. N. Vimal Shankar, Department of Computer Science and Engineering, V.S.B. Engineering College,

More information

Comparative Analysis of Congestion Control Algorithms Using ns-2

Comparative Analysis of Congestion Control Algorithms Using ns-2 www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,

More information

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation Oct-03 1 Basic Concepts Maximum CPU utilization

More information

Fair Scheduling Algorithm with Dynamic Load Balancing Using In Grid Computing

Fair Scheduling Algorithm with Dynamic Load Balancing Using In Grid Computing Research Inventy: International Journal Of Engineering And Science Vol.2, Issue 10 (April 2013), Pp 53-57 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com Fair Scheduling Algorithm with Dynamic

More information

IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT

IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT Muhammad Muhammad Bala 1, Miss Preety Kaushik 2, Mr Vivec Demri 3 1, 2, 3 Department of Engineering and Computer Science, Sharda

More information

Performance Test Process

Performance Test Process A white Success The performance testing helped the client identify and resolve performance bottlenecks which otherwise crippled the business. The ability to support 500 concurrent users was a performance

More information

Evaluating and Comparing the Impact of Software Faults on Web Servers

Evaluating and Comparing the Impact of Software Faults on Web Servers Evaluating and Comparing the Impact of Software Faults on Web Servers April 2010, João Durães, Henrique Madeira CISUC, Department of Informatics Engineering University of Coimbra {naaliel, jduraes, henrique}@dei.uc.pt

More information

Towards an understanding of oversubscription in cloud

Towards an understanding of oversubscription in cloud IBM Research Towards an understanding of oversubscription in cloud Salman A. Baset, Long Wang, Chunqiang Tang sabaset@us.ibm.com IBM T. J. Watson Research Center Hawthorne, NY Outline Oversubscription

More information

Database Performance Optimization for SQL Server Based on Hierarchical Queuing Network Model

Database Performance Optimization for SQL Server Based on Hierarchical Queuing Network Model Vol.8, No.1 (2015), pp.187-196 http://dx.doi.org/10.14257/ijdta.2015.8.1.19 Database Performance Optimization for SQL Server Based on Hierarchical Queuing Network Model Jingbo Shao 1,2, Xiaoxiao Liu 3,Yingmei

More information

Noelle A. Stimely Senior Performance Test Engineer. University of California, San Francisco noelle.stimely@ucsf.edu

Noelle A. Stimely Senior Performance Test Engineer. University of California, San Francisco noelle.stimely@ucsf.edu Noelle A. Stimely Senior Performance Test Engineer University of California, San Francisco noelle.stimely@ucsf.edu Who am I? Senior Oracle Database Administrator for over 13 years Senior Performance Test

More information

Informatica Data Director Performance

Informatica Data Director Performance Informatica Data Director Performance 2011 Informatica Abstract A variety of performance and stress tests are run on the Informatica Data Director to ensure performance and scalability for a wide variety

More information

Efficient Load Balancing using VM Migration by QEMU-KVM

Efficient Load Balancing using VM Migration by QEMU-KVM International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 49 ISSN 2047-3338 Efficient Load Balancing using VM Migration by QEMU-KVM Sharang Telkikar 1, Shreyas Talele

More information

Unprecedented Performance and Scalability Demonstrated For Meter Data Management:

Unprecedented Performance and Scalability Demonstrated For Meter Data Management: Unprecedented Performance and Scalability Demonstrated For Meter Data Management: Ten Million Meters Scalable to One Hundred Million Meters For Five Billion Daily Meter Readings Performance testing results

More information

Efficient Parallel Processing on Public Cloud Servers Using Load Balancing

Efficient Parallel Processing on Public Cloud Servers Using Load Balancing Efficient Parallel Processing on Public Cloud Servers Using Load Balancing Valluripalli Srinath 1, Sudheer Shetty 2 1 M.Tech IV Sem CSE, Sahyadri College of Engineering & Management, Mangalore. 2 Asso.

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation Chapter 6: 6.1 Basic Concepts Maximum CPU utilization obtained with multiprogramming.

More information

Bernie Velivis President, Performax Inc

Bernie Velivis President, Performax Inc Performax provides software load testing and performance engineering services to help our clients build, market, and deploy highly scalable applications. Bernie Velivis President, Performax Inc Load ing

More information

Utilization Driven Power-Aware Parallel Job Scheduling

Utilization Driven Power-Aware Parallel Job Scheduling Utilization Driven Power-Aware Parallel Job Scheduling Maja Etinski Julita Corbalan Jesus Labarta Mateo Valero {maja.etinski,julita.corbalan,jesus.labarta,mateo.valero}@bsc.es Motivation Performance increase

More information

Energy-Efficient Application-Aware Online Provisioning for Virtualized Clouds and Data Centers

Energy-Efficient Application-Aware Online Provisioning for Virtualized Clouds and Data Centers Energy-Efficient Application-Aware Online Provisioning for Virtualized Clouds and Data Centers I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar NSF Center for Autonomic Computing Rutgers, The State University

More information

Fixed Price Website Load Testing

Fixed Price Website Load Testing Fixed Price Website Load Testing Can your website handle the load? Don t be the last one to know. For as low as $4,500, and in many cases within one week, we can remotely load test your website and report

More information

Grid Computing Approach for Dynamic Load Balancing

Grid Computing Approach for Dynamic Load Balancing International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Issue-1 E-ISSN: 2347-2693 Grid Computing Approach for Dynamic Load Balancing Kapil B. Morey 1*, Sachin B. Jadhav

More information

Application of Predictive Analytics for Better Alignment of Business and IT

Application of Predictive Analytics for Better Alignment of Business and IT Application of Predictive Analytics for Better Alignment of Business and IT Boris Zibitsker, PhD bzibitsker@beznext.com July 25, 2014 Big Data Summit - Riga, Latvia About the Presenter Boris Zibitsker

More information

IOmark Suite. Benchmarking Storage with Applica4on Workloads August, 2013. 2013 Evaluator Group, Inc.

IOmark Suite. Benchmarking Storage with Applica4on Workloads August, 2013. 2013 Evaluator Group, Inc. IOmark Suite Benchmarking Storage with Applica4on Workloads August, 2013 1 What is IOmark Suite?! A storage specific benchmark for applicaaon workloads Tests storage only Supports VDI and Virtual Machine

More information

A Dynamic Load Balancing Model Based on Negative Feedback and Exponential Smoothing Estimation

A Dynamic Load Balancing Model Based on Negative Feedback and Exponential Smoothing Estimation ICAS 2012 : he Eighth International Conference on Autonomic and Autonomous Systems A Dynamic Load Balancing Model Based on Negative Feedback and Exponential Smoothing Estimation Di Yuan, Shuai Wang, Xinya

More information

An Enterprise Dynamic Thresholding System

An Enterprise Dynamic Thresholding System An Enterprise Dynamic Thresholding System Mazda Marvasti, Arnak Poghosyan, Ashot Harutyunyan, and Naira Grigoryan Presented by: Bob Patten, VMware 2013 2011 VMware Inc. All rights reserved Agenda Modern

More information

Analytics at the speed of light

Analytics at the speed of light Analytics at the speed of light Feasibility and challenges for real time analytics of large datasets in hybrid clouds Master of Science Thesis Konstantinos Bessas Faculty of Electrical Engineering, Mathematics

More information

UNIVERSITY OF TARTU FACULTY OF MATHEMATICS AND COMPUTER SCIENCE INSTITUTE OF COMPUTER SCIENCE

UNIVERSITY OF TARTU FACULTY OF MATHEMATICS AND COMPUTER SCIENCE INSTITUTE OF COMPUTER SCIENCE UNIVERSITY OF TARTU FACULTY OF MATHEMATICS AND COMPUTER SCIENCE INSTITUTE OF COMPUTER SCIENCE Yuliya Brynzak Probabilistic Performance Testing of Web Applications Master s Thesis (30 EAP) Supervisor: Dr.

More information

Application. Performance Testing

Application. Performance Testing Application Performance Testing www.mohandespishegan.com شرکت مهندش پیشگان آزمون افسار یاش Performance Testing March 2015 1 TOC Software performance engineering Performance testing terminology Performance

More information

Mixed Neural and Feedback Controller for Apache Web Server

Mixed Neural and Feedback Controller for Apache Web Server SETIT 2009 5 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 22-26, 2009 TUNISIA Mixed Neural and Feedback Controller for Apache Web Server

More information

Scheduling Algorithms in MapReduce Distributed Mind

Scheduling Algorithms in MapReduce Distributed Mind Scheduling Algorithms in MapReduce Distributed Mind Karthik Kotian, Jason A Smith, Ye Zhang Schedule Overview of topic (review) Hypothesis Research paper 1 Research paper 2 Research paper 3 Project software

More information

Capacity Planning for Green IT Green IT Saving Costs Locally, Natural Resources Globally

Capacity Planning for Green IT Green IT Saving Costs Locally, Natural Resources Globally Capacity Planning for Green IT Green IT Saving Costs Locally, Natural Resources Globally Amy Spellmann, Optimal Richard Gimarc, HyPerformix UK CMG May 2008 1 IT Energy Consumption 48% of IT budgets are

More information

Department of Industrial Engineering

Department of Industrial Engineering Department of Industrial Engineering Master of Engineering Program in Industrial Engineering (International Program) M.Eng. (Industrial Engineering) Plan A Option 2: Total credits required: minimum 39

More information

Web Application s Performance Testing

Web Application s Performance Testing Web Application s Performance Testing B. Election Reddy (07305054) Guided by N. L. Sarda April 13, 2008 1 Contents 1 Introduction 4 2 Objectives 4 3 Performance Indicators 5 4 Types of Performance Testing

More information

Resource Allocation for Autonomic Data Centers using Analytic Performance Models

Resource Allocation for Autonomic Data Centers using Analytic Performance Models Resource Allocation for Autonomic Data Centers using Analytic Performance Models Mohamed N. Bennani and Daniel A. Menascé Dept. of Computer Science, MS 4A5 George Mason University 44 University Dr. Fairfax,

More information

VMware vcenter Server 6.0 Cluster Performance

VMware vcenter Server 6.0 Cluster Performance VMware vcenter Server 6.0 Cluster Performance Performance Study TECHNICAL WHITE PAPER Table of Contents Introduction... 3 Experimental Setup... 3 Layout... 3 Software Configuration... 5 Performance Benchmark...

More information

Impact of Control Theory on QoS Adaptation in Distributed Middleware Systems

Impact of Control Theory on QoS Adaptation in Distributed Middleware Systems Impact of Control Theory on QoS Adaptation in Distributed Middleware Systems Baochun Li Electrical and Computer Engineering University of Toronto bli@eecg.toronto.edu Klara Nahrstedt Department of Computer

More information

Feedback Autonomic Provisioning for guaranteeing performance (and reliability. - application to Big Data Systems

Feedback Autonomic Provisioning for guaranteeing performance (and reliability. - application to Big Data Systems Feedback Autonomic Provisioning for guaranteeing performance (and reliability) - application to Big Data Systems Bogdan Robu bogdan.robu@gipsa-lab.fr HIPEAC - HPES Workshop Amsterdam 19-21.01.2015 Context

More information

Feedback Control Real-Time Scheduling: Framework, Modeling, and Algorithms *

Feedback Control Real-Time Scheduling: Framework, Modeling, and Algorithms * Journal of Real-Time Systems, Special Issue on Control-Theoretical Approaches to Real-Time Computing Feedback Control Real-Time Scheduling: Framework, Modeling, and Algorithms * Chenyang Lu John A. Stankovic

More information

A Survey of Resource Management in Multi-Tier Web Applications

A Survey of Resource Management in Multi-Tier Web Applications 1 A Survey of Resource Management in Multi-Tier Web Applications Dong Huang, Bingsheng He and Chunyan Miao Abstract Web applications are mostly designed with multiple tiers for flexibility and software

More information

Live Vertical Scaling

Live Vertical Scaling ProfitBRICKS IAAS Live Vertical Scaling Add more data center infrastructure resources on demand, without a reboot Reconfiguring during ongoing operation a world debut. Using ProfitBricks Live Vertical

More information

Jay Aikat, Kevin Jeffay Derek O Neill, Ben Newton

Jay Aikat, Kevin Jeffay Derek O Neill, Ben Newton Tutorial: Hands-on with Tmix Jay Aikat, Kevin Jeffay Derek O Neill, Ben Newton Outline Hands-on with Tmix 90 mins 30 mins: Tmix demo with discussion 45 mins: you run an experiment 15 mins: how can you

More information