GENERAL RELATIVITY S. Erkki Thuneberg. Department of physics. University of Oulu

Size: px
Start display at page:

Download "GENERAL RELATIVITY S. Erkki Thuneberg. Department of physics. University of Oulu"

Transcription

1 GENERAL RELATIVITY S Erkki Thuneberg Department of physics University of Oulu 2016

2 Practicalities The web page of the course is The web page contains the exercises and later also the solutions to the exercises. See the web page also for the lecture and exercise times, and possible changes that are made later. There are no lecture notes. The exception is this short summary of special relativity.

3 1. Special relativity The purpose of this section is to discuss special relativity before we go to the general one. Special relativity has been discussed in courses Introduction to relativity 1 and 2. Here we only repeat some essential points, without going to derivations. We consider an inertial coordinate system with cartesian coordinates x, y and z. Time is denoted by t. The four-dimensional space formed by spatial coordinates and the time coordinate is called spacetime. A point (t, x, y, z) of the spacetime is called event. For two events (t 1, x 1, y 1, z 1 ) and (t 2, x 2, y 2, z 2 ) one can define the differences t = t 2 t 1, x = x 2 x 1,.... The corresponding differentials (the limit that the difference goes small) is denoted by dt, dx, dy and dz. Special relativity is based on two postulates: The speed of light c is the same in all inertial coordinate systems.

4 The laws of Nature are the same in all inertial coordinate systems. Newtonian mechanics does not satisfy the first postulate, since in different inertial coordinate systems K and K dr dt dr dt, (1) where r is the distance traversed in K and correspondingly r in K. However, allowing time to be different in the two coordinates, it is possible to satisfy c = dr dt = dr dt. (2) More precisely we should require the following. For light in K we should have c 2 dt 2 dx 2 dy 2 dz 2 = 0. (3) When this holds in K, the corresponding differentials in K should satisfy c 2 dt 2 dx 2 dy 2 dz 2 = 0. (4) Thus for light in the two frames c 2 dt 2 dx 2 dy 2 dz 2 = c 2 dt 2 dx 2 dy 2 dz 2. (5)

5 Now it can be shown that (5) holds more generally for any differences of events, not just those ones satisfying (3). We omit the proof here, but it was shown in the course Introduction to relativity 1. We introduce the notation ds 2 = c 2 dt 2 dx 2 dy 2 dz 2. (6) Based on the above, ds 2 this is independent of the coordinate system where it is calculated. We define x 0 ct, x 1 x, x 2 y and x 3 z. We also define η µν = 1 kun µ = ν = 0, 1 kun µ = ν 0, 0 kun µ ν, where indices µ and ν can take values 0, 1, 2 and 3. This can also be represented as a matrix η µν = Using these we can write (6) as (7). (8) ds 2 = η µν dx µ dx ν = η µν dx µ dx ν. (9) Here we have use the summation rule: whenever the same letter appears in a term both as a

6 superscript and as a subscript, the term has to summed over different values of the index. For example a µ b µ 3 µ=0 a µ b µ. (10) This notation saves us a lot of writing, and only seldom leads to confusion. Another notation in (9) is that we write dx µ instead of (dx ) µ. This notation is to be understood so that the index still is µ (not µ ), the role of the prime on the index is to indicate that this index refers to components in the primed coordinate system. Later on we encounter quantities that have more indices and the primes indicate which of indices refer to the primed coordinate system. As an example, see (13) below. As an exercise of the index notation we write λ µ = (λ 0, λ 1, λ 2, λ 3 ). Then we define λ µ = η µν λ ν = (λ 0, λ 1, λ 2, λ 3 ). We also can define the inner product of λ µ and σ µ = (σ 0, σ 1, σ 2, σ 3 ) by η µν λ µ σ ν = λ µ σ µ = λ µ σ µ = λ 0 σ 0 λ 1 σ 1 λ 2 σ 2 λ 3 σ 3. Let us consider a particle in spacetime moving a along a world line. The time differential dt

7 between its two events depends on the coordinate system. In order to have an invariant quantity, we define proper time τ so that cdτ = ds. Since = we have [ c 2 dτ 2 = c 2 dt 2 dx 2 dy 2 dz 2 ( ) c 2 dx 2 ( ) dy 2 ( ) ] dz 2 dt 2, (11) dt dt dt dτ = 1 v2 dt. (12) c2 If we have v = 0, then dτ = dt. Thus the proper time is the time measured in the coordinate system where the particle is at rest. Let us consider two inertial frames: K and K. The events in these coordinate frames are marked by x µ and x µ. The Lorentz-transformation between the two inertial frames has to be a linear transformation, which we write x µ = Λ µ ν x ν + a µ. (13) The summation over ν here means that this is the

8 same as the matrix expressions x 0 Λ 0 0 Λ 0 1 Λ 0 2 Λ 0 3 x 0 a 0 x 1 Λ x 2 = 1 0 Λ 1 1 Λ 1 2 Λ 1 3 Λ 2 0 Λ 2 1 Λ 2 2 Λ 2 x 1 3 x 2 + a 1 x 3 Λ 3 0 Λ 3 1 Λ 3 2 Λ 3 x 3 a 2. a 3 3 (14) Here the constant term a µ is included, but it can be removed by shifting the origin of the coordinates to coincide. A special case is that the x, y and z axis of K and K are aligned, and K moves with velocity v along the x axis. In this case [Λ µ ν ] = γ v c γ 0 0 v c γ γ , (15) where γ = 1/ 1 v 2 /c 2. Using (13) one can show that this is equivalent to the well known form of the Lorentz transformation x = y = y z = z x vt 1 v 2 /c 2 t = t (v/c2 )x (16) 1 v 2 /c2.

9 For the differential we get from (13) dx µ = Λ µ ν dxν. (17) As argued above, ds 2 = η µν dx µ dx ν should remain invariant. In the primed coordinates d 2 s = η µν dx µ dx ν = η µν Λ µ α dx α Λ ν β dxβ (18) This should be the same as ds 2 = η αβ dx α dx β for all dx α and dx β. This is possible only when η αβ = η µν Λ µ α Λ ν β. (19) This is a general condition that the coordinate transformation has to satisfy. From the Lorentz transformation one can derive the phenomena time dilation and length contraction.

10 ct future of O spacelike events to O past of O x null cone Spacetime diagrams are graphical representations of the x µ space, where one or two of the spatial coordinates are ignored. Typically the time axis is shown as vertical and the space-like axes as horizontal. In these diagrams one can classify the the events with respect to any point as timelike, null and spacelike. With respect to the origin O, the null cone is defined by x 2 + y 2 + z 2 = c 2 t 2. Time like events relative to O are defined by x 2 + y 2 + z 2 < c 2 t 2. These are divided into past and future events (relative to O) as in the figure. Events with x 2 + y 2 + z 2 > c 2 t 2 are called spacelike relative to O. Let us consider a set of four numbers λ µ = (λ 0, λ 1, λ 2, λ 3 ), which is defined in K. We call

11 λ µ as a 4-vector if changing to a different coordinate system, the coordinates change similarly as for the vector dx µ (17): λ µ = Λ µ ν λ ν. (20) 4-vectors are very useful in special (and general) relativity. When a physical law is expressed using four-vectors, it is automatically valid in all inertial frames. The transformation from one frame to another is the same for all four vectors. 4-vectors can be represented in different forms: λ µ = (λ 0, λ 1, λ 2, λ 3 ) = (λ 0, λ). The four vectors are classified as timelike, null and spacelike according to ds 2 = η µν λ µ λ ν being positive, zero, or negative, respectively. Let us consider particle, whose world line is x µ (τ). Here the parameter τ the is the proper time of the particle. We define the four velocity u µ of the particle as the derivative of x µ (τ): u µ = dxµ (21) dτ Here the numerator is a four vector, and the denominator is invariant in coordinate transformation. Thus u µ is a four vector. The

12 four-velocity is the tangent vector to the world line of the particle. u μ ct world line x The 4-momentum of a particle is defined as p µ = mu µ = m dxµ (22) dτ where m is the mass of the particle (more precisely, the rest mass). Because the mass is constant (independent of coordinates), the 4-momentum has to be a 4-vector. Using (12) we can write its components as p µ = m dxµ dt dt dτ = ( cm mv 1 v 2 /c 2, (23) 1 v 2 /c2). Recalling that the energy and the momentum of the particle are E = c 2 m 1 v 2 /c 2, p = mv (24) 1 v 2 /c2,

13 we notice that p µ = ( E c, p). (25) We define the wave 4-vector of a photon k µ = ( 2π λ, k), k = 2π λ ˆn, (26) where λ is the wave length and ˆn the direction of the propagation of the photon. We see that k µ is a null vector, k µ k µ = 0. The 4-momentum of the photon is p µ = h 2π kµ (27) where h is the Planck constant. This also is null vector, in contrast to the 4-momentum of a particle (22), which is always timelike. Comparing to (25), we identify the photon energy E = cp 0 = ch/λ = hν, where ν is the frequency. This is in accordance with our expectation. We write the equation of motion as dp µ dτ = f µ (28) In order to get the equation dp dt = F, (29)

14 the spatial part of f µ has to be equal to γf. One can show that this leads to f µ = ( γf v, γf ). (30) c Electromagnetism The purpose of this section is to show that Maxwell s equations are in good agreement with special relativity. For that, we write Maxwell s equations using 4-vectors and tensors. Maxwell s equations E = ρ ɛ 0 (31) E = B (32) t B = 0 (33) B = E µ 0 ɛ 0 t + µ 0j. (34) where µ 0 ɛ 0 = 1/c 2. It follows from equations (32) and (33) that E and B can be expressed as E = ϕ A (35) t B = A, (36)

15 where ϕ = ϕ(r, t) is the scalar potential and A = A(r, t) the vector potential. It is convenient to define a 4-potential A µ = ( ϕ, A). (37) c Using this we define electromagnetic field tensor F µν = A µ x ν A ν x µ, (38) where A µ = (ϕ/c, A) following the general rule. F µν is a 4-tensor of rank 2. The requirement for this is that it has two indices (and thus 4*4=16 components) and that it transforms with respect to both indices as a 4-vector in Lorentz-transformation, F µ ν = Λ µ α Λ ν β F αβ. (39) 4-vectors can be called as 4-tensors of rank 1 and 4-scalars as 4-tensors of rank 0. Later we will see tensors of higher rank. Here we omit the proof that the construct of the form (38) satisfies the tensor condition (39). This will be proven under more general conditions later in this course.

16 All the 16 components of F µν can straightforwardly be calculated using the equations above. The result is [F µν ] = 0 E x /c E y /c E z /c E x /c 0 B z B y E y /c B z 0 B x E z /c B y B x 0,(40) where E = (E x, E y, E z ) and B = (B x, B y, B z ). For example F 01 = A 0 x 1 A 1 x 0 = (φ/c) x 1 + A1 (ct) = 1 ( ) φ c x 1 + A1 = 1 t c E1 = 1 c E x. (41) By direct calculation one can further show that Maxwell s equations can be written as F µν F µν x ν = µ 0j µ, (42) x σ + F νσ x µ + F σµ = 0. (43) xν where the electric current 4-vector j µ = (ρc, j). In addition we claim that the equation motion (28) coming from the Lorentz force F = q(e + v B) (44)

17 can be written dp µ dτ = qf µν u ν. (45) Hereby we have shown that the equations of classical electromagnetism can be written using 4-vectors and tensors. This quarantees that the laws are valid in arbitrary inertial frame. The purpose of the rest of the course is to show that equations above can also be generalized to be valid in the presence of gravitation, so that classical electromagnetism and gravitation are in good accordance with each other.

Special Theory of Relativity

Special Theory of Relativity June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Krzysztof Rȩbilas

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

A Primer on Index Notation

A Primer on Index Notation A Primer on John Crimaldi August 28, 2006 1. Index versus Index notation (a.k.a. Cartesian notation) is a powerful tool for manipulating multidimensional equations. However, there are times when the more

More information

Introduction to Tensor Calculus for General Relativity

Introduction to Tensor Calculus for General Relativity Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 1999 Introduction to Tensor Calculus for General Relativity c 1999 Edmund Bertschinger. All rights reserved. 1 Introduction

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS Fundamental Journal of Modern Physics Vol. 7, Issue, 014, Pages 53-6 Published online at http://www.frdint.com/ SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS J. H. FIELD Departement

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD Introduction Let take Lagrange s equations in the form that follows from D Alembert s principle, ) d T T = Q j, 1) dt q j q j suppose that the generalized

More information

General Relativity. Proff. Valeria Ferrari, Leonardo Gualtieri AA 2011-2012

General Relativity. Proff. Valeria Ferrari, Leonardo Gualtieri AA 2011-2012 1 General Relativity Proff. Valeria Ferrari, Leonardo Gualtieri AA 2011-2012 Contents 1 Introduction 1 1.1 Non euclidean geometries............................ 1 1.2 How does the metric tensor transform

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

Vector surface area Differentials in an OCS

Vector surface area Differentials in an OCS Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

More information

2.016 Hydrodynamics Reading #2. 2.016 Hydrodynamics Prof. A.H. Techet

2.016 Hydrodynamics Reading #2. 2.016 Hydrodynamics Prof. A.H. Techet Pressure effects 2.016 Hydrodynamics Prof. A.H. Techet Fluid forces can arise due to flow stresses (pressure and viscous shear), gravity forces, fluid acceleration, or other body forces. For now, let us

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction. Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Testing dark matter halos using rotation curves and lensing

Testing dark matter halos using rotation curves and lensing Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

1 Lecture 3: Operators in Quantum Mechanics

1 Lecture 3: Operators in Quantum Mechanics 1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators

More information

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS.

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS. THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS 367 Proceedings of the London Mathematical Society Vol 1 1904 p 367-37 (Retyped for readability with same page breaks) ON AN EXPRESSION OF THE ELECTROMAGNETIC

More information

Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.

= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy. ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated

More information

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2 MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we

More information

Assessment Plan for Learning Outcomes for BA/BS in Physics

Assessment Plan for Learning Outcomes for BA/BS in Physics Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

More information

From local to global relativity

From local to global relativity Physical Interpretations of Relativity Theory XI Imperial College, LONDON, 1-15 SEPTEMBER, 8 From local to global relativity Tuomo Suntola, Finland T. Suntola, PIRT XI, London, 1-15 September, 8 On board

More information

What makes time different from space?

What makes time different from space? What makes time different from space? Bradford Skow 1 Introduction No one denies that time and space are different; and it is easy to catalog differences between them. I can point my finger toward the

More information

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

The Two-Body Problem

The Two-Body Problem The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

More information

Chapter 1 Units, Physical Quantities, and Vectors

Chapter 1 Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors 1 The Nature of Physics Physics is an experimental science. Physicists make observations of physical phenomena. They try to find patterns and principles

More information

Feynman diagrams. 1 Aim of the game 2

Feynman diagrams. 1 Aim of the game 2 Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

Representing Vector Fields Using Field Line Diagrams

Representing Vector Fields Using Field Line Diagrams Minds On Physics Activity FFá2 5 Representing Vector Fields Using Field Line Diagrams Purpose and Expected Outcome One way of representing vector fields is using arrows to indicate the strength and direction

More information

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Physics of the Atmosphere I

Physics of the Atmosphere I Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

More information

How Gravitational Forces arise from Curvature

How Gravitational Forces arise from Curvature How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Universal Law of Gravitation

Universal Law of Gravitation Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

the points are called control points approximating curve

the points are called control points approximating curve Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.

More information

Lecture L5 - Other Coordinate Systems

Lecture L5 - Other Coordinate Systems S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

Special Theory of Relativity on Curved Space-time

Special Theory of Relativity on Curved Space-time Special Theory of Relativity on Curved Space-time Moninder Sinh Modil Department of Physics, Indian Institute of Technoloy, Kanpur, India Email: msinh@iitk.ac.in Date: 6 Auust 4 Special Theory of Relativity

More information

Isaac Newton s (1642-1727) Laws of Motion

Isaac Newton s (1642-1727) Laws of Motion Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Vectors and Index Notation

Vectors and Index Notation Vectors and Index Notation Stephen R. Addison January 12, 2004 1 Basic Vector Review 1.1 Unit Vectors We will denote a unit vector with a superscript caret, thus â denotes a unit vector. â â = 1 If x is

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables. Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

More information

Lab #4 - Linear Impulse and Momentum

Lab #4 - Linear Impulse and Momentum Purpose: Lab #4 - Linear Impulse and Momentum The objective of this lab is to understand the linear and angular impulse/momentum relationship. Upon completion of this lab you will: Understand and know

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

Generally Covariant Quantum Mechanics

Generally Covariant Quantum Mechanics Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

PHY2061 Enriched Physics 2 Lecture Notes Relativity 4. Relativity 4

PHY2061 Enriched Physics 2 Lecture Notes Relativity 4. Relativity 4 PHY6 Enriched Physics Lectre Notes Relativity 4 Relativity 4 Disclaimer: These lectre notes are not meant to replace the corse textbook. The content may be incomplete. Some topics may be nclear. These

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR 2016-2017 Dear Student: The AP physics course you have signed up for is designed to prepare you for a superior performance on the AP test. To complete material

More information

Chapters 21-29. Magnetic Force. for a moving charge. F=BQvsinΘ. F=BIlsinΘ. for a current

Chapters 21-29. Magnetic Force. for a moving charge. F=BQvsinΘ. F=BIlsinΘ. for a current Chapters 21-29 Chapter 21:45,63 Chapter 22:25,49 Chapter 23:35,38,53,55,58,59 Chapter 24:17,18,20,42,43,44,50,52,53.59,63 Chapter 26:27,33,34,39,54 Chapter 27:17,18,34,43,50,51,53,56 Chapter 28: 10,11,28,47,52

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

Fundamental ideas and problems of the theory of relativity

Fundamental ideas and problems of the theory of relativity A LBERT E INSTEIN Fundamental ideas and problems of the theory of relativity Lecture delivered to the Nordic Assembly of Naturalists at Gothenburg* July 11, 1923 If we consider that part of the theory

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Teaching Electromagnetic Field Theory Using Differential Forms

Teaching Electromagnetic Field Theory Using Differential Forms IEEE TRANSACTIONS ON EDUCATION, VOL. 40, NO. 1, FEBRUARY 1997 53 Teaching Electromagnetic Field Theory Using Differential Forms Karl F. Warnick, Richard H. Selfridge, Member, IEEE, and David V. Arnold

More information

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. 3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

More information