Fall 1998 Formal Language Theory Dr. R. Boyer

Size: px
Start display at page:

Download "Fall 1998 Formal Language Theory Dr. R. Boyer"

Transcription

1 Fall 1998 Formal Language Theory Dr. R. Boyer Week Five: Regular Languages; Pumping Lemma 1. There are algorithms to answer the following questions: (1) given a DFA M and a string w; is w 2 L(M)? The algorithm is linear in the length of the string. (2) givenadfa M; is L(M) =;? (3) givenadfa M; is L(M) =? (4) given two DFA's M 1 and M 2 ; is L(M 1 ) L(M 2 )? (5) given two DFA's M 1 and M 2 ; is L(M 1 )=L(M 2 )? Note: this question can be solved either by using (4) and by using the uniqueness of the minimal state equivalent DFA. (6) givenanfa M and a string w; is w 2 L(M)? There is an algorithm which is polynomial in the length of the string. 2. Proposition. If L = L(M); where M is a NFA, then L is a regular language; that is, there is a regular expression r such that L = L(r): We shall study two constructions for this correspondence. The rst is a graph based algorithm that builds up the regular expression as nodes are deleted from the state diagram. The second method is given as interpreting the regular language as the solution of a system of equations. 3. To present the graph oriented algorithm, we need to introduce an even more general notion of NFA. It will have the expanded property that its edges may be labeled by regular expressions, not simply by a 2 ore: We will denote this new class of automata by GNFA. Method of Acceptance: in an usual NFA, the machine matches an input symbol with an edge label in order to make amove. For a GNFA, the automaton will consume, perhaps, more than one symbol in order to make the next move. It will consume a substring that belongs to the regular language which is denoted by the edge label. 1

2 A detailed description of this mode of acceptance follows. Let M be a GNFA, and let w 2 : If w 2 L(M); then w = w 1 w 2 :::w k and there is a sequence of states q 0 = s; q 1 ;:::;q k = f; such that w i 2 L(R i ); where (q i,1 ;q i )=R i ; where R i is the regular expression label. Normalization Condition: we shall assume that the GNFA M has a start state s that has NO edge coming into it and that M has a unique nal state ffg with NO edges leaving it. Further, assume f 6= s: Also, it will be convenient to write the transitions in the form (q; q 0 )=R; where q and q 0 are states and R is a regular expression. 4. Graph Theoretical Algorithm of converting NFA into an equivalent regular expression. Step 1: Convert the given NFA M into a GNFA M 0 byintroducing a new start state, new nal state, and the necessary transitions. Suppose M 0 has k states. Step 2: If k =2; then M 0 has just the start state and the unique nal state. It is clear that L(M 0 )=L(R); where R = (s; f): Step 3: \Node Reduction Step" If k > 2; we remove a node to produce an equivalent automaton M 00 : In particular, select a node q 00 6= s; f: Then dene M 00 =(Qnfq 00 g; ; 00 ;s;ffg) where 00 (q i ;q j )= 0 (q i ;q j ) if either 0 (q i ;q 00 )=; or 0 (q 00 ;q i )=;; otherwise, 00 (q i ;q j )=R 1 (R 2 ) R 3 [ R 4 ; if R 1 = 0 (q i ;q 00 );R 2 = 0 (q 00 ;q 00 );R 3 = 0 (q 00 ;q j ); and R 4 = 0 (q i ;q j ): Step 4: Repeat Step 3 until M 00 has two states: s and f: We need to verify that Step 3 does indeed produce an equivalent automaton. We can argue by visualizing paths through the state diagram of the GNFA. In particular, it is sucient to observe that if a GNFA M 3 ; with transition 3 ; had just three states q 1 ;q 2 and q 3 ; then there is an equivalent GNFA M 2 ; with transition 2 ; with two states, where: 2 (q 1 ;q 2 )=R 1;3 (R 3;3 ) R 3;2 [ R 1;2 : 2

3 Here, we write R i;j for 3 (q i ;q j ): We can describe this method as an algorithm as follows. We let G be a GNFA with start state s and unique accepting state f; with the remaining states given as q 1 ;q 2 ;:::;q n : The algorithm given below successively removes the states q 1 ;q 2 ; and so on, one at a time, producing an equivalent GNFA. When the looping terminates, the resulting GNFA has only two states s and f: The language that it will accept is denoted by the regular expression given by the label (s; f): for k =1::n do for i; j =1::n do new(q i ;q j ):=(q i ;q j ) [ (q i ;q k ) (q k ;q k ) (q k ;q j ) od; for i = k +1::n do new(s; q j ):=(s; q j ) [ (s; q k ) (q k ;q k ) (q k ;q j ); new(q i ;f):=(q i ;f) [ (q i ;q k ) (q k ;q k ) (q k ;q j ) od; new(s; f) :=(s; f) [ (s; q k ) (q k ;q k ) (q k ;f); := new; od; We next compare the above graph algorithm with the approach taken in the textbook. We should compare this algorithm with Dijkstra's algorithm for solving the "single-source shortest path" problem that you studied in algorithms. As usual, the language L is accepted by the DFA M =(fq 1 ;:::;q n g; ;;q 1 ;F): We let R k ij denote the set of all strings that take the automaton M from state q i to state q j without going through any state numbered k or larger; that is, 3

4 only strings are allowed that start at q i and end at q j and only use states q 1 ;:::;q k,1 as intermediate states. Such sets of strings satisfy an important inductive identity: R k+1 i;j = R k i;j [ R k i;k(r k k;k) R k k;j : To understand this identity, consider the following. Any string w that is contained in R k+1 ij either uses state q k or not. If w does not use state q k ; then it must lie in R k ij : So, we must examine how state q k is used by the string w: Of course, q k must be used as some intermediate state. So, w uses a path from state q i to q k and from q k to q j ; such that only states q 1 ;:::;q k are used as intermediate states. So, it seems that we must add the set R k ik Rk kj : In fact, there is a further possibility. We can also use paths that cycle through state q k : So, the set of strings that use state q k is: R k ik (Rk kk ) R k kj : One detail to consider is that (R k kk ) is properly larger than R k ij itself, because q k is not allowed as an intermediate state for strings from R k ij : We can easily describe the set of strings R 1 ij : For i 6= j; R1 ij = fa : (q i;a)= q j g; while for i = j; R 1 ii = fa : (q i;a)=q i g[feg: We show by induction that R k ij is denoted by a regular expression rk ij : For k =1; we let, for i 6= j; rij 1 = a 1 [ :::[ a p ; for i = j; rii 1 = e [ a 1 [ :::[ a p ; where (q i ;a`) =q j ; 1 ` p: If this set is empty, then rij 1 = ;; for i 6= j; while for i = j; rii 1 = e: We conclude that R1 ij = L(r1 ij ): We now assume that the result holds for value k: That is, for any set R k`m ; there exists a regular expression rk`m such that Rk`m = L(rk`m ): We need to show that any set R k+1 ij is given by a regular expression. By the inductive property of the set R k+1 ij ; we know that R k+1 ij = R k ij [ Rk ik (Rk kk ) R k (k; j): 4

5 By the induction hypothesis, we have: R k ij [ R k ik (R k kk) R k kj = L(r k ij) [ L(r k ik)l((r k kk) L(r k kj) This nishes the induction. = L(r k ij [ r k ik((r k kk) r k kj): Finally, we observe that L(M) = S fr n+1 1j : q j 2 F g: Algorithm for the computation of the regular expression r k+1 i;j : Note: L(r k+1 i;j )=R k+1 i;j : We shall write r(i; j; k + 1) for rk+1 i;j : function r(i; j; k +1) if k =0then case i = j : RETURN( (q i ;q j ) [feg) case i 6= j : RETURN( (q i ;q j )) else r(i; j; k +1):=r(i; j; k) [ r(i; k; k) r(k; k; k) r(k; j; k) ; end Note: the length of the regular expression will be exponentially long relative to the number of states of the DFA. Example: State a b The accepting states are fq 2 ;q 3 g and the initial state is fq 1 g: 5

6 Sample Calculation for r13 4 : We rst nd that r 4 13 = r 3 13 [ r13(r 3 33) 3 r 3 33 : Next, we compute r 3 13 = r2 13 [ r2 12 (r2 22 ) r 2 23 and r 3 33 = r2 33 [ r2 32 (r2 22 ) r 2 23 : We must now expand the regular expressions: r 2 13 ;r2 22 ;r2 23 ;r2 33 ; and r2 32 : We nd that: r 2 13 = r 1 13 [ r 1 11(r 1 11) r 1 13 and r 2 22 = r 1 22 [ r 1 21(r 1 11) r 1 12 : r 2 23 = r 1 23 [ r 1 21(r 1 11) r 1 13 and r 2 33 = r 1 33 [ r 1 31(r 1 11) r 1 13 : Finally, r 2 32 = r 1 32 [ r 1 31(r 1 11) r 1 12 : The base cases which are read o the state diagram of the DFA are given as follows: r 1 = 11 e; r1 = 12 a; r1 = 13 b; r 1 21 = a; r 1 22 = e; r 1 23 = b; r 1 31 = ;; r 1 32 = a [ b; r 1 33 = e: 6

7 It is more ecient to arrange the calculation of r k+1 ij in the form of a table. Reg. Expr. k =1 k =2 k =3 r k 11 r k 12 r k 13 r k 21 r k 22 r k 23 e a b a e b r k 31 ; r k 32 r k 33 a [ b e 5. Another method of nding a regular expression equivalent to a nite automaton treats the problem as one of solving a system of equations for the language, where concatenation plays the role of multiplication and union the role of addition. Let X q = fx 2 : (q; x) 2 F g: Then we nd that: X X X q = ax (q;a) :ifq=2 F; while = ax (q;a) + ; if q 2 F: a2 a2 This is the linear system for the sets X q 's we mentioned above. For regular languages, we need what is known as Arden's Lemma: Arden's Lemma: Let A; B with e=2 A: Then the equation: X = A X [ B has the unique solution X = A B: 7

8 Step 1: If X is a solution, then A B X: To see this, note that A B =(A + [ e)b = A + B [ B = A(A B) [ B: Step 2: X A B: By Step 1, X = A B [ C; since A B X with C \ A B = ;: We want to show that C = ;: Now X = AX [ B; so A B [ C = A(A B [ C) [ B = A + B [ AC [ B = A + B [ B [ AC = (A + [ e)b [ AC = A B [ AC: Next, consider the relation: (A B [ C) \ C =(A B [ AC) \ C: Then C = AC \ C; so C AC: Since e 6= A; the shortest string in AC must be longer than the shortest string in C: Hence, AC = C = ;: We conclude: A B is the unique solution. Note: If e 2 A; then the solution A B is no longer unique but it is the smallest solution. 6. We now present a useful theoretical result that states that regular languages must obey a certain type of \periodicity" property. It is used to show that certain simple languages cannot be regular. Pumping Lemma. Let M =(K; ;;s;f)beadfa, with L = L(M): Suppose m = jkj: Let w 2 L(M) with jwj m: Then there are strings x; y; and z such that w = xyz; jxyj m; y 6= e; and xy k z 2 L; 8k 0: We call m; the pumping constant. Idea of the Proof. Any string accepted by M whose length is greater than the number of states of the machine must have aloopinit. It is precisely this loop that can be iterated. We use the contrapositive form of the pumping lemma to show that a language is NOT regular - 8

9 Let L be a language. Suppose that there exists a string w with substrings x; y; z such that y 6= e; w = xyz; and xy k z=2 L; for some integer k 0; then L cannot be a regular language. So, to show a language is NOT regular, think of playing the following sort of game: nd a string w 2 L so that for any non-empty substring y of w; there exists some pumped form of w : xy k z so that xy k z=2 L: Examples. (1) L 1 = fa n b n : n 1g is not regular. Suppose the language were regular. Choose n greater than the pumping constant given above. Then w = a n b n can be factored as xyz; y 6= e; and xy k z 2 L 1 ; for all k 0: Choose k =0; so xz 2 L; but xz = a n,jyj b n 2 L: Contradiction. We say that we pumped "down" in this example. (2) L 2 = fa n2 : n 1g is not regular. Suppose L 2 were regular. Choose n greater than the pumping constant m: Then a n2 = xyz; where y 6= e and jyj m n: So, xy k z 2 L 2 ; for all k 0: Choose k =2: Then xy 2 z 2 L 2 implies jxy 2 zj is a perfect square. But n 2 < jxy 2 zj <n 2 + n<(n +1) 2 : Contradiction. In this example, we say that we pumped "up." (3) L 3 = fw w R : w 2 g is not regular if = fa; bg: Suppose L 3 were regular. Choose the string w so jwj m +1; where m is the pumping constant. Further, we may choose w to have the special form: w = a m b; so ww r = a m bba m : By the Pumping Lemma, ww R = xyz; with jxyj m and xy k z 2 L 3 ; for k 0: Take k =0: Then xz = a m,jyj bba m 2 L 3 : Contradiction. 7. Problem: Given a DFA M; nd an equivalent DFA with a minimum number of states. We present two solutions to this problem. The rst one of algorithmic. The second one is more conceptual and proves that the equivalent minimum state 9

10 DFA is unique, up to the labeling of its states. 8. First Method: Merging of Equivalent States Let M =(K; ;;q 0 ;F)beaDFA. Given two states q and q 0 from K; we dene an equivalence relation on the states of M by: q q 0 means (q; w) 2 F () (q 0 ;w) 2 F; 8w 2 : The -equivalence classes are computed by a sequence of other equivalence relations n by successive renements. Let q and q 0 be two states of M: Then: q 0 q 0 means q 2 F () q 0 2 F: That is, 0 has two equivalence classes: the set of accepting states F and the set of rejecting states Q n F: For n>0; dene n+1 to mean: q n+1 q 0 as q n q 0 and (q; a) n (q 0 ;a); 8a 2 : That is, q n q 0 means (q; w) 2 F () (q 0 ;w) 2 F; for all strings w whose length is less than or equal n: The equivalence classes of n stabilize for n less than or equal to the number of states of the automaton M: Further, q q 0 if and only if q n q 0 ; for all n: Now, if all the states of M are reachable from the start state q 0 and if equivalent states are merged, then the resulting automaton has a minimum number of states. These observations give rise to an eective algorithm to nd the minimum state automaton, by successively computing the n -equivalence classes, for n = 0; 1; 2;:::: The process terminates when the equivalence classes for two successive values of n agree. Algorithm for Merging Equivalent States: We rst make a table of unordered pairs of distinct states. No pair is marked. (1) First, mark all pairs of inequivalent states relative to strings of length 0; so mark the pair fp; qg if p 2 F; q 2 Q n F or p 2 Q n F; q 2 F: 10

11 (2) Next, we mark all pairs of inequivalent states relative to strings of length k =1; 2; ::; n; where n is the total number of states of the original DFA. for k =1::n do if there is an unmarked pair fp; qg, so that f(p; );(q; )g is marked, then mark the pair fp; qg: od; (3) When the loop terminates, all inequivalent pairs are marked; so the unmarked pairs are equivalent states. Merge these pairs together. Example. State a b The accepting states are f1; 2; 5g: The result of the algorithm is seen to be that states 1 and 2 should be merged and states 3 and 4 should be merged as well. 11

12 f0; 3g! a f1; 5g; f0; 3g! b f2; 5g: f0; 4g! a f1; 5g; f0; 4g! b f2; 5g f1; 2g! a f3; 4g; f1; 2g! b f3; 4g: f1; 5g! a f3; 5g; f1; 5g! b f4; 5g: f3; 4g! a f5; 5g; f3; 4g! b f5; 5g: f2; 5g! a f4; 5g; f2; 5g! b f3; 5g: 9. Second Method: Construction of the Minimum State DFA directly from the Language L Let M =(K; ;;q 0 ;F) be a nite deterministic automaton such that all its states are reachable from its start state. Let L = L(M) be the language it accepts. We associate with M a special equivalence relation R M on ; where xr M y () (q 0 ;x)=(q 0 ;y); where x; y 2 that is, two strings x and y are equivalent if they terminate at the same state. Hence, we can identify the R M equivalence classes [x] M with the sates of M: The language L(M) is the union of the R M -equivalence classes which include an element x; so (q 0 ;x) 2 F: We may call R M ; machine equivalence. We call an equivalence relation R on right-invariant if xry ) xzryz; for all strings z 2 : Note: R M is right invariant. Let L be any language over the alphabet ; that is, L : We can associate an equivalence relation R L on directly from L; without using a nite automaton. 12

13 Given any two strings x; y 2 ; we say xr L y yz 2 L; for all z 2 : () xz 2 L exactly when Note: the equivalence relation R L is right invariant and R L is a renement of R M ; if L = L(M); foradfa M: 10. We can construct a deterministic nite automaton M L directly from the equivalence relation R L ; if R L has FINITE index; that is, if the number of R L equivalence classes is nite. We set M L =(K L ; ; L ;s L ;F L ): Let K L ; the states of the machine M L ; be the collection of all R L -equivalence classes; write them as [x] L ; for a string x: The transition function L : K L! K L is given as: L ([x] L ;a)=[xa] L : Note: L is well dened. Set s L =[e] L and F L = f[x] L : x 2 Lg: The minimum state automaton accepting L is given by M L ; further, any other minimum state automaton that accepts L can be identied with M L ; by a re-labeling of its states. 13

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Automata on Infinite Words and Trees

Automata on Infinite Words and Trees Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:

More information

Scanner. tokens scanner parser IR. source code. errors

Scanner. tokens scanner parser IR. source code. errors Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

C H A P T E R Regular Expressions regular expression

C H A P T E R Regular Expressions regular expression 7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun

More information

Regular Expressions and Automata using Haskell

Regular Expressions and Automata using Haskell Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

Finite Automata. Reading: Chapter 2

Finite Automata. Reading: Chapter 2 Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream

More information

Introduction to Automata Theory. Reading: Chapter 1

Introduction to Automata Theory. Reading: Chapter 1 Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

The Halting Problem is Undecidable

The Halting Problem is Undecidable 185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine

More information

Turing Machines: An Introduction

Turing Machines: An Introduction CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,

More information

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

More information

Deterministic Finite Automata

Deterministic Finite Automata 1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages CHAPTER 3 Finite Automata and Regular Languages 3. Introduction 3.. States and Automata A finite-state machine or finite automaton (the noun comes from the Greek; the singular is automaton, the Greek-derived

More information

Chapter 7 Uncomputability

Chapter 7 Uncomputability Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction

More information

Finite Automata. Reading: Chapter 2

Finite Automata. Reading: Chapter 2 Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

CS5236 Advanced Automata Theory

CS5236 Advanced Automata Theory CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

Converting Finite Automata to Regular Expressions

Converting Finite Automata to Regular Expressions Converting Finite Automata to Regular Expressions Alexander Meduna, Lukáš Vrábel, and Petr Zemek Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 00 Brno, CZ http://www.fit.vutbr.cz/

More information

Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

11 Multivariate Polynomials

11 Multivariate Polynomials CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1 (These lecture notes were prepared and presented by Dan Roche.) 11 Multivariate Polynomials References: MC: Section 16.6

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

6.080/6.089 GITCS Feb 12, 2008. Lecture 3

6.080/6.089 GITCS Feb 12, 2008. Lecture 3 6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my

More information

How To Compare A Markov Algorithm To A Turing Machine

How To Compare A Markov Algorithm To A Turing Machine Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also

More information

Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

More information

Reducing Clocks in Timed Automata while Preserving Bisimulation

Reducing Clocks in Timed Automata while Preserving Bisimulation Reducing Clocks in Timed Automata while Preserving Bisimulation Shibashis Guha Chinmay Narayan S. Arun-Kumar Indian Institute of Technology Delhi {shibashis, chinmay, sak}@cse.iitd.ac.in arxiv:1404.6613v2

More information

ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605

ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605 ASSIGNMENT ONE SOLUTIONS MATH 4805 / COMP 4805 / MATH 5605 (1) (a) (0 + 1) 010 (finite automata below). (b) First observe that the following regular expression generates the binary strings with an even

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

1 Approximating Set Cover

1 Approximating Set Cover CS 05: Algorithms (Grad) Feb 2-24, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subset of X, such that every elemennt

More information

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,

More information

An algorithmic classification of open surfaces

An algorithmic classification of open surfaces An algorithmic classification of open surfaces Sylvain Maillot January 8, 2013 Abstract We propose a formulation for the homeomorphism problem for open n-dimensional manifolds and use the Kerekjarto classification

More information

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. 3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move. CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

Computational Models Lecture 8, Spring 2009

Computational Models Lecture 8, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

More information

Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

More information

A Systematic Approach. to Parallel Program Verication. Tadao TAKAOKA. Department of Computer Science. Ibaraki University. Hitachi, Ibaraki 316, JAPAN

A Systematic Approach. to Parallel Program Verication. Tadao TAKAOKA. Department of Computer Science. Ibaraki University. Hitachi, Ibaraki 316, JAPAN A Systematic Approach to Parallel Program Verication Tadao TAKAOKA Department of Computer Science Ibaraki University Hitachi, Ibaraki 316, JAPAN E-mail: takaoka@cis.ibaraki.ac.jp Phone: +81 94 38 5130

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Data Structures Fibonacci Heaps, Amortized Analysis

Data Structures Fibonacci Heaps, Amortized Analysis Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:

More information

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES 136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

More information

On line construction of suffix trees 1

On line construction of suffix trees 1 (To appear in ALGORITHMICA) On line construction of suffix trees 1 Esko Ukkonen Department of Computer Science, University of Helsinki, P. O. Box 26 (Teollisuuskatu 23), FIN 00014 University of Helsinki,

More information

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac. Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Properties of Stabilizing Computations

Properties of Stabilizing Computations Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71 93 Properties of Stabilizing Computations Mark Burgin a a University of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA

More information

Computability Theory

Computability Theory CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.

More information

Putnam Notes Polynomials and palindromes

Putnam Notes Polynomials and palindromes Putnam Notes Polynomials and palindromes Polynomials show up one way or another in just about every area of math. You will hardly ever see any math competition without at least one problem explicitly concerning

More information

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

More information

SCORE SETS IN ORIENTED GRAPHS

SCORE SETS IN ORIENTED GRAPHS Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in

More information

Gröbner Bases and their Applications

Gröbner Bases and their Applications Gröbner Bases and their Applications Kaitlyn Moran July 30, 2008 1 Introduction We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is finitely generated [3]. However,

More information

Notes on Complexity Theory Last updated: August, 2011. Lecture 1

Notes on Complexity Theory Last updated: August, 2011. Lecture 1 Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

3515ICT Theory of Computation Turing Machines

3515ICT Theory of Computation Turing Machines Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions Theory of Formal Languages In the English language, we distinguish between three different identities: letter, word, sentence.

More information

CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

More information

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity. 7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

How To Solve A Minimum Set Covering Problem (Mcp)

How To Solve A Minimum Set Covering Problem (Mcp) Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

More information

Midterm Practice Problems

Midterm Practice Problems 6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

1 Definition of a Turing machine

1 Definition of a Turing machine Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Two Way F finite Automata and Three Ways to Solve Them

Two Way F finite Automata and Three Ways to Solve Them An Exponential Gap between LasVegas and Deterministic Sweeping Finite Automata Christos Kapoutsis, Richard Královič, and Tobias Mömke Department of Computer Science, ETH Zürich Abstract. A two-way finite

More information

A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE

A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE DANIEL A. RAMRAS In these notes we present a construction of the universal cover of a path connected, locally path connected, and semi-locally simply

More information

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information