Finite Automata. Reading: Chapter 2


 Daniel Lindsey
 1 years ago
 Views:
Transcription
1 Finite Automata Reading: Chapter 2 1
2 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or sequence) of input symbols Recognizer for Regular Languages Deterministic Finite Automata (DFA) The machine can exist in only one state at any given time Nondeterministic Finite Automata (NFA) The machine can exist in multiple states at the same time 2
3 Deterministic Finite Automata  Definition A Deterministic Finite Automaton (DFA) consists of: Q ==> a finite set of states ==> a finite set of input symbols (alphabet) q 0 ==> astart state F ==> set of final states δ ==> a transition function, which is a mapping between Q x ==> Q A DFA is defined by the 5tuple: {Q,, q 0,F, δ } 3
4 How to use a DFA? Input: a word w in * Question: Is w acceptable by the DFA? Steps: Start at the start state q 0 For every input symbol in the sequence w do Compute the next state from the current state, given the current input symbol in w and the transition function If after all symbols in w are consumed, the current state is one of the final states (F) then accept w; Otherwise, reject w. 4
5 Regular Languages Let L(A) be a language recognized by a DFA A. Then L(A) is called a Regular Language. Locate regular languages in the Chomsky Hierarchy 5
6 Example #1 Build a DFA for the following language: L = {w w is a binary string that contains 01 as a substring} Steps for building a DFA to recognize L: = {0,1} Decide on the states: Q Designate start t state t and final state(s) t δ: Decide on the transitions: Final states == same as accepting states Other states == same as nonaccepting states 6
7 Regular expression: (0+1)*01(0+1)* DFA for strings containing 01 What makes the DFA deterministic? Q={q 0,q 1,q 2 } 1 0,1 0 start q 0 0 q 1 1 q2 Final state = {0,1} start state = q 0 F = {q 2 } Transition table symbols 0 1 q 0 q 1 q 0 What if the language g allows q 1 q 1 q 2 empty strings? *q 2 q 2 q 2 stat tes 7
8 Example #2 Clamping Logic: A clamping circuit waits for a 1 input, and turns on forever. However, to avoid clamping on spurious noise, we ll design a DFA that waits for two consecutive 1s in a row before clamping on. Build a DFA for the following language: g L = { w w is a bit string which contains the substring 11} State Design: q 0 : start state (initially off), also means the most recent input was not a 1 q 1 : has never seen 11 but the most recent input was a 1 q 2 : has seen 11 at least once 8
9 Example #3 Build a DFA for the following language: L = { w w has an even number of 0s and an even number of 1s}? Note: Alphabet implied is {0,1} 9
10 Extension of transitions (δ) to Paths (δ) δ (q 0,w) = ending state of the path taken from q 0 on input string w 0 δ (q 0,wa) = δ (δ(q 0,w), a) Exercise: Work out example #3 using the input sequence w=10010, a=1 10
11 Language of a DFA A DFA A accepts w if there is exactly a path from q 0 to an accepting (or final) state that is labeled by w i.e., L(A) = { w δ(q 0,w) Є F } I.e., L(A) = all strings that lead to a final state from q 0 11
12 Nondeterministic Finite Automata (NFA) A Nondeterministic Finite Automaton (NFA) is of course nondeterministic Implying that the machine can exist in more than one state at the same time Outgoing transitions could be nondeterministic q i 1 1 q j q k Each transition function therefore maps to a set of states 12
13 Nondeterministic Finite Automata (NFA) A Nondeterministic Finite Automaton (NFA) consists of: Q ==> a finite set of states ==> a finite set of input symbols (alphabet) q 0 ==> a start state F ==> set of final states δ ==> a transition function, which is a mapping between Q x ==> subset of Q An NFA is also defined by the 5tuple: {Q,, q 0,F, δ } 13
14 How to use an NFA? Input: a word w in * Question: Is w acceptable by the NFA? Steps: Start at the start state q 0 For every input symbol in the sequence w do Determine all the possible next states from the current state, given the current input symbol in w and the transition function If after all symbols in w are consumed, at least one of the current states is a final state then accept w; Otherwise, reject w. 14
15 Regular expression: (0+1)*01(0+1)* NFA for strings containing 01 Why is this nondeterministic? 0,1 0,1 start 0 1 q2 q 0 q 1 What will happen if at state q 1 an input of 0 is received? ed Final state sta ates Q={q 0,q 1,q 2 } = {0,1} start state = q 0 F = {q 2 } Transition table symbols 0 1 q 0 {q 0,q 1 } {q 0 } q 1 Φ {q 2 } *q 2 {q 2 } {q 2 } 15
16 Example #2 Build an NFA for the following language: L = { w w ends in 01}? How about a DFA now? 16
17 Advantages & Caveats for NFA Great for modeling regular expressions String gprocessing e.g., grep, lexical analyzer But imaginary, in the sense that it has to be implemented deterministically in practice Could a nondeterministic state machine be implemented in practice? E.g., toss of a coin, a roll of dice 17
18 Differences: DFA vs. NFA DFA 1. All transitions are deterministic Each transition leads to exactly one state 2. For each state, transition on all possible symbols (alphabet) should be defined 3. Accepts input if the last state is in F 4. Sometimes harder to construct because of the number of states 5. Practical implementation is feasible NFA 1. Transitions could be nondeterministic A transition could lead to a subset of states 2. For each state, not all symbols necessarily have to be defined in the transition function 3. Accepts input if one of the last states is in F 4. Generally easier than a DFA to construct 5. Practical implementation has to be deterministic (so needs conversion to DFA) But, DFAs and NFAs are equivalent (in their power)!! 18
19 Extension of δ to NFA Paths Basis: δ (q, ) = {q} Induction: Let δ (q 0,w) = {p 1,p 2,p k } δ (p i,a) = S i for i=1,2...,k Then, δ (q 0,wa) = S 1 US 2 U US U k 19
20 Language of an NFA An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w L(N) = { w δ(q 0,w) F Φ } 20
21 Equivalence of DFA & NFA Should be true for any L Theorem: A language L is accepted by a DFA if and only if it is accepted by an NFA. Proof: 1. If part: Proof by subset construction (in the next few slides ) 2. Onlyif part: Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, ifli is accepted dby a DFA, iti is accepted dby a corresponding NFA. 21
22 Proof for the ifpart Ifpart: A language L is accepted by a DFA if it is accepted by an NFA rephrasing Given any NFA N, we can construct a DFA D such that L(N)=L(D) How to construct a DFA from an NFA? Observation: the transition function of an NFA maps to subsets of states Idea: Make one DFA state for every possible subset of the NFA states Subset construction 22
23 NFA to DFA by subset construction Let N = {Q N,,δ N,q 0,F N } Goal: Build D={Q D,,δ D D,{q 0 },F D D} s.t. L(D)=L(N) Construction: 1. Q D = all subsets of Q N (i.e., power set) 2. F D =set of subsets S of Q N s.t. S F N Φ 3. δ D : for each subset S of Q N and for each input symbol a in : δ D (S,a) =Uδ δ N (p,a) p in s 23
24 Idea: To avoid enumerating all of power set, do lazy creation of states NFA to DFA construction: Example NFA: 01 0,1 L = {w w ends in 01} 0 q 0 q 1 1 q 2 DFA: {q 0 } {q 0,q 1 } 0 {q 0,q 2 } 1 δ N 0 1 δ D 0 1 δ D 0 1 Ø Ø Ø {q 0 } {q 0,q 1 } {q 0 } q 0 {q 0,q 1 } {q 0 } {q 0 } {q 0,q 1 } {q 0 } {q 0,q 1 } {q 0,q 1 } {q 0,q 2 } q 1 Ø {q 2 } {q 1 } Ø {q 2 } *{q 0,q 2 } {q 0,q 1 } {q 0 } *q 2 Ø Ø *{q 2 } Ø Ø {q 0,q 1 } {q 0,q 1 } {q 0,q 2 } Remove states unreachable from q 0 *{q 0,q 2 } {q 0,q 1 } {q 0 } *{q 1,q 2 } Ø {q 2 } *{q 0,q 1,q 2 } {q 0,q 1 } {q 0,q 2 } 24
25 NFA to DFA: Repeating the example using LAZY CREATION NFA: 01 0,1 L = {w w ends in 01} 0 q 0 q 1 1 q 2 DFA: {q 0 } {q 0,q 1 } 0 {q 0,q 2 } 1 δ N 0 1 q 0 {q 0,q 1 } {q 0 } q 1 Ø {q 2 } δ D 0 1 {q 0 } {q 0,q 1 } {q 0 } {q 0,q 1 } {q 0,q 1 } {q 0,q 2 } *q 2 Ø Ø *{q 0,q 2 } {q 0,q 1 } {q 0 } Main Idea: Introduce states as you go (on a need basis) 25
26 Correctness of subset construction Theorem: If D is the DFA constructed from NFA N by subset construction, then L(D)=L(N) Proof: Show that δ D ({q 0 },w) = δ N (q 0,w} Using induction on w s ws length: Let w = xa δ D ({q 0 }xa)=δ },xa) δ D ( δ N (q 0,x}, a ) = δ N (q 0,w} 26
27 A bad case for subset construction L = {w w is a binary string s.t., the n th symbol from its end is a 1} NFA has n+1 states DFA needs to have at least 2 n states Pigeon hole principle m holes and >m pigeons => at least one hole has to contain two or more pigeons 27
28 Dead states Example: A DFA for recognizing the key word while w h i l e q 0 q 1 q 2 q 3 q 4 q 5 Any other input symbol q dead 28
29 Applications Text indexing inverted indexing For each unique word in the database, store all locations that contain it using an NFA or a DFA Find pattern P in text t T Example: Google querying Et Extensions of fthis idea: PATRICIA tree, suffix tree 29
30 FA with EpsilonTransitions We can allow transitions in finite automata i.e., a state can jump to another state without consuming any input symbol Use: Makes it easier sometimes for NFA construction NFAs have to one more column in their transition table 30
31 Example of an NFA L = {w possibily empty w s.t. if nonempty will end in 01} start q 0 0,1 δ E q 0 q 1 *q 0 Ø Ø {q 0,q 0 } q 0 {q 0,q 1 } {q 0 } {q 0 } q 1 Ø {q 2 } {q 1 } *q 2 Ø Ø {q 2 } q 2 closure of a state q, ECLOSE(q), is the set of all states that can be reached from q by repeatedly making  transitions (including ECLOSE(q 0 ) itself). ECLOSE(q 0 ) 31
32 Equivalency of DFA, NFA, NFA Theorem: A language L is accepted by some NFA if and only if L is accepted by some DFA Proof: Idea: Use the same subset construction except include closures 32
33 Eliminating transitions Let E = {Q E,,δ E,q 0,F E } Goal: Build D={Q D,,δ D,{q D },F D } s.t. L(D)=L(E) Construction: ti 1. Q D = all reachable subsets of Q E factoring in closures 2. q d = ECLOSE(q 0 ) 3. F D =subsets S in Q D s.t. S F E Φ 4. δ D : for each subset S of Q E and for each input symbol a in : Let R= p in Us δ E (p,a) δ D (S,a) = r in UR D( ECLOSE(r) () 33
34 Summary DFA Definition Transition diagrams & tables Regular language NFA Definition Transition diagrams & tables DFA vs. NFA NFA to DFA conversion using subset construction Equivalency of DFA & NFA Removal of redundant states and including dead states transitions in NFA Pigeon hole principles Text searching applications 34
Finite Automata. Reading: Chapter 2
Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream
More informationAutomata and Languages
Automata and Languages Computational Models: An idealized mathematical model of a computer. A computational model may be accurate in some ways but not in others. We shall be defining increasingly powerful
More information6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
More informationFORMAL LANGUAGES, AUTOMATA AND COMPUTATION
FORMAL LANGUAGES, AUTOMATA AND COMPUTATION REDUCIBILITY ( LECTURE 16) SLIDES FOR 15453 SPRING 2011 1 / 20 THE LANDSCAPE OF THE CHOMSKY HIERARCHY ( LECTURE 16) SLIDES FOR 15453 SPRING 2011 2 / 20 REDUCIBILITY
More informationFormal Languages and Automata Theory  Regular Expressions and Finite Automata 
Formal Languages and Automata Theory  Regular Expressions and Finite Automata  Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
More informationMotivation. Automata = abstract computing devices. Turing studied Turing Machines (= computers) before there were any real computers
Motivation Automata = abstract computing devices Turing studied Turing Machines (= computers) before there were any real computers We will also look at simpler devices than Turing machines (Finite State
More informationTheory of Computation
Theory of Computation For Computer Science & Information Technology By www.thegateacademy.com Syllabus Syllabus for Theory of Computation Regular Expressions and Finite Automata, ContextFree Grammar s
More informationReading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
More informationAutomata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
More informationIntroduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
More informationNondeterministic Finite Automata
Chapter, Part 2 Nondeterministic Finite Automata CSC527, Chapter, Part 2 c 202 Mitsunori Ogihara Fundamental set operations Let A and B be two languages. In addition to union and intersection, we consider
More informationCSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions
CSC45 AUTOMATA 2. Finite Automata: Examples and Definitions Finite Automata: Examples and Definitions A finite automaton is a simple type of computer. Itsoutputislimitedto yes to or no. It has very primitive
More informationRegular Expressions and Automata using Haskell
Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions
More informationthe lemma. Keep in mind the following facts about regular languages:
CPS 2: Discrete Mathematics Instructor: Bruce Maggs Assignment Due: Wednesday September 2, 27 A Tool for Proving Irregularity (25 points) When proving that a language isn t regular, a tool that is often
More informationFinite Automata and Regular Languages
CHAPTER 3 Finite Automata and Regular Languages 3. Introduction 3.. States and Automata A finitestate machine or finite automaton (the noun comes from the Greek; the singular is automaton, the Greekderived
More informationAutomata and Formal Languages
Automata and Formal Languages Winter 20092010 Yacov HelOr 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
More informationCompiler Construction
Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F021 Compiler overview source code lexical analysis tokens intermediate code generation
More informationRegular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries  some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
More informationDeterministic Finite Automata
1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function
More informationFormal Deænition of Finite Automaton. 1. Finite set of states, typically Q. 2. Alphabet of input symbols, typically æ.
Formal Denition of Finite Automaton 1. Finite set of states, typically Q. 2. Alphabet of input symbols, typically. 3. One state is the startèinitial state, typically q 0. 4. Zero or more nalèaccepting
More informationAutomata on Infinite Words and Trees
Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 20092010 winter semester Last modified:
More informationCS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.
CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write
More informationFinite Automata and Formal Languages
Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Lecture 14 May 19th 2011 Overview of today s lecture: Turing Machines Pushdown Automata Overview of the Course Undecidable and Intractable Problems
More informationT79.186 Reactive Systems: Introduction and Finite State Automata
T79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 11 Reactive Systems Reactive systems are a class of software
More informationTuring Machines: An Introduction
CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛtransitions,
More informationCS Markov Chains Additional Reading 1 and Homework problems
CS 252  Markov Chains Additional Reading 1 and Homework problems 1 Markov Chains The first model we discussed, the DFA, is deterministic it s transition function must be total and it allows for transition
More informationChapter 2. Finite Automata. 2.1 The Basic Model
Chapter 2 Finite Automata 2.1 The Basic Model Finite automata model very simple computational devices or processes. These devices have a constant amount of memory and process their input in an online manner.
More informationCSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 0428, 302014 HighLevel Descriptions of Computation Instead of giving a Turing
More informationDefinition: String concatenation. Definition: String. Definition: Language (cont.) Definition: Language
CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata Introduction That s it for the basics of Ruby If you need other material for your project, come to office hours or
More informationHonors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information
More information6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
More information3515ICT Theory of Computation Turing Machines
Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 90 Overview Turing machines: a general model of computation
More informationThe Halting Problem is Undecidable
185 Corollary G = { M, w w L(M) } is not Turingrecognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine
More informationInformatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1  Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytechlille.fr Université Lille 1  Polytech Lille
More informationAutomata Theory and Languages
Automata Theory and Languages SITE : http://www.info.univtours.fr/ mirian/ Automata Theory, Languages and Computation  Mírian HalfeldFerrari p. 1/1 Introduction to Automata Theory Automata theory :
More informationGenetic programming with regular expressions
Genetic programming with regular expressions Børge Svingen Chief Technology Officer, Open AdExchange bsvingen@openadex.com 20090323 Pattern discovery Pattern discovery: Recognizing patterns that characterize
More informationCS5236 Advanced Automata Theory
CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 20122013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then
More informationPushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.
Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Contextfree languages are defined by contextfree
More informationScanner. tokens scanner parser IR. source code. errors
Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme
More informationC H A P T E R Regular Expressions regular expression
7 CHAPTER Regular Expressions Most programmers and other powerusers of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun
More informationRegular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
More informationCS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 ChurchTuring thesis Let s recap how it all started. In 1990, Hilbert stated a
More informationPushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
More information24 Uses of Turing Machines
Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss
More informationComputing Functions with Turing Machines
CS 30  Lecture 20 Combining Turing Machines and Turing s Thesis Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata
More informationSets and Subsets. Countable and Uncountable
Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There
More informationINSTITUTE OF AERONAUTICAL ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING DUNDIGAL 500 043, HYDERABAD COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : FORMAL LANGUAGES AND AUTOMATA THEORY Code : A40509 Class : II B. Tech II
More informationStructural properties of oracle classes
Structural properties of oracle classes Stanislav Živný Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK Abstract Denote by C the class of oracles relative
More informationAutomata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According
More informationProperties of Regular Languages
Properties of Regular Languages SITE : http://www.info.blois.univtours.fr/ mirian/ Automata Theory, Languages and Computation  Mírian HalfeldFerrari p. 1/3 Algebraic Laws for Regular Expressions Two
More informationTheory of Computation Chapter 2: Turing Machines
Theory of Computation Chapter 2: Turing Machines GuanShieng Huang Feb. 24, 2003 Feb. 19, 2006 00 Turing Machine δ K 0111000a 01bb 1 Definition of TMs A Turing Machine is a quadruple M = (K, Σ, δ, s),
More informationOverview of E0222: Automata and Computability
Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study
More informationMaster s Thesis. OnePass Strategies for ContextFree Games. Christian Cöster August 2015
Master s Thesis OnePass Strategies for ContextFree Games Christian Cöster August 2015 Examiners: Prof. Dr. Thomas Schwentick Prof. Dr. Christoph Buchheim Technische Universität Dortmund Fakultät für
More informationFull and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationIncreasing Interaction and Support in the Formal Languages and Automata Theory Course
Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger rodger@cs.duke.edu Jinghui Lim Stephen Reading ABSTRACT The introduction of educational
More information1 Definition of a Turing machine
Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 216, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,
More informationSRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN
Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June
More informationAn Overview of a Compiler
An Overview of a Compiler Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture About the course
More information(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
More informationComposability of InfiniteState Activity Automata*
Composability of InfiniteState Activity Automata* Zhe Dang 1, Oscar H. Ibarra 2, Jianwen Su 2 1 Washington State University, Pullman 2 University of California, Santa Barbara Presented by Prof. HsuChun
More informationInf1A: Deterministic Finite State Machines
Lecture 2 InfA: Deterministic Finite State Machines 2. Introduction In this lecture we will focus a little more on deterministic Finite State Machines. Also, we will be mostly concerned with Finite State
More informationProofs by induction, Alphabet, Strings [1] Proofs by Induction
Proofs by induction, Alphabet, Strings [1] Proofs by Induction Proposition: If f(0) = 0 and f(n + 1) = f(n) + n + 1 then, for all n N, we have f(n) = n(n + 1)/2 Let S(n) be f(n) = n(n + 1)/2 We prove S(0)
More informationToday s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary
Today s Agenda Quiz 4 Temporal Logic Formal Methods in Software Engineering 1 Automata and Logic Introduction Buchi Automata Linear Time Logic Summary Formal Methods in Software Engineering 2 1 Buchi Automata
More informationωautomata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:
ωautomata ωautomata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of nonterminating executions of a program. in arithmetic,
More informationLecture I FINITE AUTOMATA
1. Regular Sets and DFA Lecture I Page 1 Lecture I FINITE AUTOMATA Lecture 1: Honors Theory, Spring 02, Yap We introduce finite automata (deterministic and nondeterministic) and regular languages. Some
More informationOmega Automata: Minimization and Learning 1
Omega Automata: Minimization and Learning 1 Oded Maler CNRS  VERIMAG Grenoble, France 2007 1 Joint work with A. Pnueli, late 80s Summary Machine learning in general and of formal languages in particular
More informationSemantics of UML class diagrams
1 OttovonGuericke Universität Magdeburg, Germany April 26, 2016 Sets Definition (Set) A set is a collection of objects. The basic relation is membership: x A (x is a member of A) The following operations
More informationDiscrete Mathematics Lecture 5. Harper Langston New York University
Discrete Mathematics Lecture 5 Harper Langston New York University Empty Set S = {x R, x 2 = 1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of
More informationTheory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras
Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture No. # 31 Recursive Sets, Recursively Innumerable Sets, Encoding
More information3. Recurrence Recursive Definitions. To construct a recursively defined function:
3. RECURRENCE 10 3. Recurrence 3.1. Recursive Definitions. To construct a recursively defined function: 1. Initial Condition(s) (or basis): Prescribe initial value(s) of the function.. Recursion: Use a
More informationCS 341 Homework 9 Languages That Are and Are Not Regular
CS 341 Homework 9 Languages That Are and Are Not Regular 1. Show that the following are not regular. (a) L = {ww R : w {a, b}*} (b) L = {ww : w {a, b}*} (c) L = {ww' : w {a, b}*}, where w' stands for w
More informationProperties of Stabilizing Computations
Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71 93 Properties of Stabilizing Computations Mark Burgin a a University of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA
More informationCourse Manual Automata & Complexity 2015
Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:
More information1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:
More informationGraph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
More informationWe give a basic overview of the mathematical background required for this course.
1 Background We give a basic overview of the mathematical background required for this course. 1.1 Set Theory We introduce some concepts from naive set theory (as opposed to axiomatic set theory). The
More informationOn a Structural Property in the State Complexity of Projected Regular Languages
On a Structural Property in the State Complexity of Projected Regular Languages Galina Jirásková a,1,, Tomáš Masopust b,2 a Mathematical Institute, Slovak Academy of Sciences Grešákova 6, 040 01 Košice,
More informationLecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
More informationComputability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 110.
More informationComputational Models Lecture 8, Spring 2009
Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance
More information1 Introduction to Counting
1 Introduction to Counting 1.1 Introduction In this chapter you will learn the fundamentals of enumerative combinatorics, the branch of mathematics concerned with counting. While enumeration problems can
More information6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
More informationOn Winning Conditions of High Borel Complexity in Pushdown Games
Fundamenta Informaticae (2005) 1 22 1 IOS Press On Winning Conditions of High Borel Complexity in Pushdown Games Olivier Finkel Equipe de Logique Mathématique U.F.R. de Mathématiques, Université Paris
More informationOHJ2306 Fall 2011 Introduction to Theoretical Computer Science
1 OHJ2306 Fall 2011 Introduction to Theoretical Computer Science 2 3 Organization & timetable Lectures: prof. Tapio Elomaa, M.Sc. Timo Aho Tue and Thu 14 16 TB220 Aug. 30 Dec. 8, 2011 Exceptions: Thu
More informationRegular Expressions. Languages. Recall. A language is a set of strings made up of symbols from a given alphabet. Computer Science Theory 2
Regular Expressions Languages Recall. A language is a set of strings made up of symbols from a given alphabet. Computer Science Theory 2 1 String Recognition Machine Given a string and a definition of
More informationCAs and Turing Machines. The Basis for Universal Computation
CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.
More informationIntroduction to Theory of Computation. School of Computer Science Carleton University Ottawa Canada
Introduction to Theory of Computation Anil Maheshwari Michiel Smid School of Computer Science Carleton University Ottawa Canada {anil,michiel}@scs.carleton.ca April 11, 2016 ii Contents Contents Preface
More informationSteps of sequential circuit design (cont'd)
Design of Clocked Synchronous Sequential Circuits Design of a sequential circuit starts with the verbal description of the problem (scenario). Design process is similar to computer programming. First,
More informationTuring Machine and the Conceptual Problems of Computational Theory
Research Inventy: International Journal of Engineering And Science Vol.4, Issue 4 (April 204), PP 5360 Issn (e): 2278472, Issn (p):2396483, www.researchinventy.com Turing Machine and the Conceptual
More informationPreventing Denial of Service Attacks in a Calculus of Mobile Resources
Preventing Denial of Service Attacks in a Calculus of Mobile Resources Bilge Hösükoǧlu, David Sánchez Hernández, Julian Driver June 1, 2006 Abstract In this paper we introduce membranes for the calculus
More informationState Machines and Equivalence Checking
State Machines and Equivalence Checking Testing & Verification Dept. of Computer Science & Engg,, IIT Kharagpur Pallab Dasgupta Professor, Dept. of Computer Science & Engg., Professorin incharge, AVLSI
More informationSection 2.1. Tree Diagrams
Section 2.1 Tree Diagrams Example 2.1 Problem For the resistors of Example 1.16, we used A to denote the event that a randomly chosen resistor is within 50 Ω of the nominal value. This could mean acceptable.
More information(Refer Slide Time: 1:41)
Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must
More informationCS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions
CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions Theory of Formal Languages In the English language, we distinguish between three different identities: letter, word, sentence.
More informationA First Investigation of Sturmian Trees
A First Investigation of Sturmian Trees Jean Berstel 2, Luc Boasson 1 Olivier Carton 1, Isabelle Fagnot 2 1 LIAFA, CNRS Université Paris 7 2 IGM, CNRS Université de MarnelaVallée Atelier de Combinatoire,
More information+ Section 6.2 and 6.3
Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities
More informationLearning Analysis by Reduction from Positive Data
Learning Analysis by Reduction from Positive Data František Mráz 1, Friedrich Otto 1, and Martin Plátek 2 1 Fachbereich Mathematik/Informatik, Universität Kassel 34109 Kassel, Germany {mraz,otto}@theory.informatik.unikassel.de
More informationPhiladelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course
More informationDiscrete Mathematics, Chapter 5: Induction and Recursion
Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Wellfounded
More information