Finite Automata. Reading: Chapter 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Finite Automata. Reading: Chapter 2"

Transcription

1 Finite Automata Reading: Chapter 2 1

2 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or sequence) of input symbols Recognizer for Regular Languages Deterministic Finite Automata (DFA) The machine can exist in only one state at any given time Non-deterministic Finite Automata (NFA) The machine can exist in multiple states at the same time 2

3 Deterministic Finite Automata - Definition A Deterministic Finite Automaton (DFA) consists of: Q ==> a finite set of states ==> a finite set of input symbols (alphabet) q 0 ==> astart state F ==> set of final states δ ==> a transition function, which is a mapping between Q x ==> Q A DFA is defined by the 5-tuple: {Q,, q 0,F, δ } 3

4 How to use a DFA? Input: a word w in * Question: Is w acceptable by the DFA? Steps: Start at the start state q 0 For every input symbol in the sequence w do Compute the next state from the current state, given the current input symbol in w and the transition function If after all symbols in w are consumed, the current state is one of the final states (F) then accept w; Otherwise, reject w. 4

5 Regular Languages Let L(A) be a language recognized by a DFA A. Then L(A) is called a Regular Language. Locate regular languages in the Chomsky Hierarchy 5

6 Example #1 Build a DFA for the following language: L = {w w is a binary string that contains 01 as a substring} Steps for building a DFA to recognize L: = {0,1} Decide on the states: Q Designate start t state t and final state(s) t δ: Decide on the transitions: Final states == same as accepting states Other states == same as non-accepting states 6

7 Regular expression: (0+1)*01(0+1)* DFA for strings containing 01 What makes the DFA deterministic? Q={q 0,q 1,q 2 } 1 0,1 0 start q 0 0 q 1 1 q2 Final state = {0,1} start state = q 0 F = {q 2 } Transition table symbols 0 1 q 0 q 1 q 0 What if the language g allows q 1 q 1 q 2 empty strings? *q 2 q 2 q 2 stat tes 7

8 Example #2 Clamping Logic: A clamping circuit waits for a 1 input, and turns on forever. However, to avoid clamping on spurious noise, we ll design a DFA that waits for two consecutive 1s in a row before clamping on. Build a DFA for the following language: g L = { w w is a bit string which contains the substring 11} State Design: q 0 : start state (initially off), also means the most recent input was not a 1 q 1 : has never seen 11 but the most recent input was a 1 q 2 : has seen 11 at least once 8

9 Example #3 Build a DFA for the following language: L = { w w has an even number of 0s and an even number of 1s}? Note: Alphabet implied is {0,1} 9

10 Extension of transitions (δ) to Paths (δ) δ (q 0,w) = ending state of the path taken from q 0 on input string w 0 δ (q 0,wa) = δ (δ(q 0,w), a) Exercise: Work out example #3 using the input sequence w=10010, a=1 10

11 Language of a DFA A DFA A accepts w if there is exactly a path from q 0 to an accepting (or final) state that is labeled by w i.e., L(A) = { w δ(q 0,w) Є F } I.e., L(A) = all strings that lead to a final state from q 0 11

12 Non-deterministic Finite Automata (NFA) A Non-deterministic Finite Automaton (NFA) is of course non-deterministic Implying that the machine can exist in more than one state at the same time Outgoing transitions could be non-deterministic q i 1 1 q j q k Each transition function therefore maps to a set of states 12

13 Non-deterministic Finite Automata (NFA) A Non-deterministic Finite Automaton (NFA) consists of: Q ==> a finite set of states ==> a finite set of input symbols (alphabet) q 0 ==> a start state F ==> set of final states δ ==> a transition function, which is a mapping between Q x ==> subset of Q An NFA is also defined by the 5-tuple: {Q,, q 0,F, δ } 13

14 How to use an NFA? Input: a word w in * Question: Is w acceptable by the NFA? Steps: Start at the start state q 0 For every input symbol in the sequence w do Determine all the possible next states from the current state, given the current input symbol in w and the transition function If after all symbols in w are consumed, at least one of the current states is a final state then accept w; Otherwise, reject w. 14

15 Regular expression: (0+1)*01(0+1)* NFA for strings containing 01 Why is this non-deterministic? 0,1 0,1 start 0 1 q2 q 0 q 1 What will happen if at state q 1 an input of 0 is received? ed Final state sta ates Q={q 0,q 1,q 2 } = {0,1} start state = q 0 F = {q 2 } Transition table symbols 0 1 q 0 {q 0,q 1 } {q 0 } q 1 Φ {q 2 } *q 2 {q 2 } {q 2 } 15

16 Example #2 Build an NFA for the following language: L = { w w ends in 01}? How about a DFA now? 16

17 Advantages & Caveats for NFA Great for modeling regular expressions String gprocessing e.g., grep, lexical analyzer But imaginary, in the sense that it has to be implemented deterministically in practice Could a non-deterministic state machine be implemented in practice? E.g., toss of a coin, a roll of dice 17

18 Differences: DFA vs. NFA DFA 1. All transitions are deterministic Each transition leads to exactly one state 2. For each state, transition on all possible symbols (alphabet) should be defined 3. Accepts input if the last state is in F 4. Sometimes harder to construct because of the number of states 5. Practical implementation is feasible NFA 1. Transitions could be nondeterministic A transition could lead to a subset of states 2. For each state, not all symbols necessarily have to be defined in the transition function 3. Accepts input if one of the last states is in F 4. Generally easier than a DFA to construct 5. Practical implementation has to be deterministic (so needs conversion to DFA) But, DFAs and NFAs are equivalent (in their power)!! 18

19 Extension of δ to NFA Paths Basis: δ (q, ) = {q} Induction: Let δ (q 0,w) = {p 1,p 2,p k } δ (p i,a) = S i for i=1,2...,k Then, δ (q 0,wa) = S 1 US 2 U US U k 19

20 Language of an NFA An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w L(N) = { w δ(q 0,w) F Φ } 20

21 Equivalence of DFA & NFA Should be true for any L Theorem: A language L is accepted by a DFA if and only if it is accepted by an NFA. Proof: 1. If part: Proof by subset construction (in the next few slides ) 2. Only-if part: Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, ifli is accepted dby a DFA, iti is accepted dby a corresponding NFA. 21

22 Proof for the if-part If-part: A language L is accepted by a DFA if it is accepted by an NFA rephrasing Given any NFA N, we can construct a DFA D such that L(N)=L(D) How to construct a DFA from an NFA? Observation: the transition function of an NFA maps to subsets of states Idea: Make one DFA state for every possible subset of the NFA states Subset construction 22

23 NFA to DFA by subset construction Let N = {Q N,,δ N,q 0,F N } Goal: Build D={Q D,,δ D D,{q 0 },F D D} s.t. L(D)=L(N) Construction: 1. Q D = all subsets of Q N (i.e., power set) 2. F D =set of subsets S of Q N s.t. S F N Φ 3. δ D : for each subset S of Q N and for each input symbol a in : δ D (S,a) =Uδ δ N (p,a) p in s 23

24 Idea: To avoid enumerating all of power set, do lazy creation of states NFA to DFA construction: Example NFA: 01 0,1 L = {w w ends in 01} 0 q 0 q 1 1 q 2 DFA: {q 0 } {q 0,q 1 } 0 {q 0,q 2 } 1 δ N 0 1 δ D 0 1 δ D 0 1 Ø Ø Ø {q 0 } {q 0,q 1 } {q 0 } q 0 {q 0,q 1 } {q 0 } {q 0 } {q 0,q 1 } {q 0 } {q 0,q 1 } {q 0,q 1 } {q 0,q 2 } q 1 Ø {q 2 } {q 1 } Ø {q 2 } *{q 0,q 2 } {q 0,q 1 } {q 0 } *q 2 Ø Ø *{q 2 } Ø Ø {q 0,q 1 } {q 0,q 1 } {q 0,q 2 } Remove states unreachable from q 0 *{q 0,q 2 } {q 0,q 1 } {q 0 } *{q 1,q 2 } Ø {q 2 } *{q 0,q 1,q 2 } {q 0,q 1 } {q 0,q 2 } 24

25 NFA to DFA: Repeating the example using LAZY CREATION NFA: 01 0,1 L = {w w ends in 01} 0 q 0 q 1 1 q 2 DFA: {q 0 } {q 0,q 1 } 0 {q 0,q 2 } 1 δ N 0 1 q 0 {q 0,q 1 } {q 0 } q 1 Ø {q 2 } δ D 0 1 {q 0 } {q 0,q 1 } {q 0 } {q 0,q 1 } {q 0,q 1 } {q 0,q 2 } *q 2 Ø Ø *{q 0,q 2 } {q 0,q 1 } {q 0 } Main Idea: Introduce states as you go (on a need basis) 25

26 Correctness of subset construction Theorem: If D is the DFA constructed from NFA N by subset construction, then L(D)=L(N) Proof: Show that δ D ({q 0 },w) = δ N (q 0,w} Using induction on w s ws length: Let w = xa δ D ({q 0 }xa)=δ },xa) δ D ( δ N (q 0,x}, a ) = δ N (q 0,w} 26

27 A bad case for subset construction L = {w w is a binary string s.t., the n th symbol from its end is a 1} NFA has n+1 states DFA needs to have at least 2 n states Pigeon hole principle m holes and >m pigeons => at least one hole has to contain two or more pigeons 27

28 Dead states Example: A DFA for recognizing the key word while w h i l e q 0 q 1 q 2 q 3 q 4 q 5 Any other input symbol q dead 28

29 Applications Text indexing inverted indexing For each unique word in the database, store all locations that contain it using an NFA or a DFA Find pattern P in text t T Example: Google querying Et Extensions of fthis idea: PATRICIA tree, suffix tree 29

30 FA with Epsilon-Transitions We can allow -transitions in finite automata i.e., a state can jump to another state without consuming any input symbol Use: Makes it easier sometimes for NFA construction -NFAs have to one more column in their transition table 30

31 Example of an -NFA L = {w possibily empty w s.t. if non-empty will end in 01} start q 0 0,1 δ E q 0 q 1 *q 0 Ø Ø {q 0,q 0 } q 0 {q 0,q 1 } {q 0 } {q 0 } q 1 Ø {q 2 } {q 1 } *q 2 Ø Ø {q 2 } q 2 -closure of a state q, ECLOSE(q), is the set of all states that can be reached from q by repeatedly making - transitions (including ECLOSE(q 0 ) itself). ECLOSE(q 0 ) 31

32 Equivalency of DFA, NFA, -NFA Theorem: A language L is accepted by some -NFA if and only if L is accepted by some DFA Proof: Idea: Use the same subset construction except include -closures 32

33 Eliminating -transitions Let E = {Q E,,δ E,q 0,F E } Goal: Build D={Q D,,δ D,{q D },F D } s.t. L(D)=L(E) Construction: ti 1. Q D = all reachable subsets of Q E factoring in -closures 2. q d = ECLOSE(q 0 ) 3. F D =subsets S in Q D s.t. S F E Φ 4. δ D : for each subset S of Q E and for each input symbol a in : Let R= p in Us δ E (p,a) δ D (S,a) = r in UR D( ECLOSE(r) () 33

34 Summary DFA Definition Transition diagrams & tables Regular language NFA Definition Transition diagrams & tables DFA vs. NFA NFA to DFA conversion using subset construction Equivalency of DFA & NFA Removal of redundant states and including dead states -transitions in NFA Pigeon hole principles Text searching applications 34

Finite Automata. Reading: Chapter 2

Finite Automata. Reading: Chapter 2 Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream

More information

Automata and Languages

Automata and Languages Automata and Languages Computational Models: An idealized mathematical model of a computer. A computational model may be accurate in some ways but not in others. We shall be defining increasingly powerful

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION REDUCIBILITY ( LECTURE 16) SLIDES FOR 15-453 SPRING 2011 1 / 20 THE LANDSCAPE OF THE CHOMSKY HIERARCHY ( LECTURE 16) SLIDES FOR 15-453 SPRING 2011 2 / 20 REDUCIBILITY

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Motivation. Automata = abstract computing devices. Turing studied Turing Machines (= computers) before there were any real computers

Motivation. Automata = abstract computing devices. Turing studied Turing Machines (= computers) before there were any real computers Motivation Automata = abstract computing devices Turing studied Turing Machines (= computers) before there were any real computers We will also look at simpler devices than Turing machines (Finite State

More information

Theory of Computation

Theory of Computation Theory of Computation For Computer Science & Information Technology By www.thegateacademy.com Syllabus Syllabus for Theory of Computation Regular Expressions and Finite Automata, Context-Free Grammar s

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

Introduction to Automata Theory. Reading: Chapter 1

Introduction to Automata Theory. Reading: Chapter 1 Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Chapter, Part 2 Nondeterministic Finite Automata CSC527, Chapter, Part 2 c 202 Mitsunori Ogihara Fundamental set operations Let A and B be two languages. In addition to union and intersection, we consider

More information

CSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions

CSC4510 AUTOMATA 2.1 Finite Automata: Examples and D efinitions Definitions CSC45 AUTOMATA 2. Finite Automata: Examples and Definitions Finite Automata: Examples and Definitions A finite automaton is a simple type of computer. Itsoutputislimitedto yes to or no. It has very primitive

More information

Regular Expressions and Automata using Haskell

Regular Expressions and Automata using Haskell Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions

More information

the lemma. Keep in mind the following facts about regular languages:

the lemma. Keep in mind the following facts about regular languages: CPS 2: Discrete Mathematics Instructor: Bruce Maggs Assignment Due: Wednesday September 2, 27 A Tool for Proving Irregularity (25 points) When proving that a language isn t regular, a tool that is often

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages CHAPTER 3 Finite Automata and Regular Languages 3. Introduction 3.. States and Automata A finite-state machine or finite automaton (the noun comes from the Greek; the singular is automaton, the Greek-derived

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

Compiler Construction

Compiler Construction Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation

More information

Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

More information

Deterministic Finite Automata

Deterministic Finite Automata 1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function

More information

Formal Deænition of Finite Automaton. 1. Finite set of states, typically Q. 2. Alphabet of input symbols, typically æ.

Formal Deænition of Finite Automaton. 1. Finite set of states, typically Q. 2. Alphabet of input symbols, typically æ. Formal Denition of Finite Automaton 1. Finite set of states, typically Q. 2. Alphabet of input symbols, typically. 3. One state is the startèinitial state, typically q 0. 4. Zero or more nalèaccepting

More information

Automata on Infinite Words and Trees

Automata on Infinite Words and Trees Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:

More information

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move. CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write

More information

Finite Automata and Formal Languages

Finite Automata and Formal Languages Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Lecture 14 May 19th 2011 Overview of today s lecture: Turing Machines Push-down Automata Overview of the Course Undecidable and Intractable Problems

More information

T-79.186 Reactive Systems: Introduction and Finite State Automata

T-79.186 Reactive Systems: Introduction and Finite State Automata T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software

More information

Turing Machines: An Introduction

Turing Machines: An Introduction CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,

More information

CS Markov Chains Additional Reading 1 and Homework problems

CS Markov Chains Additional Reading 1 and Homework problems CS 252 - Markov Chains Additional Reading 1 and Homework problems 1 Markov Chains The first model we discussed, the DFA, is deterministic it s transition function must be total and it allows for transition

More information

Chapter 2. Finite Automata. 2.1 The Basic Model

Chapter 2. Finite Automata. 2.1 The Basic Model Chapter 2 Finite Automata 2.1 The Basic Model Finite automata model very simple computational devices or processes. These devices have a constant amount of memory and process their input in an online manner.

More information

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

Definition: String concatenation. Definition: String. Definition: Language (cont.) Definition: Language

Definition: String concatenation. Definition: String. Definition: Language (cont.) Definition: Language CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata Introduction That s it for the basics of Ruby If you need other material for your project, come to office hours or

More information

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information

More information

6.080/6.089 GITCS Feb 12, 2008. Lecture 3

6.080/6.089 GITCS Feb 12, 2008. Lecture 3 6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my

More information

3515ICT Theory of Computation Turing Machines

3515ICT Theory of Computation Turing Machines Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation

More information

The Halting Problem is Undecidable

The Halting Problem is Undecidable 185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine

More information

Informatique Fondamentale IMA S8

Informatique Fondamentale IMA S8 Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech Lille

More information

Automata Theory and Languages

Automata Theory and Languages Automata Theory and Languages SITE : http://www.info.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/1 Introduction to Automata Theory Automata theory :

More information

Genetic programming with regular expressions

Genetic programming with regular expressions Genetic programming with regular expressions Børge Svingen Chief Technology Officer, Open AdExchange bsvingen@openadex.com 2009-03-23 Pattern discovery Pattern discovery: Recognizing patterns that characterize

More information

CS5236 Advanced Automata Theory

CS5236 Advanced Automata Theory CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then

More information

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac. Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free

More information

Scanner. tokens scanner parser IR. source code. errors

Scanner. tokens scanner parser IR. source code. errors Scanner source code tokens scanner parser IR errors maps characters into tokens the basic unit of syntax x = x + y; becomes = + ; character string value for a token is a lexeme

More information

C H A P T E R Regular Expressions regular expression

C H A P T E R Regular Expressions regular expression 7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

More information

CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

More information

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along

More information

24 Uses of Turing Machines

24 Uses of Turing Machines Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss

More information

Computing Functions with Turing Machines

Computing Functions with Turing Machines CS 30 - Lecture 20 Combining Turing Machines and Turing s Thesis Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata

More information

Sets and Subsets. Countable and Uncountable

Sets and Subsets. Countable and Uncountable Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788-792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING DUNDIGAL 500 043, HYDERABAD COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : FORMAL LANGUAGES AND AUTOMATA THEORY Code : A40509 Class : II B. Tech II

More information

Structural properties of oracle classes

Structural properties of oracle classes Structural properties of oracle classes Stanislav Živný Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK Abstract Denote by C the class of oracles relative

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

More information

Properties of Regular Languages

Properties of Regular Languages Properties of Regular Languages SITE : http://www.info.blois.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/3 Algebraic Laws for Regular Expressions Two

More information

Theory of Computation Chapter 2: Turing Machines

Theory of Computation Chapter 2: Turing Machines Theory of Computation Chapter 2: Turing Machines Guan-Shieng Huang Feb. 24, 2003 Feb. 19, 2006 0-0 Turing Machine δ K 0111000a 01bb 1 Definition of TMs A Turing Machine is a quadruple M = (K, Σ, δ, s),

More information

Overview of E0222: Automata and Computability

Overview of E0222: Automata and Computability Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study

More information

Master s Thesis. One-Pass Strategies for Context-Free Games. Christian Cöster August 2015

Master s Thesis. One-Pass Strategies for Context-Free Games. Christian Cöster August 2015 Master s Thesis One-Pass Strategies for Context-Free Games Christian Cöster August 2015 Examiners: Prof. Dr. Thomas Schwentick Prof. Dr. Christoph Buchheim Technische Universität Dortmund Fakultät für

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

Increasing Interaction and Support in the Formal Languages and Automata Theory Course

Increasing Interaction and Support in the Formal Languages and Automata Theory Course Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger rodger@cs.duke.edu Jinghui Lim Stephen Reading ABSTRACT The introduction of educational

More information

1 Definition of a Turing machine

1 Definition of a Turing machine Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,

More information

SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN

SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June

More information

An Overview of a Compiler

An Overview of a Compiler An Overview of a Compiler Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture About the course

More information

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. 3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem

More information

Composability of Infinite-State Activity Automata*

Composability of Infinite-State Activity Automata* Composability of Infinite-State Activity Automata* Zhe Dang 1, Oscar H. Ibarra 2, Jianwen Su 2 1 Washington State University, Pullman 2 University of California, Santa Barbara Presented by Prof. Hsu-Chun

More information

Inf1A: Deterministic Finite State Machines

Inf1A: Deterministic Finite State Machines Lecture 2 InfA: Deterministic Finite State Machines 2. Introduction In this lecture we will focus a little more on deterministic Finite State Machines. Also, we will be mostly concerned with Finite State

More information

Proofs by induction, Alphabet, Strings [1] Proofs by Induction

Proofs by induction, Alphabet, Strings [1] Proofs by Induction Proofs by induction, Alphabet, Strings [1] Proofs by Induction Proposition: If f(0) = 0 and f(n + 1) = f(n) + n + 1 then, for all n N, we have f(n) = n(n + 1)/2 Let S(n) be f(n) = n(n + 1)/2 We prove S(0)

More information

Today s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary

Today s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary Today s Agenda Quiz 4 Temporal Logic Formal Methods in Software Engineering 1 Automata and Logic Introduction Buchi Automata Linear Time Logic Summary Formal Methods in Software Engineering 2 1 Buchi Automata

More information

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:

ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,

More information

Lecture I FINITE AUTOMATA

Lecture I FINITE AUTOMATA 1. Regular Sets and DFA Lecture I Page 1 Lecture I FINITE AUTOMATA Lecture 1: Honors Theory, Spring 02, Yap We introduce finite automata (deterministic and nondeterministic) and regular languages. Some

More information

Omega Automata: Minimization and Learning 1

Omega Automata: Minimization and Learning 1 Omega Automata: Minimization and Learning 1 Oded Maler CNRS - VERIMAG Grenoble, France 2007 1 Joint work with A. Pnueli, late 80s Summary Machine learning in general and of formal languages in particular

More information

Semantics of UML class diagrams

Semantics of UML class diagrams 1 Otto-von-Guericke Universität Magdeburg, Germany April 26, 2016 Sets Definition (Set) A set is a collection of objects. The basic relation is membership: x A (x is a member of A) The following operations

More information

Discrete Mathematics Lecture 5. Harper Langston New York University

Discrete Mathematics Lecture 5. Harper Langston New York University Discrete Mathematics Lecture 5 Harper Langston New York University Empty Set S = {x R, x 2 = -1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of

More information

Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras

Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture No. # 31 Recursive Sets, Recursively Innumerable Sets, Encoding

More information

3. Recurrence Recursive Definitions. To construct a recursively defined function:

3. Recurrence Recursive Definitions. To construct a recursively defined function: 3. RECURRENCE 10 3. Recurrence 3.1. Recursive Definitions. To construct a recursively defined function: 1. Initial Condition(s) (or basis): Prescribe initial value(s) of the function.. Recursion: Use a

More information

CS 341 Homework 9 Languages That Are and Are Not Regular

CS 341 Homework 9 Languages That Are and Are Not Regular CS 341 Homework 9 Languages That Are and Are Not Regular 1. Show that the following are not regular. (a) L = {ww R : w {a, b}*} (b) L = {ww : w {a, b}*} (c) L = {ww' : w {a, b}*}, where w' stands for w

More information

Properties of Stabilizing Computations

Properties of Stabilizing Computations Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71 93 Properties of Stabilizing Computations Mark Burgin a a University of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA

More information

Course Manual Automata & Complexity 2015

Course Manual Automata & Complexity 2015 Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:

More information

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification) Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

We give a basic overview of the mathematical background required for this course.

We give a basic overview of the mathematical background required for this course. 1 Background We give a basic overview of the mathematical background required for this course. 1.1 Set Theory We introduce some concepts from naive set theory (as opposed to axiomatic set theory). The

More information

On a Structural Property in the State Complexity of Projected Regular Languages

On a Structural Property in the State Complexity of Projected Regular Languages On a Structural Property in the State Complexity of Projected Regular Languages Galina Jirásková a,1,, Tomáš Masopust b,2 a Mathematical Institute, Slovak Academy of Sciences Grešákova 6, 040 01 Košice,

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

Computability Theory

Computability Theory CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.

More information

Computational Models Lecture 8, Spring 2009

Computational Models Lecture 8, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

More information

1 Introduction to Counting

1 Introduction to Counting 1 Introduction to Counting 1.1 Introduction In this chapter you will learn the fundamentals of enumerative combinatorics, the branch of mathematics concerned with counting. While enumeration problems can

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

On Winning Conditions of High Borel Complexity in Pushdown Games

On Winning Conditions of High Borel Complexity in Pushdown Games Fundamenta Informaticae (2005) 1 22 1 IOS Press On Winning Conditions of High Borel Complexity in Pushdown Games Olivier Finkel Equipe de Logique Mathématique U.F.R. de Mathématiques, Université Paris

More information

OHJ-2306 Fall 2011 Introduction to Theoretical Computer Science

OHJ-2306 Fall 2011 Introduction to Theoretical Computer Science 1 OHJ-2306 Fall 2011 Introduction to Theoretical Computer Science 2 3 Organization & timetable Lectures: prof. Tapio Elomaa, M.Sc. Timo Aho Tue and Thu 14 16 TB220 Aug. 30 Dec. 8, 2011 Exceptions: Thu

More information

Regular Expressions. Languages. Recall. A language is a set of strings made up of symbols from a given alphabet. Computer Science Theory 2

Regular Expressions. Languages. Recall. A language is a set of strings made up of symbols from a given alphabet. Computer Science Theory 2 Regular Expressions Languages Recall. A language is a set of strings made up of symbols from a given alphabet. Computer Science Theory 2 1 String Recognition Machine Given a string and a definition of

More information

CAs and Turing Machines. The Basis for Universal Computation

CAs and Turing Machines. The Basis for Universal Computation CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.

More information

Introduction to Theory of Computation. School of Computer Science Carleton University Ottawa Canada

Introduction to Theory of Computation. School of Computer Science Carleton University Ottawa Canada Introduction to Theory of Computation Anil Maheshwari Michiel Smid School of Computer Science Carleton University Ottawa Canada {anil,michiel}@scs.carleton.ca April 11, 2016 ii Contents Contents Preface

More information

Steps of sequential circuit design (cont'd)

Steps of sequential circuit design (cont'd) Design of Clocked Synchronous Sequential Circuits Design of a sequential circuit starts with the verbal description of the problem (scenario). Design process is similar to computer programming. First,

More information

Turing Machine and the Conceptual Problems of Computational Theory

Turing Machine and the Conceptual Problems of Computational Theory Research Inventy: International Journal of Engineering And Science Vol.4, Issue 4 (April 204), PP 53-60 Issn (e): 2278-472, Issn (p):239-6483, www.researchinventy.com Turing Machine and the Conceptual

More information

Preventing Denial of Service Attacks in a Calculus of Mobile Resources

Preventing Denial of Service Attacks in a Calculus of Mobile Resources Preventing Denial of Service Attacks in a Calculus of Mobile Resources Bilge Hösükoǧlu, David Sánchez Hernández, Julian Driver June 1, 2006 Abstract In this paper we introduce membranes for the calculus

More information

State Machines and Equivalence Checking

State Machines and Equivalence Checking State Machines and Equivalence Checking Testing & Verification Dept. of Computer Science & Engg,, IIT Kharagpur Pallab Dasgupta Professor, Dept. of Computer Science & Engg., Professor-in in-charge, AVLSI

More information

Section 2.1. Tree Diagrams

Section 2.1. Tree Diagrams Section 2.1 Tree Diagrams Example 2.1 Problem For the resistors of Example 1.16, we used A to denote the event that a randomly chosen resistor is within 50 Ω of the nominal value. This could mean acceptable.

More information

(Refer Slide Time: 1:41)

(Refer Slide Time: 1:41) Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must

More information

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions Theory of Formal Languages In the English language, we distinguish between three different identities: letter, word, sentence.

More information

A First Investigation of Sturmian Trees

A First Investigation of Sturmian Trees A First Investigation of Sturmian Trees Jean Berstel 2, Luc Boasson 1 Olivier Carton 1, Isabelle Fagnot 2 1 LIAFA, CNRS Université Paris 7 2 IGM, CNRS Université de Marne-la-Vallée Atelier de Combinatoire,

More information

+ Section 6.2 and 6.3

+ Section 6.2 and 6.3 Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

More information

Learning Analysis by Reduction from Positive Data

Learning Analysis by Reduction from Positive Data Learning Analysis by Reduction from Positive Data František Mráz 1, Friedrich Otto 1, and Martin Plátek 2 1 Fachbereich Mathematik/Informatik, Universität Kassel 34109 Kassel, Germany {mraz,otto}@theory.informatik.uni-kassel.de

More information

Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.

Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008. Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course

More information

Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

More information