Integer Programming (IP)

Size: px
Start display at page:

Download "Integer Programming (IP)"

Transcription

1 Integer Programming (IP) Integer programming or integer linear programming, deals with models that are the same as linear programming with the one additional restriction that the variables must have integer values. If only some of the variables are required to have integer values, this is called a mixed integer programming (MIP) problem. When all the variables are binary variables,thisisabinary integer programming (BIP) problem. Rounding the numbers in the optimal solution may not work: Example 1. Maximize Z = x 1 +5x Subject to x 1 +10x 0 x 1 x 1,x 0 x 1,x are integers (, 1. 8) 1 x x = Z = x 1 + 5x = 11 The optimal solution of the LP will be x 1 =and x =1.8 that gives z =11. Rounding up would give us x 1 =and x =1with z =7while the optimal solution of the IP is at x 1 =0, x =that gives z =10. Example. Maximize Z = x Subject to x 1 + x 0.5 x 1 + x 3.5 x 1,x 0 x 1,x are integers 1

2 4 3 x 1 + x = 3. 5 x 1 + x = 0. 5 (1. 5, ) The optimal solution of the LP is x 1 =1.5, x =. If we round off this solution (either up or down), the points x 1 =1, x =or x 1 =, x =are out of the feasible region. Even though the integer requirement makes IP problems harder to solve, it also makes IP a better model for a lot problems. Not only for the problems that requires the variables to be integers by its nature, but also for some decision problems that can be modelled by BIP. Problems involve mutually exclusive alternatives Or problems in that we may have to make contingent decisions, that is, one decision may rely on the outcome of another decision. Example 3. Prototype example on page 539. A new factory either in LA or SF, or even both. Also possible a new warehouse in a city with a new factory. The goal is to use the available capital (at most 10 million) to maximize the total net present value. Four decisions: 1. Build factory in LA?. Build factory in SF? 3. Build warehouse in LA? 4. Build Warehouse in SF? ½ 1 if the decision is yes; Four decision variables: x j = (j =1,, 3, 4). 0 if the decision is no. Since at most one warehouse will be built, decision 3 and 4 are mutually exclusive. This can be modelled by a constraint x 3 + x 4 1 Also, the decision whether to build a warehouse in a city is contingent on whether there is a new factory in that city. This can be modelled by x 3 x 1 x 4 x

3 So the model of this problem is Subject to Either-Or Constraints Example 4. Maximize Z =9x 1 +5x +6x 3 +4x 4 6x 1 +3x +5x 3 +x 4 10 x 3 + x 4 1 x 1 + x 3 0 x + x 4 0 x j = 0 or 1. Either 3x 1 +x 3 18 or x 1 +4x 3 16 can be changed to 3x 1 +x My x 1 +4x M(1 y) Here M is a huge number and y is a binary variable. This can be generalized to the situation that K out of N constraints must hold: The previous example is just a case for K =1and N =. Suppose that we have these N constraints: f 1 (x 1,x,..., x n ) d 1 f (x 1,x,..., x n ) d f n (x 1,x,..., x n ) d n and K of them must hold. We can reformulate it as. f 1 (x 1,x,..., x n ) d 1 + My 1 f (x 1,x,..., x n ) d + My. f n (x 1,x,..., x n ) d n + My N y i = N K i=1 y i is binary for all i. 3

4 Functions with N possible values BIP deals with binary variable, that is, the variables can have two values: 0 and 1. Whatif some variable, say, x 1 can be N values: 0, 1,,..., N 1? Ingeneral,wemayhaveafunction Thiscanbeformulatedas f(x 1,x,..., x n )=d 1, or d or or d N. f(x 1,x,...,x n ) = y i d i i=1 y i = 1 and y i is binary. i=1 Example 5. Problems with Fixed-Charge (setup cost): Suppose that for activity j, there is a setup cost k j, that is, it is a fixed cost as long as the level of the activity x j > 0 but it will be 0 if x j =0. Therefore the total cost for activity j will be ½ kj + c f j (x j )= j x j if x j > 0 0 if x j =0 In this case, we can not use Z = X (k j + c j x j ) for then it will cause a cost k j even x j =0, but we can not ignore the k j s either. We can use a binary variable y j such that ½ 1 if xj > 0 y j = 0 if x j =0 If we know how to formulate such contingent variables, then we can make the objective function to be Minimize Z = X (k j y j + c j x j ) It is easy to force y j =1when x j > 0: Wecanuseaconstraint x j My j Nowhowcanmakesurethaty j =0when x j =0? As it turns out, in the minimization problem, it will take care itself. If x j =0,theny j can be either 0 or 1. But if y j =1,the objective function will be bigger, so in the optimal solution, y j must be 0. Every IP can be changed into a BIP. Let N+1 be an upper bound of the x i s, i.e., x i < N+1 for all i. Thenwecanwrite x i = j y i,j j=1 y i,j s are binary. So we can substitute every integer with N binary numbers. 4

5 More examples Example 6. The problem: 1. There are 3 new products. At most of them can be produced. There are plants, only one should be chosen to produce the new products. Products 1 3 Available hours per week Plant Plant Unit Profit in thousands of dollars Sales Potential unit per week Without the two conditions, this can be formulated as a linear programming problem: Let x 1,x, and x 3 be the units of product 1,, and 3 to be produced. (That is, if we know which plant will be used to produce them.) subject to Maximize Z =5x 1 +7x +3x 3 3x 1 +4x +x 3 30 (1) 4x 1 +6x +x 3 40 () x 1 7 x 5 x 3 9 and x 1 0,x 0,x 3 0. So here if we know which plant to use then we will use one of (1) or (). Also we completely ignored the requirement that only at most of the 3 new products will be produced. We will use some binary variables to be our auxiliary variables that can help us to formulate those requirements.. Let y 1,y,y 3 be such that ½ 1 if xj > 0 y j = 0 if x j =0 andweaddtheconstraints x j My j y 1 + y + y 3 That takes care of the two out of three part. For the other requirement, we use a fourth binary variable y 4 : ½ 1 if (1) must hold; y j = 0 if () must hold. 5

6 This can be accomplished by adding these two constraints: 3x 1 +4x +x M(1 y 4 ) 4x 1 +6x +x My 4 The complete model then is as on page 549. Example 3 on page 553. Set-covering problem. An airline has 11 flights. There are 1 possible sequences of flights for a crew. Exactly three of the sequences need to be chosen (one per crew) in such a way that every flight is covered. (If two crews are on the same flight, both will have to be paid.) The cost of assigning a crew to a sequence of flights is given (in thousands of dollars). The objective is to minimize the total cost of the assignments. Flight Sequence of flights SF to LA SF to Denver SF to Seattle LA to Chicago 3 3 LA to SF Chicago to Denver Chicago to Seattle Denver to SF Denver to Chicago Seattle to SF Seattle to LA 4 4 cost Decision variables: ½ 1 if sequence j is assigned; x j = 0 otherwise. Min x 1 +3x +4x 3 +6x 4 +7x 5 +5x 6 +7x 7 +8x 8 +9x 9 +9x 10 +8x 11 +9x 1 Subject to x 1 + x 4 + x 7 + x 10 1 x + x 5 + x 8 + x 11 1 x 3 + x 6 + x 9 + x 1 1 x 4 + x7+x 9 + x 10 + x 1 1. x 1 + x + + x 1 = 3 x is binary. 6

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook Dantzig-Wolfe bound and Dantzig-Wolfe cookbook thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe

More information

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Basic Components of an LP:

Basic Components of an LP: 1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

More information

Integer Programming Formulation

Integer Programming Formulation Integer Programming Formulation 1 Integer Programming Introduction When we introduced linear programs in Chapter 1, we mentioned divisibility as one of the LP assumptions. Divisibility allowed us to consider

More information

Optimization with Big Data: Network Flows

Optimization with Big Data: Network Flows Optimization with Big Data: Network Flows Sertac Karaman Assistant Professor of Aeronautics and Astronautics Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

Integer Programming. subject to: (i = 1, 2,..., m),

Integer Programming. subject to: (i = 1, 2,..., m), Integer Programming 9 The linear-programming models that have been discussed thus far all have been continuous, in the sense that decision variables are allowed to be fractional. Often this is a realistic

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

Chapter 3 INTEGER PROGRAMMING 3.1 INTRODUCTION. Robert Bosch. Michael Trick

Chapter 3 INTEGER PROGRAMMING 3.1 INTRODUCTION. Robert Bosch. Michael Trick Chapter 3 INTEGER PROGRAMMING Robert Bosch Oberlin College Oberlin OH, USA Michael Trick Carnegie Mellon University Pittsburgh PA, USA 3.1 INTRODUCTION Over the last 20 years, the combination of faster

More information

Special cases in Transportation Problems

Special cases in Transportation Problems Unit 1 Lecture 18 Special cases in Transportation Problems Learning Objectives: Special cases in Transportation Problems Multiple Optimum Solution Unbalanced Transportation Problem Degeneracy in the Transportation

More information

NP-Completeness and Cook s Theorem

NP-Completeness and Cook s Theorem NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:

More information

Linear Programming Sensitivity Analysis

Linear Programming Sensitivity Analysis Linear Programming Sensitivity Analysis Massachusetts Institute of Technology LP Sensitivity Analysis Slide 1 of 22 Sensitivity Analysis Rationale Shadow Prices Definition Use Sign Range of Validity Opportunity

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Chapter 2: Introduction to Linear Programming

Chapter 2: Introduction to Linear Programming Chapter 2: Introduction to Linear Programming You may recall unconstrained optimization from your high school years: the idea is to find the highest point (or perhaps the lowest point) on an objective

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

Airport Planning and Design. Excel Solver

Airport Planning and Design. Excel Solver Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of

More information

Resource Allocation Modeling Techniques Applied to Air Force Crew Scheduling Problem

Resource Allocation Modeling Techniques Applied to Air Force Crew Scheduling Problem Kepler Research, Inc. Proprietary Resource Allocation Modeling Techniques Applied to Air Force Crew Scheduling Problem Submitted by: Kepler Research, Inc. February 2012 1. Introduction and Background The

More information

Chapter 11 Monte Carlo Simulation

Chapter 11 Monte Carlo Simulation Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important

More information

Multiproduct Batch Plant Scheduling

Multiproduct Batch Plant Scheduling Multiproduct Batch Plant Scheduling I A Karimi & Dong-Yup Lee Department of Chemical & Biomolecular Engineering National University of Singapore Batch operations (e.g. batch drying, batch distillation,

More information

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,

More information

An Improved Dynamic Programming Decomposition Approach for Network Revenue Management

An Improved Dynamic Programming Decomposition Approach for Network Revenue Management An Improved Dynamic Programming Decomposition Approach for Network Revenue Management Dan Zhang Leeds School of Business University of Colorado at Boulder May 21, 2012 Outline Background Network revenue

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

Role of Stochastic Optimization in Revenue Management. Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University

Role of Stochastic Optimization in Revenue Management. Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University Role of Stochastic Optimization in Revenue Management Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University Revenue Management Revenue management involves making

More information

Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing

More information

Network optimization is a special type of linear programming model. Network models have three

Network optimization is a special type of linear programming model. Network models have three Chapter 11 Network Optimization 11.1 Introduction Network optimization is a special type of linear programming model. Network models have three main advantages over linear programming: 1. They can be solved

More information

An Introduction to Linear Programming

An Introduction to Linear Programming An Introduction to Linear Programming Steven J. Miller March 31, 2007 Mathematics Department Brown University 151 Thayer Street Providence, RI 02912 Abstract We describe Linear Programming, an important

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

Branch and Cut for TSP

Branch and Cut for TSP Branch and Cut for TSP jla,jc@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark 1 Branch-and-Cut for TSP Branch-and-Cut is a general technique applicable e.g. to solve symmetric

More information

Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Scheduling Employees in Quebec s Liquor Stores with Integer Programming

Scheduling Employees in Quebec s Liquor Stores with Integer Programming Vol. 35, No. 5, September October 2005, pp. 402 410 issn 0092-2102 eissn 1526-551X 05 3505 0402 informs doi 10.1287/inte.1050.0154 2005 INFORMS Scheduling Employees in Quebec s Liquor Stores with Integer

More information

Transportation Planning by SBIDS Optimal Assignment of Carriers to Lanes

Transportation Planning by SBIDS Optimal Assignment of Carriers to Lanes Transportation Planning by SBIDS Optimal Assignment of Carriers to Lanes Yoshiro Ikura, Narameth Nananukul SAITECH, Inc. 1 Bethany Road, Suite 54 Hazlet, New Jersey 07730, U. S. A. ikura@saitech-inc.com,

More information

Chapter 3: Section 3-3 Solutions of Linear Programming Problems

Chapter 3: Section 3-3 Solutions of Linear Programming Problems Chapter 3: Section 3-3 Solutions of Linear Programming Problems D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 3: Section 3-3 Solutions of Linear Programming

More information

MODELS AND ALGORITHMS FOR WORKFORCE ALLOCATION AND UTILIZATION

MODELS AND ALGORITHMS FOR WORKFORCE ALLOCATION AND UTILIZATION MODELS AND ALGORITHMS FOR WORKFORCE ALLOCATION AND UTILIZATION by Ada Yetunde Barlatt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Industrial

More information

Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem?

Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem? Unit 1 Lesson 14: Transportation Models Learning Objective : What is a Transportation Problem? How can we convert a transportation problem into a linear programming problem? How to form a Transportation

More information

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set. Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

More information

Strategic planning in LTL logistics increasing the capacity utilization of trucks

Strategic planning in LTL logistics increasing the capacity utilization of trucks Strategic planning in LTL logistics increasing the capacity utilization of trucks J. Fabian Meier 1,2 Institute of Transport Logistics TU Dortmund, Germany Uwe Clausen 3 Fraunhofer Institute for Material

More information

Lecture 11: 0-1 Quadratic Program and Lower Bounds

Lecture 11: 0-1 Quadratic Program and Lower Bounds Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite

More information

Locating and sizing bank-branches by opening, closing or maintaining facilities

Locating and sizing bank-branches by opening, closing or maintaining facilities Locating and sizing bank-branches by opening, closing or maintaining facilities Marta S. Rodrigues Monteiro 1,2 and Dalila B. M. M. Fontes 2 1 DMCT - Universidade do Minho Campus de Azurém, 4800 Guimarães,

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Linear Programming in Matrix Form

Linear Programming in Matrix Form Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

More information

Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

SEEM 2440A/B Engineering Economics First term, 2011 12. Midterm Examination

SEEM 2440A/B Engineering Economics First term, 2011 12. Midterm Examination SEEM 2440A/B Engineering Economics First term, 2011 12 Midterm Examination Instructions Exam Duration: 90 minutes Total Marks: 100 This examination paper comprises of THREE questions. Answer ALL questions.

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution. Bartosz Sawik

A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution. Bartosz Sawik Decision Making in Manufacturing and Services Vol. 4 2010 No. 1 2 pp. 37 46 A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution Bartosz Sawik Abstract.

More information

Chapter 10. Consumer Choice and Behavioral Economics

Chapter 10. Consumer Choice and Behavioral Economics Chapter 10. Consumer Choice and Behavioral Economics Instructor: JINKOOK LEE Department of Economics / Texas A&M University ECON 202 504 Principles of Microeconomics Utility Utility: the satisfaction people

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach

Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we

More information

A Continuous-Time Formulation for Scheduling Multi- Stage Multi-product Batch Plants with Non-identical Parallel Units

A Continuous-Time Formulation for Scheduling Multi- Stage Multi-product Batch Plants with Non-identical Parallel Units European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. A Continuous-Time Formulation for Scheduling Multi-

More information

Ron Shaham. Expert Witness in Islamic Courts : Medicine and Crafts in the Service of Law. : University of Chicago Press,. p 38

Ron Shaham. Expert Witness in Islamic Courts : Medicine and Crafts in the Service of Law. : University of Chicago Press,. p 38 : University of Chicago Press,. p 38 http://site.ebrary.com/id/10381149?ppg=38 : University of Chicago Press,. p 39 http://site.ebrary.com/id/10381149?ppg=39 : University of Chicago Press,. p 40 http://site.ebrary.com/id/10381149?ppg=40

More information

. Perspectives on the Economics of Aging. : University of Chicago Press,. p 3 http://site.ebrary.com/id/10209979?ppg=3 Copyright University of

. Perspectives on the Economics of Aging. : University of Chicago Press,. p 3 http://site.ebrary.com/id/10209979?ppg=3 Copyright University of : University of Chicago Press,. p 3 http://site.ebrary.com/id/10209979?ppg=3 : University of Chicago Press,. p 4 http://site.ebrary.com/id/10209979?ppg=4 : University of Chicago Press,. p 297 http://site.ebrary.com/id/10209979?ppg=297

More information

May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable copyright law.

May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable copyright law. : University of Chicago Press,. p 24 http://site.ebrary.com/id/10292358?ppg=24 : University of Chicago Press,. p 25 http://site.ebrary.com/id/10292358?ppg=25 : University of Chicago Press,. p 26 http://site.ebrary.com/id/10292358?ppg=26

More information

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions. (x 1)(x 2 + 1) Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

More information

Chapter 25: Exchange in Insurance Markets

Chapter 25: Exchange in Insurance Markets Chapter 25: Exchange in Insurance Markets 25.1: Introduction In this chapter we use the techniques that we have been developing in the previous 2 chapters to discuss the trade of risk. Insurance markets

More information

Online Adwords Allocation

Online Adwords Allocation Online Adwords Allocation Shoshana Neuburger May 6, 2009 1 Overview Many search engines auction the advertising space alongside search results. When Google interviewed Amin Saberi in 2004, their advertisement

More information

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Pietro Belotti, Antonio Capone, Giuliana Carello, Federico Malucelli Tepper School of Business, Carnegie Mellon University, Pittsburgh

More information

Using CPLEX. =5 has objective value 150.

Using CPLEX. =5 has objective value 150. Using CPLEX CPLEX is optimization software developed and sold by ILOG, Inc. It can be used to solve a variety of different optimization problems in a variety of computing environments. Here we will discuss

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

Solving Linear Programs

Solving Linear Programs Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

Motivated by a problem faced by a large manufacturer of a consumer product, we

Motivated by a problem faced by a large manufacturer of a consumer product, we A Coordinated Production Planning Model with Capacity Expansion and Inventory Management Sampath Rajagopalan Jayashankar M. Swaminathan Marshall School of Business, University of Southern California, Los

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

More information

1 Review of Newton Polynomials

1 Review of Newton Polynomials cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael

More information

A new Branch-and-Price Algorithm for the Traveling Tournament Problem (TTP) Column Generation 2008, Aussois, France

A new Branch-and-Price Algorithm for the Traveling Tournament Problem (TTP) Column Generation 2008, Aussois, France A new Branch-and-Price Algorithm for the Traveling Tournament Problem (TTP) Column Generation 2008, Aussois, France Stefan Irnich 1 sirnich@or.rwth-aachen.de RWTH Aachen University Deutsche Post Endowed

More information

Application of linear programming methods to determine the best location of concrete dispatch plants

Application of linear programming methods to determine the best location of concrete dispatch plants Application of linear programming methods to determine the best location of concrete dispatch plants Introduction: Carlos Horacio Gómez Junghye Moon University of Illinois Urbana-Champaign I just remember

More information

An Implementation of a Constraint Branching Algorithm for Optimally Solving Airline Crew Pairing Problems

An Implementation of a Constraint Branching Algorithm for Optimally Solving Airline Crew Pairing Problems MASTER S THESIS An Implementation of a Constraint Branching Algorithm for Optimally Solving Airline Crew Pairing Problems Douglas Potter Department of Mathematical Sciences CHALMERS UNIVERSITY OF TECHNOLOGY

More information

A MODEL TO SOLVE EN ROUTE AIR TRAFFIC FLOW MANAGEMENT PROBLEM:

A MODEL TO SOLVE EN ROUTE AIR TRAFFIC FLOW MANAGEMENT PROBLEM: A MODEL TO SOLVE EN ROUTE AIR TRAFFIC FLOW MANAGEMENT PROBLEM: A TEMPORAL AND SPATIAL CASE V. Tosic, O. Babic, M. Cangalovic and Dj. Hohlacov Faculty of Transport and Traffic Engineering, University of

More information

Lecture 10 Scheduling 1

Lecture 10 Scheduling 1 Lecture 10 Scheduling 1 Transportation Models -1- large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment and resources

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Unit 1 Equations, Inequalities, Functions

Unit 1 Equations, Inequalities, Functions Unit 1 Equations, Inequalities, Functions Algebra 2, Pages 1-100 Overview: This unit models real-world situations by using one- and two-variable linear equations. This unit will further expand upon pervious

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

A Column Generation Model for Truck Routing in the Chilean Forest Industry

A Column Generation Model for Truck Routing in the Chilean Forest Industry A Column Generation Model for Truck Routing in the Chilean Forest Industry Pablo A. Rey Escuela de Ingeniería Industrial, Facultad de Ingeniería, Universidad Diego Portales, Santiago, Chile, e-mail: pablo.rey@udp.cl

More information

EdExcel Decision Mathematics 1

EdExcel Decision Mathematics 1 EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information