Influences on the vibration frequencies of tire tread blocks

Size: px
Start display at page:

Download "Influences on the vibration frequencies of tire tread blocks"

Transcription

1 Influences on the vibration frequencies of tire tread blocks Matthias Kröger, Patrick Moldenhauer University of Technology Bergakademie Freiberg Institute of Machine Elementes, Design and Manufacturing Agricolastr. 1; Freiberg, Germany Tel: +49 (0) Abstract Tire noise is one of the main noise sources in urban areas and, therefore, a reduction is required. In order to find successful countermeasures, it is useful to understand the excitation mechanisms of the tire. One noise excitation mechanism results in stick-slip vibrations of the tread block during longitudinal acceleration or braking as well as severe cornering of the vehicle. The longitudinal or lateral slip of the tire causes friction induced self-excited vibrations of the tread blocks. The frequencies of the stick-slip vibrations depend on the geometry of the tread block, on the material and contact properties as well as on the process parameters like sliding velocity or normal load. The work presented here shows these dependencies using a numerically efficient tread block model which considers the block dynamics and the complex nonlinear contact effects in the tire/road system. 1 Introduction The tire/road contact excites the tire during rolling. This excitation causes noise which is one of the main noise sources in urban areas. Especially during acceleration, braking and severe cornering maneuvers the noise level of tires increases. Reasons for the noise can be oscillations of the tire tread blocks. During the passage through the contact patch the tread block first sticks on the road and in the second part of the contact the tread block slides. However, for some contact conditions, especially for certain slip and normal load conditions, the tread block shows self-excited stick-slip vibrations which are very noisy. To find countermeasures against the tire noise it is essential to get a substantiated understanding of the excitation mechanism and corresponding simulations. The latter can be used to design a tire with reduced self-excited vibrations. Typically the whole tire is modeled with FE, cp. Nackenhorst [1] or Brinkmeier [2], or by coupled elastic layers, cp. Kropp [3]. These models can describe the vibrations of the tire body very well in the low frequency range, e.g. up to 1000 Hz. In order to describe the high frequency range these models have to consider the geometry of the tread blocks and the complex contact properties. These strongly increase the complexity of the existing models resulting in a non-realistic computation time. Therefore, the existing models of whole tires consider the local contact properties with simplifications, e.g. with a constant friction coefficient. The model which is realized here describes one single tread block. Thereby, it is possible to use a very detailed description of the contact between tire and road, cp. Gäbel et al. [4], and to simulate high frequency vibrations. 4015

2 4016 PROCEEDINGS OF ISMA2010 INCLUDING USD2010 Fig. 1: Modular tread block model and a detail which shows the contact model 2 Tire tread block model The aim of the presented tread block model is to simulate high frequency oscillations which are e.g. selfexcited by the contact between tire and road. To fulfill this aim the model has to be very efficient with respect to computational calculation time. The tread block model is built up as a modular model which consists of four modules, see Fig. 1: A dynamic module (1), a friction module (2), a nonlinear contact stiffness module (3) and a wear module (4). The whole tire tread block model is validated by comparison with measured stick-slip vibrations, cp. Moldenhauer [5]. 2.1 Dynamic module The dynamic module is based on a 2D FE model. The degrees of freedom are reduced in order to limit the calculation time. A very efficient method for the reduction is the Craig/Bampton reduction, cp. Craig and Bampton [6]. With this method, which is a combined static and modal reduction method, all degrees of freedom of the contact nodes are still directly calculated as primary degrees of freedom. This avoids transformations at each time step. A further advantage of the Craig/Bampton reduction is the exact calculation of the static solution of the degrees of freedom. This is not the case for the original modal reduction method. 2.2 Friction module The main influencing parameters on the friction of rubber are the normal pressure p N and the sliding velocity v rel. This is considered in the friction model by an approximation of a measured friction characteristic. The unsteady friction characteristic μ at velocity v rel =0 is critical for the time efficiency of the simulation. Therefore, the unsteady behavior is smoothed by an arctan function. In case of typical process parameters the smoothing shows a negligible effect within the simulations. Nevertheless an exact sticking will not occur anymore, only a quasi-sticking with a very small relative velocity. The approximation of the local friction characteristic is described by (1)

3 TYRE/ROAD NOISE AND EXPERIMENTAL VALIDATION 4017 Fig. 2: Measured (grid) and approximated (semi-transparent) friction characteristic (left) in dependence of sliding velocity and pressure and comparison of the global contact stiffness (right) (Tread block rubber on Corundum 400) The parameters are identified by measurements. A comparison of the measured and approximated friction characteristic is shown in Fig. 2 left. 2.3 Non-linear contact stiffness module Due to the very rough road surface only a fraction of the nominal contact area contacts the tread block surface. In combination with the soft rubber material, this results in large local deformations of the tread block. This local effect influences strongly the global force-displacement characteristic on concrete and asphalt roads. A non-linear contact stiffness,, (2) is used to describe this local effect with spring compression u, cp. Fig. 1. A comparison of the measured contact stiffness and the simulation results is given in Fig. 2 right. The implementation of the described friction characteristic and the non-linear contact stiffness allows to simulate the contact adequately without a direct consideration of the very complex road roughness. 2.4 Wear module The wear of the tread block changes strongly the contact between the tread block and the road. Therefore, the wear has to be modeled as well to be able to predict the dynamic behavior under realistic tire operating conditions. Different wear laws exist in dependence of the influencing parameters like sliding velocity and normal load, e.g. from Fleischer [7], Archard [8], Hofstetter [9] or Viswanath and Bellow [10]. For realistic parameters all these models result in a similar shape of the tread block, cp. Fig. 3 right. Here, a generalized model of the wear rate η W as mass loss m W per sliding distance s in used, The parameters k i are identified by wear tests, see Fig 3 left. (3)

4 4018 PROCEEDINGS OF ISMA2010 INCLUDING USD2010 * Fig. 3: Measured and approximated wear rates related to the friction coefficient η W = ηw / μ in dependence of sliding velocity and pressure (left) and side view of typical tread block after a sliding distance of s = 25 m (right) (Tread block rubber on Corundum 400) 3 Vibrations of sliding tread blocks A tread block shows vibrations during sliding on a road surface especially in the parameter range, where the friction coefficient has a negative gradient with respect to the sliding velocity. This is for the conditions investigated here e.g. the case for a normal pressure p N = 0.25 N/mm 2 and a sliding velocity v rel = 300 mm/s. The displacements of the run-in edge and the run-out edge are shown in Fig. 4 left. The limit cycles of different points at the run-in edge of the block are given in Fig. 4 right, cp. Fig. 1. The largest oscillations occur at the nodes which are closest to the contact area. The oscillation frequency of the stick-slip vibration is 2550 Hz. One important question for the design of a tire with low noise level is the parameter influence on the vibration amplitude and frequency. Therefore, parameter studies are performed with the simulation model. Thereby, the advantage of the numerical efficiency can be seen clearly, e.g. for the simulation of a sufficient time of 10 ms which gives about 25 vibration cycles using a maximum time step size of 10-6 s a standard PC (Intel Core 2 Duo) needs about 50 s. Fig. 4: Oscillating displacements (left) of different tread block points and limit cycles (right) of the tread block nodes at the run-in edge

5 TYRE/ROAD NOISE AND EXPERIMENTAL VALIDATION 4019 Fig. 5: Displacement versus time for different Young s modules (left) and different material damping factors (right) Fig. 5 left shows a variation of Young s modulus E between 15 N/mm 2 and 75 N/mm 2. The vibration amplitude decreases with increasing stiffness of the rubber while the stick-slip frequency increases. The influence of the material damping is depicted in Fig. 5 right using a damping matrix D which is proportional to the stiffness matrix C, D = β C. With an increasing material damping factor β from s to s the amplitude decreases while the frequency increases. For large damping factors the oscillations vanish. Furthermore, the mean sliding velocity has a large influence on the occurring vibrations due to the nonlinear dependency of the friction coefficient on the sliding velocity and due to the reduction of sticking time with increasing velocity. The displacement versus time and the limit cycles for different mean sliding velocities v between 50 mm/s and 500 mm/s are shown in Fig. 6. Only for mean sliding velocities between 100 mm/s and 400 mm/s oscillations can be observed. This is the range of velocities corresponding to a negative gradient of the friction coefficient with respect to sliding velocity, cp. Fig. 2 left. The limit cycles show that for v rel = 100 mm/s, 200 mm/s and 300 mm/s a stick-slip vibration occurs while for 400 mm/s there is no prominent sticking phase. Fig. 6: Displacement versus time (left) and limit cycle (right) for different mean sliding velocities

6 4020 PROCEEDINGS OF ISMA2010 INCLUDING USD2010 Fig. 7: Displacement versus time for different mean pressures p N (left) and different block geometries (right) with block height h of 6 mm and 10 mm and block length l of 15 mm and 45 mm The mean pressure in the contact influences the vibration behavior because with increasing normal load the friction force increases. Therefore, a parameter variation is conducted for normal pressures between p N = 0,08 N/mm² and p N = 0,63 N/mm². The largest amplitudes are observed at high normal pressures while the oscillations vanish for small pressures, see Fig. 7 left. Further the influence of the block geometry on the oscillations is important for tire development. The height h and the length l of the tread block are varied, see Fig. 7 right. The oscillation amplitude increases with increasing height, while it decreases with increasing block length. Further a decrease of the frequency can be observed if the amplitude increases. This is typical for stick-slip vibrations. One important issue concerning self-excited vibrations of tread blocks is the investigation of the stick-slip frequencies under variation of the slip velocity and tread block geometry. Simulations show a strong influence of these parameters, see Table 1. The stick-slip frequency f SS increases with increasing sliding velocity preliminary due to a shorter sticking phase. Above a certain critical sliding velocity the vibrations are vanished. The simulated frequencies do not exceed the first eigenfrequency f 0 of the free tread block system without contact. It can be noted that the frequency range for different sliding velocities and block geometries is very broad from 299 Hz up to 4717 Hz. Tread block h = 10 mm, l = 15 mm Tread block h = 6 mm, l = 15 mm Tread block h = 10 mm, l = 45 mm Tread block h = 6 mm, l = 45 mm f SS (v 0 = 80 mm/s) 299 Hz 1492 Hz 413 Hz 2128 Hz f SS (v 0 = 100 mm/s) 373 Hz 1961 Hz 565 Hz 2667 Hz f SS (v 0 = 200 mm/s) 787 Hz 3953 Hz 1355 Hz 4525 Hz f SS (v 0 = 300 mm/s) 1195 Hz 4546 Hz 2597 Hz 4717 Hz f SS (v 0 = 400 mm/s) 1759 Hz Hz - f SS (v 0 = 500 mm/s) 2123 Hz f SS (v 0 = 600 mm/s) 2304 Hz f Hz 4590 Hz 2876 Hz 4919 Hz Table 1: Influence of sliding velocity and geometry on the stick-slip frequency

7 TYRE/ROAD NOISE AND EXPERIMENTAL VALIDATION 4021 Fig. 8: Different contact phases of a rolling tire (top) and simulated deformations of tread block (bottom) 3.1 Vibrations of a tread block during rolling The contact of a tread block of a rolling tire with the road can be separated in four phases: run-in, sticking phase, sliding phase and snap-out, see Fig. 8 top. If the trajectory of the flattened tire belt during rolling is added to the block model the behavior of a tread block on a rolling tire can be examined as well. The simulated deformation of the tread block for different stages in the contact patch is depicted in Fig. 8 bottom. In the sliding phase stick-slip vibrations can occur depending on the slip rate and the vehicle velocity. An example is given in Fig. 9 showing displacement and velocity versus contact coordinate x Tr. Fig. 9: Lateral displacements (left) and velocities (right) of the run-in edge during the passage through the contact zone

8 4022 PROCEEDINGS OF ISMA2010 INCLUDING USD Conclusions The tire noise is one of the main noise sources in urban areas. This paper has shown a model which describes the deformations and oscillations of tread blocks during sliding as well as in the case of rolling of the tire. Due to the negative gradient of the friction coefficient with respect to the sliding velocity friction induced vibrations can occur. The resulting stick-slip vibrations of the tread blocks are in the acoustically relevant frequency range. A parameter study is performed to show the influences of the contact conditions as well as of the design parameters on vibration amplitude and frequency. One important observation is the dependency of the stick-slip frequency on sliding velocity. The stick-slip frequency is not the free eigenfrequency of the tread block. The eigenfrequency describes only the maximum frequency of the stick-slip vibrations for high sliding velocities. In this case the sticking phase is very small. For higher sliding velocities the vibrations vanish or oscillations without a sticking phase occur. The simulation model and the parameter study give the possibility to design a tire in such a way that the tire noise is minimized whereby the other tire performances have to be considered. Acknowledgements The investigations published in this report received financial support from the German Research Foundation (DFG) as a part of the collaborate research unit DFG FOR 492, Dynamic Contact Problems with Friction of Elastomers, to whom we extend our thanks. References [1] NACKENHORST, U.: Rollkontaktdynamik - Numerische Analyse der Dynamik rollender Körper mit der Finite Elemente Methode. Universität der Bundeswehr, Hamburg : Habilitation, [2] BRINKMEIER, M.: Modellierung und Simulation der hochfrequenten Dynamik rollender Reifen. Leibniz Universität Hannover, Dissertation, [3] KROPP, W.: Structure-born Sound on a Smooth Tyre. In: Applied Acoustics 26 (1989), No. 3, pp [4] GÄBEL, G.; MOLDENHAUER, P.; KRÖGER, M.: Lokale Effekte zwischen Reifen und Fahrbahn. In: ATZ Automobiltechnische Zeitschrift 110 (2008), Nr. 6, pp [5] MOLDENHAUER, P.: Modellierung und Simulation der Dynamik und des Kontakts von Reifenprofilblöcken. Technische Universität Bergakademie Freiberg, Dissertation, [6] CRAIG, R.; BAMPTON, M.: Coupling of Structures for Dynamic Analyses. In: AIAA Journal 6 (1968), Nr. 7, pp [7] FLEISCHER, G.: Energetische Methode der Bestimmung des Verschleißes. In: Schmierungstechnik 4 (1973), Nr. 9, pp [8] ARCHARD, J. F.: Contact and Rubbing of Flat Surfaces. In: Journal of Applied Physics [1] 24 (1953), Nr. 8, pp [9] HOFSTETTER, K.: Thermo-mechanical Simulation of Rubber Tread Blocks During Frictional Sliding. Technische Universität Wien, Dissertation, [10] VISWANATH, N.; BELLOW, D.G.: Development of an equation for the wear of polymers. In: Wear (1995), Nr. 1, pp

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM 1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

More information

DEVELOPMENT OF A GRIP AND THERMODYNAMICS SENSITIVE PROCEDURE FOR THE DETERMINATION OF TYRE/ROAD INTERACTION CURVES BASED ON OUTDOOR TEST SESSIONS

DEVELOPMENT OF A GRIP AND THERMODYNAMICS SENSITIVE PROCEDURE FOR THE DETERMINATION OF TYRE/ROAD INTERACTION CURVES BASED ON OUTDOOR TEST SESSIONS DEVELOPMENT OF A GRIP AND THERMODYNAMICS SENSITIVE PROCEDURE FOR THE DETERMINATION OF TYRE/ROAD INTERACTION CURVES BASED ON OUTDOOR TEST SESSIONS Flavio Farroni, Aleksandr Sakhnevych, Francesco Timpone

More information

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED Prof.Dr.Ir. C. Esveld Professor of Railway Engineering TU Delft, The Netherlands Dr.Ir. A.W.M. Kok Associate Professor of Railway Engineering

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

Testing and Understanding of Tire-Road Interaction on Wet Roads Die Reifen-Fahrbahn Wechselwirkung auf nasser Straße messen und verstehen

Testing and Understanding of Tire-Road Interaction on Wet Roads Die Reifen-Fahrbahn Wechselwirkung auf nasser Straße messen und verstehen Bitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 7,6 cm) Testing and Understanding of Tire-Road Interaction on Wet Roads Die Reifen-Fahrbahn

More information

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 190-202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

ANALYSIS OF VERTICAL STIFFNESS OF PASSENGER CAR TIRE AT DIFFERENT PRESSURE USING FE MODEL

ANALYSIS OF VERTICAL STIFFNESS OF PASSENGER CAR TIRE AT DIFFERENT PRESSURE USING FE MODEL ANALYSIS OF VERTICAL STIFFNESS OF PASSENGER CAR TIRE AT DIFFERENT PRESSURE USING FE MODEL Miss. Priyanka Mhaske PDVVP CoE Ahmednagar, Maharashtra, India Prof. Narwade P.N. PDVVP CoE Ahmednagar, Maharashtra,

More information

ENS 07 Paris, France, 3-4 December 2007

ENS 07 Paris, France, 3-4 December 2007 ENS 7 Paris, France, 3-4 December 7 FRICTION DRIVE SIMULATION OF A SURFACE ACOUSTIC WAVE MOTOR BY NANO VIBRATION Minoru Kuribayashi Kurosawa, Takashi Shigematsu Tokyou Institute of Technology, Yokohama

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

CHAPTER 8 ROAD SURFACE PROPERTIES

CHAPTER 8 ROAD SURFACE PROPERTIES CHAPTER 8 ROAD SURFACE PROPERTIES 230 8.1 Introduction: The road user desires a road surface where he can drive safe and comfortable. This requires a pavement structure with enough stiffness, a fast run-off

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

CHAPTER 4 4 NUMERICAL ANALYSIS

CHAPTER 4 4 NUMERICAL ANALYSIS 41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in

More information

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w

The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration

More information

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR

More information

Status quo of stress simulation for hot and warm work piece temperatures in forging

Status quo of stress simulation for hot and warm work piece temperatures in forging Status quo of stress simulation for hot and warm work piece temperatures in forging Dipl.-Ing. Johannes Knust, Dr.-Ing. Malte Stonis, Prof. Dr.-Ing. Bernd-Arno Behrens IPH - Institute of Integrated Production

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

BNAM 2008 BERGEN BYBANE NOISE REDUCTION BY TRACK DESIGN. Reykjavik, august 2008. Arild Brekke, Brekke & Strand akustikk as, Norway

BNAM 2008 BERGEN BYBANE NOISE REDUCTION BY TRACK DESIGN. Reykjavik, august 2008. Arild Brekke, Brekke & Strand akustikk as, Norway BNAM 08 BERGEN BYBANE NOISE REDUCTION BY TRACK DESIGN Dr.ing Arild Brekke Brekke & Strand akustikk as Box 1024 Skøyen 0218 Oslo Email: arild.brekke@bs-akustikk.no Introduction BNAM 08 A city line now is

More information

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Proof of the conservation of momentum and kinetic energy

Proof of the conservation of momentum and kinetic energy Experiment 04 Proof of the conservation of momentum and kinetic energy By Christian Redeker 27.10.2007 Contents 1.) Hypothesis...3 2.) Diagram...7 3.) Method...7 3.1) Apparatus...7 3.2) Procedure...7 4.)

More information

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

Application of FEM-Tools in the Engine Development Process

Application of FEM-Tools in the Engine Development Process Application of FEM-Tools in the Engine Development Process H. Petrin, B. Wiesler e-mail: helmut.petrin@avl.com, bruno.wiesler@avl.com AVL List GmbH Graz, Austria Abstract The requirements for the development

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 2 Vibration Theory Lecture - 8 Forced Vibrations, Dynamic Magnification Factor Let

More information

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction 2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes

More information

1 FTire/editor s Main Menu 1

1 FTire/editor s Main Menu 1 FTire/editor FTire Data File Editor and Analyzer Documentation and User s Guide Contents 1 FTire/editor s Main Menu 1 2 FTire/editor s Data Entry Menus 2 2.1 The Tire Size and Specification Data Menu........................

More information

Encoders for Linear Motors in the Electronics Industry

Encoders for Linear Motors in the Electronics Industry Technical Information Encoders for Linear Motors in the Electronics Industry The semiconductor industry and automation technology increasingly require more precise and faster machines in order to satisfy

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

ENGINEERING MECHANICS 2012 pp. 169 176 Svratka, Czech Republic, May 14 17, 2012 Paper #15

ENGINEERING MECHANICS 2012 pp. 169 176 Svratka, Czech Republic, May 14 17, 2012 Paper #15 . 18 m 2012 th International Conference ENGINEERING MECHANICS 2012 pp. 169 176 Svratka, Czech Republic, May 14 17, 2012 Paper #15 AEROELASTIC CERTIFICATION OF LIGHT SPORT AIRCRAFT ACCORDING "LTF" REGULATION

More information

Characterization and Simulation of Processes

Characterization and Simulation of Processes Characterization and Simulation of Processes * M. Engelhardt 1, H. von Senden genannt Haverkamp 1, Y.Kiliclar 2, M. Bormann 1, F.-W. Bach 1, S. Reese 2 1 Institute of Materials Science, Leibniz University

More information

Resistance in the Mechanical System. Overview

Resistance in the Mechanical System. Overview Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when

More information

Experimental and Numerical Simulation Study of Pre-deformed Heavy Copper Wire Wedge Bonds

Experimental and Numerical Simulation Study of Pre-deformed Heavy Copper Wire Wedge Bonds Published in: Proceedings of IMAPS 14, the 47th International Symposium on Microelectronics, San Diego (CA), USA, October 14 Experimental and Numerical Simulation Study of Pre-deformed Heavy Copper Wire

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

Content. Page 04. SIMPACK Automotive. Suspension Design. Virtual Component Test Rigs. Handling and Driving Dynamics. Powertrain and Driveline

Content. Page 04. SIMPACK Automotive. Suspension Design. Virtual Component Test Rigs. Handling and Driving Dynamics. Powertrain and Driveline SIMPACK Automotive Content Page 04 SIMPACK Automotive 06 Suspension Design 07 Virtual Component Test Rigs 08 Handling and Driving Dynamics 10 Powertrain and Driveline 12 Ride, Noise/Vibration/Harshness

More information

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in

More information

Non-hertzian contact model in wheel/rail or vehicle/track system

Non-hertzian contact model in wheel/rail or vehicle/track system XXV Symposium Vibrations in Physical Systems, Poznan Bedlewo, May 15-19, 212 Non-hertzian contact model in wheel/rail or vehicle/track system Bartłomiej DYNIEWICZ Institute of Fundamental Technological

More information

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT E. Curto. p.i. Ennio Curto Via E. di Velo,84 36100 Vicenza Tel. 0444-511819 E-mail enniocurto@fastwebnet.it Key words: NDE Residual stress. New technique

More information

Hydroplaning of modern aircraft tires

Hydroplaning of modern aircraft tires Hydroplaning of modern aircraft tires G.W.H. van Es Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Hydroplaning of modern aircraft tires G.W.H. van Es This report is based

More information

Caba3D. An Insight into Rolling Bearing Dynamics

Caba3D. An Insight into Rolling Bearing Dynamics Caba3D An Insight into Rolling Bearing Dynamics The Schaeffler Calculation Chain The perfect tools for systems with rolling bearings Commercial solutions: Finite element method multi-body simulation, etc.

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

MODEL-SIZED AND FULL-SCALE DYNAMIC PENETRATION TESTS ON DAMPING CONCRETE

MODEL-SIZED AND FULL-SCALE DYNAMIC PENETRATION TESTS ON DAMPING CONCRETE MODEL-SIZED AND FULL-SCALE DYNAMIC PENETRATION TESTS ON DAMPING CONCRETE Robert Scheidemann, Eva-Maria Kasparek, Karsten Müller, Bernhard Droste, Holger Völzke BAM Federal Institute for Materials Research

More information

Automotive Brake Squeal Analysis Using a Complex Modes Approach

Automotive Brake Squeal Analysis Using a Complex Modes Approach Abaqus Technology Brief TB-05-BRAKE-1 Revised: April 2007. Automotive Brake Squeal Analysis Using a Complex Modes Approach Summary A methodology to study friction-induced squeal in a complete automotive

More information

CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD

CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD 45 CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD 3.1 INTRODUCTION This chapter describes the methodology for performing the modal analysis of a printed circuit board used in a hand held electronic

More information

ACTIVE SAFETY OF TRUCKS AND ROAD TRAINS WITH WIDE BASE SINGLE TYRES INSTEAD OF TWIN TYRES

ACTIVE SAFETY OF TRUCKS AND ROAD TRAINS WITH WIDE BASE SINGLE TYRES INSTEAD OF TWIN TYRES ACTIVE SAFETY OF TRUCKS AND ROAD TRAINS WITH WIDE BASE SINGLE TYRES INSTEAD OF TWIN TYRES Dr.-Ing. Klaus-Peter Glaeser Federal Highway Research Institute, BASt Germany Paper No. 497 1 ABSTRACT The development

More information

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2011, 2 (2), P. 76 83 UDC 538.97 MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING I. S. Konovalenko

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Vibration mitigation for metro line on soft clay

Vibration mitigation for metro line on soft clay Bergen, Norway BNAM May - Vibration mitigation for metro line on soft clay Karin Norén-Cosgriff and Christian Madshus Norwegian Geotechnical Institute (NGI), Sognsveien 7, 7, NO-86 Oslo, Norway, kmr@ngi.no,

More information

Relevant parameters for a reference test track Deliverable D1.7

Relevant parameters for a reference test track Deliverable D1.7 RIVAS Railway Induced Vibration Abatement Solutions Collaborative project Relevant parameters for a reference test track Deliverable D1.7 Submission date: 20/08/2012 Project Coordinator: Bernd Asmussen

More information

SAFE A HEAD. Structural analysis and Finite Element simulation of an innovative ski helmet. Prof. Petrone Nicola Eng.

SAFE A HEAD. Structural analysis and Finite Element simulation of an innovative ski helmet. Prof. Petrone Nicola Eng. SAFE A HEAD Structural analysis and Finite Element simulation of an innovative ski helmet Prof. Petrone Nicola Eng. Cherubina Enrico Goal Development of an innovative ski helmet on the basis of analyses

More information

TOP 10 NOISE CONTROL TECHNIQUES

TOP 10 NOISE CONTROL TECHNIQUES TOP 10 NOISE CONTROL TECHNIQUES The following are 10 simple noise control techniques that have wide application across the whole of industry. In many cases, they will produce substantial noise reductions

More information

Spring Force Constant Determination as a Learning Tool for Graphing and Modeling

Spring Force Constant Determination as a Learning Tool for Graphing and Modeling NCSU PHYSICS 205 SECTION 11 LAB II 9 FEBRUARY 2002 Spring Force Constant Determination as a Learning Tool for Graphing and Modeling Newton, I. 1*, Galilei, G. 1, & Einstein, A. 1 (1. PY205_011 Group 4C;

More information

1 Flexitank/Container Combination Rail Impact Test Criteria

1 Flexitank/Container Combination Rail Impact Test Criteria 1 Flexitank/Container Combination Rail Impact Test Criteria 1.1 General 1.1.1 This test method is intended to prove the ability of Flexitanks and their installations in ISO shipping containers to withstand

More information

Guideway Joint Surface Properties of Heavy Machine Tools Based on the Theory of Similarity

Guideway Joint Surface Properties of Heavy Machine Tools Based on the Theory of Similarity Research Journal of Applied Sciences, Engineering and Technology 5(): 530-536, 03 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 03 Submitted: October, 0 Accepted: December 03, 0 Published:

More information

Continental SportContact 6 Technical Highlights

Continental SportContact 6 Technical Highlights Bitte decken Sie die schraffierte Fläche mit einem Bild ab. Please cover the shaded area with a picture. (24,4 x 7,6 cm) Continental Technical Highlights www.continental-tyres.com Marketing Market Development

More information

Lesson 2 - Force, Friction

Lesson 2 - Force, Friction Lesson 2 - Force, Friction Background Students learn about two types of friction static and kinetic and the equation that governs them. They also measure the coefficient of static friction and the coefficient

More information

Acceleration levels of dropped objects

Acceleration levels of dropped objects Acceleration levels of dropped objects cmyk Acceleration levels of dropped objects Introduction his paper is intended to provide an overview of drop shock testing, which is defined as the acceleration

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

User orientated simulation strategy to analyse large drive trains in SIMPACK

User orientated simulation strategy to analyse large drive trains in SIMPACK User orientated simulation strategy to analyse large drive trains in SIMPACK SIMPACK User Meeting / Dipl.-Ing. Thomas Hähnel / Dipl.-Ing. Mathias Höfgen 21. / 22. November 2007 Content Motivation, state

More information

Valve Train Design and Calculation for High-Performance Engines

Valve Train Design and Calculation for High-Performance Engines Valve Train Design and Calculation for High-Performance Engines Camshaft Design System is a computing programme for the design of different types of valve trains. Starting from the related acceleration

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

MASTER DEGREE PROJECT

MASTER DEGREE PROJECT MASTER DEGREE PROJECT Finite Element Analysis of a Washing Machine Cylinder Thesis in Applied Mechanics one year Master Degree Program Performed : Spring term, 2010 Level Author Supervisor s Examiner :

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

AN EXPLANATION OF JOINT DIAGRAMS

AN EXPLANATION OF JOINT DIAGRAMS AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Fluid Dynamic Optimization of Flat Sheet Membrane Modules Movement of Bubbles in Vertical Channels

Fluid Dynamic Optimization of Flat Sheet Membrane Modules Movement of Bubbles in Vertical Channels A publication of 151 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 213 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 213, AIDIC Servizi S.r.l., ISBN 978-88-9568-23-5; ISSN 1974-9791 The Italian

More information

NUMERICAL SIMULATION OF FULL VEHICLE DYNAMIC BEHAVIOUR BASED ON THE INTERACTION BETWEEN ABAQUS/STANDARD AND EXPLICIT CODES

NUMERICAL SIMULATION OF FULL VEHICLE DYNAMIC BEHAVIOUR BASED ON THE INTERACTION BETWEEN ABAQUS/STANDARD AND EXPLICIT CODES NUMERICAL SIMULATION OF FULL VEHICLE DYNAMIC BEHAVIOUR BASED ON THE INTERACTION BETWEEN ABAQUS/STANDARD AND EXPLICIT CODES E. Duni, G. Monfrino, R. Saponaro, M. Caudano and F. Urbinati FIAT Research Center,

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

RESONANCE PASSAGE OF CYCLIC SYMMETRIC STRUCTURES

RESONANCE PASSAGE OF CYCLIC SYMMETRIC STRUCTURES 11 th International Conference on Vibration Problems Z. Dimitrovová et.al. (eds.) Lisbon, Portugal, 9 12 September 213 RESONANCE PASSAGE OF CYCLIC SYMMETRIC STRUCTURES Marius Bonhage* 1, Lars Panning-v.Scheidt

More information

w o r k o G f E A x - p r S i t n c e Elegance and Strength BBR HiAm CONA Strand Stay Cable Damping Systems

w o r k o G f E A x - p r S i t n c e Elegance and Strength BBR HiAm CONA Strand Stay Cable Damping Systems e o b a l N e t w o r k l o G f E A x - p r S i t n c e 1 9 4 4 - s Elegance and Strength BBR HiAm CONA Strand Stay Cable Damping Systems 1 Cable vibration and damping Despite the wide use of cable-stayed

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

STATIC COEFFICIENT OF FRICTION MEASUREMENT USING TRIBOMETER. Static COF 0.00 0.0 0.5 1.0 1.5 2.0. Time(min) Prepared by Duanjie Li, PhD

STATIC COEFFICIENT OF FRICTION MEASUREMENT USING TRIBOMETER. Static COF 0.00 0.0 0.5 1.0 1.5 2.0. Time(min) Prepared by Duanjie Li, PhD STATIC COEFFICIENT OF FRICTION MEASUREMENT USING TRIBOMETER 0.20 Static COF Coefficient of Friction 0.15 0.10 0.05 0.00 0.0 0.5 1.0 1.5 2.0 Time(min) Prepared by Duanjie Li, PhD 6 Morgan, Ste156, Irvine

More information

Part IV. Conclusions

Part IV. Conclusions Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

More information

DYNAMIC ANALYSIS ON STEEL FIBRE

DYNAMIC ANALYSIS ON STEEL FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 179 184, Article ID: IJCIET_07_02_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

2.5 Physically-based Animation

2.5 Physically-based Animation 2.5 Physically-based Animation 320491: Advanced Graphics - Chapter 2 74 Physically-based animation Morphing allowed us to animate between two known states. Typically, only one state of an object is known.

More information

An Overview of the Finite Element Analysis

An Overview of the Finite Element Analysis CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

More information

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS H. Mirzabozorg 1, M. R. Kianoush 2 and M. Varmazyari 3 1,3 Assistant Professor and Graduate Student respectively, Department

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Magnetic / Gravity Loading Analysis

Magnetic / Gravity Loading Analysis Magnetic / Gravity Loading Analysis 2 ELEMENTS JUL 7 2006 ELEMENTS MAT NUM 2:5:0 MAT NUM POR Design JUL 7 2006 2:5:0 L2 L L q Assumed Location of Gap Encoder(s) ELEMENTS MAT NUM JUL 7 2006 2:5:0 Materials:

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

More information

A-Posteriori Error Estimation for Second Order Mechanical Systems

A-Posteriori Error Estimation for Second Order Mechanical Systems ENOC 214, July 6-11, 214, Vienna, Austria A-Posteriori Error Estimation for Second Order Mechanical Systems Jörg Fehr, Thomas Ruiner, Bernard Haasdonk, Peter Eberhard Institute of Engineering and Computational

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Simulation in design of high performance machine tools

Simulation in design of high performance machine tools P. Wagner, Gebr. HELLER Maschinenfabrik GmbH 1. Introduktion Machine tools have been constructed and used for industrial applications for more than 100 years. Today, almost 100 large-sized companies and

More information

STATIC STRUCTURAL ANALYSIS OF SUSPENSION ARM USING FINITE ELEMENT METHOD

STATIC STRUCTURAL ANALYSIS OF SUSPENSION ARM USING FINITE ELEMENT METHOD STATIC STRUCTURAL ANALYSIS OF SUSPENSION ARM USING FINITE ELEMENT METHOD Jagwinder Singh 1, Siddhartha Saha 2 1 Student, Mechanical Engineering, BBSBEC, Punjab, India 2 Assistant Professor, Mechanical

More information

Structural Integrity Analysis of the Charging Air Tube Support for a Diesel Engine of Commercial Vehicle

Structural Integrity Analysis of the Charging Air Tube Support for a Diesel Engine of Commercial Vehicle 2012-36-0457 Structural Integrity Analysis of the Charging Air Tube Support for a Diesel Engine of Commercial Vehicle Thiago Barão Negretti, Helio Kitagawa T-Systems do Brasil Antonio Augusto Couto Universidade

More information

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling

Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling Aeroacoustic simulation based on linearized Euler equations and stochastic sound source modelling H. Dechipre a, M. Hartmann a, J. W Delfs b and R. Ewert b a Volkswagen AG, Brieffach 1777, 38436 Wolfsburg,

More information

SIMULATING THE DYNAMIC RESPONSE OF DIVINE BRIDGES

SIMULATING THE DYNAMIC RESPONSE OF DIVINE BRIDGES Pages 172-185 SIMULATING THE DYNAMIC RESPONSE OF DIVINE BRIDGES Mark F. Green and Haiyin Xie ABSTRACT This paper presents dynamic models of three bridges tested as part of the recently completed Dynamic

More information

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS

More information

A novel approach of multichannel and stereo control room acoustic treatment, second edition

A novel approach of multichannel and stereo control room acoustic treatment, second edition Audio Engineering Society Convention Paper Presented at the 140th Convention 2016 June 4 7 Paris, France This convention paper was selected based on a submitted abstract and 750-word precis that have been

More information

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,

More information

Dynamic Analysis of the Dortmund University Campus Sky Train

Dynamic Analysis of the Dortmund University Campus Sky Train Dynamic Analysis of the Dortmund University Campus Sky Train Reinhold Meisinger Mechanical Engineering Department Nuremberg University of Applied Sciences Kesslerplatz 12, 90121 Nuremberg, Germany Abstract

More information

Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs

Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs Dan Gregory Sandia National Laboratories Albuquerque NM 87185 (505) 844-9743 Fernando Bitsie Sandia

More information