EXPERIMENT 5 CONTROLLING A SQUIRREL-CAGE INDUCTION MOTOR WITH SIMATIC S7-300 PLC

Size: px
Start display at page:

Download "EXPERIMENT 5 CONTROLLING A SQUIRREL-CAGE INDUCTION MOTOR WITH SIMATIC S7-300 PLC"

Transcription

1 YEDITEPE UNIVERSITY ENGINEERING & ARCHITECTURE FACULTY INDUSTRIAL ELECTRONICS LABORATORY EE 432 INDUSTRIAL ELECTRONICS EXPERIMENT 5 CONTROLLING A SQUIRREL-CAGE INDUCTION MOTOR WITH SIMATIC S7-300 PLC Introduction: The main objective in this experiment is to: Understanding the programmable logic controller and its peripherals. Programming the PLC with the STEP 7 software. Applying the PLC to drive a squirrel cage motor. Equipments: Table 1. List of Equipments Three-Phase Supply Unit with FCCB Measurement Indicator Magnetic Powder Brake Control Unit for the Magnetic Powder Brake Tachogenerator AC Current Transformer (2V/1A) PLC Basic Unit Squirrel-Cage Induction Motor, 1.6kW 3RT1016-1BB41 24V DC Relays (x2) 3SB A Normally Open (NO) Push-button switches (x3) Metra Hit 25S Multimeter (x 2) Siemens SIMATIC S7-300 General Information: THREE-PHASE INDUCTION MOTOR An induction motor is one in which alternating current is supplied to the stator directly and to the rotor by induction or transformer action from the stator. When excited from a balanced three-phase source, the stator winding will produce a magnetic field in the air gap rotating at synchronous speed as determined by the number of stator poles and the applied stator frequency f e. The rotor of a three-phase induction machine may be one of two types. A wound rotor is built with a three-phase winding similar to, any wound with the same number of poles as, the stator. The terminals of the rotor winding are connected to insulated slip rings mounted on the shaft as shown in Figure 1(a). Carbon brushes bearing on these rings make the rotor terminals available external to the motor. The second type is squirrel-cage rotor with a winding consisting of conducting bars embedded in slots in the rotor iron and shortcircuited at each end by conducting end rings. The three-phase induction motor with squirrel-cage rotor is shown in Figure 1(b). EE432 Industrial Electronics, Spring 2012 Experiment 5, page 1/9 Last updated March 29, :14 PM by D. Yildirim

2 brushes Three phase windings on rotor Slip rings (a) Short circuiting ring Aluminum rotor bars embedded in rotor iron (b) Figure 1. Cutaway view of a three-phase (a) wound-rotor and (b) squirrel-cage induction motor. EE432 Industrial Electronics, Spring 2012 Experiment 5, page 2/9 Last updated March 29, :14 PM by D. Yildirim

3 The quantity slip is the difference between the synchronous speed and the actual speed of motor, as measured in rpm. Slip is more usually expressed as a fraction of synchronous speed. The fractional slip s is ns n 120 f s, where ns (1) n p s Where f is the frequency of applied voltages, p is the pole number and n is the mechanical speed of rotor. The rotor terminals of an induction motor are short circuited; by construction in the case of a squirrel-cage motor and externally in the case of a wound-rotor motor. The rotating air-gap flux induces slip-frequency voltages in the rotor windings. The rotor currents are then determined by the magnitudes of the induced voltages and the rotor impedance at slip frequency. At starting, the rotor is stationary (n=0), the slip is unity (s=1), and the rotor frequency equals the stator frequency f e. The field produced by the rotor currents, therefore, revolves at the same speed as the stator field, and a starting torque results, tending to turn the rotor in the direction of rotation of the stator-inducing field. If this torque is sufficient to overcome the opposition to rotation created by the shaft load, the motor will come up to its operating speed. The operating speed can never equal the synchronous speed however, since the rotor conductors would then be stationary with respect to the stator field; no current would be induced in them, and hence no torque would be produced. MAGNETIC POWDER BREAK Magnetic powder break is mechanically connected to the three-phase induction motor for loading purposes. It applies breaking torque to the induction motor. The amount of breaking torque can be adjusted from the break control unit (732 55). Control unit also takes speed information from the tachogenerator (732 59) and displays the speed with an analog panel meter on the break control unit. SIMATIC S7-300 PLC SIMATIC S7-300 PLC will be used to drive the squirrel-cage induction motor. More information can be obtained from the Experiment 2 laboratory handout. TIMER TYPES Timer format: S5T# ah_bbm_ccs_ddms a. where a = hours, bb = minutes, cc = seconds, and dd = milliseconds b. The time base is selected automatically, and the value is rounded to the next lower number with that time base. For example: 500ms = S5T#500MS, 1min 10sec = S5T#1M_10S There are five different timer types in Simatic Ladder programming as depicted in Figure 2 where each timer starts with an input signal. EE432 Industrial Electronics, Spring 2012 Experiment 5, page 3/9 Last updated March 29, :14 PM by D. Yildirim

4 CONTACTOR Figure 2. Timer types A contactor is a simple electromechanical relay that is used to connect loads to the power supplies the contactor illustrated in Figure 3 will be used to connect a threephase induction motor to a three-phase voltage source in this experiment. This contactor has four normally open (NO) contacts and contacts are activated (closed) by applying 24V DC voltage to terminals A1+ and A2- (relay coils). A freewheeling diode must be connected across the relay coil terminals (cathode of diode is connected to A1+ and anode is connected to A2-) in order to prevent PLC output from destructive inductive-kick overvoltages. EE432 Industrial Electronics, Spring 2012 Experiment 5, page 4/9 Last updated March 29, :14 PM by D. Yildirim

5 Figure 3. Contactor for switching motor (see Appendix A for data sheet) Procedure of Experiment: Circuit Set-up: Assemble the circuit shown in Figure 4. First, connect the power circuit cables of the motor. Then, connect the control circuit cables for an easy set-up. Do not forget to connect the PE (ground) connections! Connect the 24 V DC Relay to the three-phase Supply Unit (726 75). Connect a multi-meter to measure the line current. Connect the Relay to the stator windings of the induction motor. The windings connections can be plugged to the connection box on the induction motor. The stator must be WYE connected. Connect the tachogenerator to the breaker control unit (732 55). Make sure that the torque knob in the brake unit is at minimum, i.e., rotate all the way to the CCW direction. Connect the NO and NC switches to the digital input module of the PLC via PLC Basic Unit ( ). For each switch, connect one end to 24 V socket on PLC Basic Unit, and connect other end to the corresponding input sockets on PLC Basic Unit. Connect the voltage output of current sensor (735 24) to the analog measurement indicator. Connect the PLC output from the PLC Basic Unit ( ) to the 24 V DC Relay. Connect A2- end of relay to zero volt on PLC Basic Unit and connect other end to the corresponding output socket. Open the STEP 7 software to program the PLC: Make an online connection between the PLC and the software by running the command from File/Connect Online. Create a new project. Then, in Program/OB1 write your code in FBD/LD or STL. Right Click on OB1 and choose Download to CPU command. When file transfer is finished, switch PLC to RUN mode. EE432 Industrial Electronics, Spring 2012 Experiment 5, page 5/9 Last updated March 29, :14 PM by D. Yildirim

6 Figure 4. PLC control of induction motor operation.. EE432 Industrial Electronics, Spring 2012 Experiment 5, page 6/9 Last updated March 29, :14 PM by D. Yildirim

7 1. Unlatched Circuit Configuration with Indicator: Write a program in STEP 7 such that when S 1 button is pushed on momentarily, it will start the motor, and when S 2 button is pushed on momentarily, it will deenergize motor. When motor is operating, the indicator light L d must be turned on continuously, otherwise it must be in off position. Motor must be initially loaded with minimum torque, therefore, torque adjustment knob must be set to low value. Start the motor and write down the starting current (peak value), running current (using the analog measurement unit), torque, and speed in Table 1. Load the motor using the brake unit by turning the torque adjustment knob slowly in CW direction. Monitor the motor current and stop when the motor current reaches the rated value written on the nameplate. Stop the motor. Restart the motor with this loaded condition and write down the starting current (peak value), running current (using the analog measurement unit), torque, and speed in Table Delayed Circuit Configuration with Indicator: Write a program in STEP 7 such that when S 1 button is pushed on momentarily, it will start the motor, and when S 2 button is pushed on momentarily, it will deenergize motor. The motor will either start or stop (depending on the previous operating condition) after predetermined delay time when S 3 button is pushed on momentarily, i.e., if the motor is operating, pushing S 3 button will stop the motor after 10 seconds. If motor is at standstill, pushing S 3 button will start the motor after 6 seconds. When starting the motor using S 3 button, the indicator light L d must be flashing (0.3sec on, 0.8sec off) during the delay time. When motor is energized after this delay (in operating condition), the indicator light L d must be continuously turned on. Once S 3 button is pushed on for stopping the motor, the indicator light L d must be flashing (0.4sec on, 0.5sec off) during delay time and must be turned off when motor is denergized. Conclusion: Bidirectional operation of an induction motor with Star-Delta starting will be realized in your report. Use the induction motor nameplate values available in the Industrial Electronics laboratory. Selection of the contactors will be based on for this motor. There will be three push buttons (normally open type) for controlling: one stop button, one clockwise (CW) button and one counterclockwise (CCW) button. Pressing either CW or CCW button will start the motor in Star-Delta configuration, i.e., stator windings first will be connected in WYE (star) and then three-phase voltage will be applied to stator windings. 10 seconds later stator windings will be switched from WYE connection to DELTAconnection. You must make sure that all safety precautions are implemented in your program so that no awkward operations result in. One example of such an operation is short-circuiting of three-phase supply when both EE432 Industrial Electronics, Spring 2012 Experiment 5, page 7/9 Last updated March 29, :14 PM by D. Yildirim

8 CW and CCW are pressed on. Please note that there may be other unwanted situations. a) Describe the operation of the system and draw electrical connection diagram indicating three-phase supply, induction motor, and contactors. b) Draw single-line relay logic diagram for this operation. c) Write a PLC program in ladder diagram form to run this operation properly: Determine the I/O addresses of the PLC which you use for this device. Determine the number of networks and function of each network. d) Determine all the contactor types (specify model number) and select proper contactors from a manufacturer s data sheet. Compare the type of contactor (i.e., number of poles) requirements both for relay logic realization and for PLC implementation. Include data sheet of these contactors to your report (PLC realization only). References: [1] T. E. Kissell, Industrial Electronics: Applications for Programmable Controllers, Instrumentation and Process Control and Electrical Machines and Motor Controls, Prentice Hall, 3 rd edition, [2] T. J. Maloney, Modern Industrial Electronics, 5th Ed., Prentice Hall, [3] S. J. Chapman, Electric Machinery Fundamentals, 4th ed., McGraw-Hill, [4] A. E. Fitzgerald, C. Kingsley, S. D. Umans, Electric Machinery, 6th ed., McGraw-Hill, [5] T. Bartelt, Industrial Control Electronics, 3 rd ed., Thomson Delmar Learning, EE432 Industrial Electronics, Spring 2012 Experiment 5, page 8/9 Last updated March 29, :14 PM by D. Yildirim

9 E X P E R I M E N T R E S U L T S H E E T This form must be filled in using a PEN. Use of PENCIL IS NOT ALLOWED EXPERIMENT 5: CONTROLLING A SQUIRREL-CAGE INDUCTION MOTOR WITH SIMATIC S7-300 PLC STUDENT NO STUDENT NAME SIGNATURE DATE 1 2 INSTRUCTOR APPROVAL 3 4 starting current (A) Table 1: Motor operating with minimum load running current (A) torque (Nm) speed (rpm) Table 2: Motor operating at rated load starting current running current torque (A) (A) (Nm) speed (rpm) Please include flowchart of your program in here indicating inputs and outputs (ladder diagram code must be included in your report). EE432 Industrial Electronics, Spring 2012 Experiment 5, page 9/9 Last updated March 29, :14 PM by D. Yildirim

EXPERIMENT 2 TRAFFIC LIGHT CONTROL SYSTEM FOR AN INTERSECTION USING S7-300 PLC

EXPERIMENT 2 TRAFFIC LIGHT CONTROL SYSTEM FOR AN INTERSECTION USING S7-300 PLC YEDITEPE UNIVERSITY ENGINEERING & ARCHITECTURE FACULTY INDUSTRIAL ELECTRONICS LABORATORY EE 432 INDUSTRIAL ELECTRONICS EXPERIMENT 2 TRAFFIC LIGHT CONTROL SYSTEM FOR AN INTERSECTION USING S7-300 PLC Introduction:

More information

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt. Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine

More information

Unit 33 Three-Phase Motors

Unit 33 Three-Phase Motors Unit 33 Three-Phase Motors Objectives: Discuss the operation of wound rotor motors. Discuss the operation of selsyn motors. Discuss the operation of synchronous motors. Determine the direction of rotation

More information

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt. Lab 9: Synchronous motor. Objective: to examine the design of a 3-phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the full-load characteristic of

More information

Lab 14: 3-phase alternator.

Lab 14: 3-phase alternator. Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive

More information

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE INTRODUCTION In all kinds of manufacturing, it is very common to have equipment that has three phase motors for doing different

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Understanding the Alternator

Understanding the Alternator http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED

More information

ELECTRICAL ENGINEERING Vol. III - Induction Motor and Self-Excited Induction Generator - Tze-Fun Chan

ELECTRICAL ENGINEERING Vol. III - Induction Motor and Self-Excited Induction Generator - Tze-Fun Chan INDUCTION MOTOR AND SELFEXCITED INDUCTION GENERATOR TzeFun Chan The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China Keywords: threephase induction motor, singlephase induction motor,

More information

Welcome to Linear Controls Quarterly Training

Welcome to Linear Controls Quarterly Training Welcome to Linear Controls Quarterly Training Introduction to Power Generation Objectives Supply attendees with basic knowledge of power generators and voltage regulators and provide the fundamentals of

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR 1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

More information

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

DC Motor control Reversing

DC Motor control Reversing January 2013 DC Motor control Reversing and a "Rotor" which is the rotating part. Basically there are three types of DC Motor available: - Brushed Motor - Brushless Motor - Stepper Motor DC motors Electrical

More information

Principles of Adjustable Frequency Drives

Principles of Adjustable Frequency Drives What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

More information

Induction Motor Theory

Induction Motor Theory PDHonline Course E176 (3 PDH) Induction Motor Theory Instructor: Jerry R. Bednarczyk, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

AC Induction Motor Slip What It Is And How To Minimize It

AC Induction Motor Slip What It Is And How To Minimize It AC Induction Motor Slip What It Is And How To Minimize It Mauri Peltola, ABB Oy, Helsinki, Finland The alternating current (AC) induction motor is often referred to as the workhorse of the industry because

More information

8 Speed control of Induction Machines

8 Speed control of Induction Machines 8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

More information

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION Introduction Howard W. Penrose, Ph.D., CMRP Vice President, Engineering and Reliability Services Dreisilker Electric Motors, Inc.

More information

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS *ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS Jay Vaidya, President Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 and Earl Gregory,

More information

Principles and Working of DC and AC machines

Principles and Working of DC and AC machines BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called

More information

Synchronous motor. Type. Non-excited motors

Synchronous motor. Type. Non-excited motors Synchronous motor A synchronous electric motor is an AC motor in which the rotation rate of the shaft is synchronized with the frequency of the AC supply current; the rotation period is exactly equal to

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

Motors and Generators

Motors and Generators Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed

More information

Introduction. Upon completion of Basics of AC Motors you should be able to:

Introduction. Upon completion of Basics of AC Motors you should be able to: Table of Contents Introduction...2 AC Motors...4 Force and Motion...6 AC Motor Construction... 12 Magnetism... 17 Electromagnetism... 19 Developing a Rotating Magnetic Field...24 Rotor Rotation...29 Motor

More information

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA Speed Control Methods of Various Types of Speed Control Motors Kazuya SHIRAHATA Oriental Motor Co., Ltd. offers a wide variety of speed control motors. Our speed control motor packages include the motor,

More information

C Standard AC Motors

C Standard AC Motors C Standard AC Standard AC C-1 Overview, Product Series... C-2 Constant... C-9 C-21 C-113 Reversible C-147 Overview, Product Series Constant Reversible Electromagnetic Brake C-155 Electromagnetic Brake

More information

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry Induction Motors Introduction Three-phase induction motors are the most common and frequently encountered machines in industry - simple design, rugged, low-price, easy maintenance - wide range of power

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR INDEX NO. : M-142 TECHNICAL MANUAL FOR NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2000 Certified Company) 212/1, Mansarover Civil

More information

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 2, March-April, 2016, pp.19-28, Article ID: IJEET_07_02_003 Available online at http:// http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=2

More information

SUBJECT: How to wire a motor starter Number: AN-MC-004 Date Issued: 2/08/2005 Revision: Original

SUBJECT: How to wire a motor starter Number: AN-MC-004 Date Issued: 2/08/2005 Revision: Original SUBJECT: How to wire a motor starter Number: AN-MC-004 Date Issued: 2/08/2005 Revision: Original A motor starter is a combination of devices to allow an induction motor to start, run and stop according

More information

EET272 Worksheet Week 8

EET272 Worksheet Week 8 EET272 Worksheet Week 8 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions We will now

More information

IV. Three-Phase Induction Machines. Induction Machines

IV. Three-Phase Induction Machines. Induction Machines IV. Three-Phase Induction Machines Induction Machines 1 2 3 4 5 6 7 8 9 10 11 12 13 Example 1: A 480V, 60 Hz, 6-pole, three-phase, delta-connected induction motor has the following parameters: R 1 =0.461

More information

Basics of Electricity

Basics of Electricity Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components

More information

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt. Lab 12: The universal motor. Objective: to examine the construction of the universal motor; to determine its no-load and full-load characteristics while operating on AC; to determine its no-load and full-load

More information

THIS paper reports some results of a research, which aims to investigate the

THIS paper reports some results of a research, which aims to investigate the FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 2009, 227-234 Determination of Rotor Slot Number of an Induction Motor Using an External Search Coil Ozan Keysan and H. Bülent Ertan

More information

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor. DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

More information

SHIP SERVICE GENERATORS (AC)

SHIP SERVICE GENERATORS (AC) CHAPTER 14 SHIP SERVICE GENERATORS (AC) INTRODUCTION All generators change mechanical energy into electrical energy. This is the easiest way to transfer power over distances. Fuel is used to operate the

More information

AC Generators and Motors

AC Generators and Motors AC Generators and Motors Course No: E03-008 Credit: 3 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info@cedengineering.com

More information

Lab 8: DC generators: shunt, series, and compounded.

Lab 8: DC generators: shunt, series, and compounded. Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their

More information

Three-Phase Induction Motor

Three-Phase Induction Motor EXPERIMENT Induction motor Three-Phase Induction Motors 208V LL OBJECTIVE This experiment demonstrates the performance of squirrel-cage induction motors and the method for deriving electrical equivalent

More information

CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR

CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 47 CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 4.1 INTRODUCTION This chapter deals with the design of 24 slots 8 poles, 48 slots 16 poles and 60 slots 16 poles brushless dc

More information

Module Title: Electrotechnology for Mech L7

Module Title: Electrotechnology for Mech L7 CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Autumn Examinations 2012 Module Title: Electrotechnology for Mech L7 Module Code: ELEC7007 School: School of Mechanical, Electrical and Process

More information

Service and Maintenance. SEW-EURODRIVE Driving the world

Service and Maintenance. SEW-EURODRIVE Driving the world SEW Brakes Service and Maintenance 2 Objectives Upon completion of this session, you will be able to do the following: - Identify the components of an SEW brakemotor - Explain the operation of the SEW

More information

Industrial Controls SIRIUS Controls

Industrial Controls SIRIUS Controls Industrial Controls SIRIS Controls Star-delta (Wye-delta) Switching of Three-phase Induction Motors Transient Current Peak Reduction using a Preferred Circuitry Configuration for Clockwise and Counterclockwise

More information

Tuning Up DC Motors and Generators for Commutation and Performance

Tuning Up DC Motors and Generators for Commutation and Performance Tuning Up DC Motors and Generators for Commutation and Performance Rich Hall- National Electrical Carbon Western Mining Electrical Association June 8, 2007, Billings Montana Sometimes your machine may

More information

E&I MAINTENANCE ENTRY TEST ENABLING OBJECTIVES. DESCRIBE hazards and precautions taken to avoid injury in the workplace.

E&I MAINTENANCE ENTRY TEST ENABLING OBJECTIVES. DESCRIBE hazards and precautions taken to avoid injury in the workplace. SAFETY Industrial DESCRIBE hazards and precautions taken to avoid injury in the workplace. Example #1: All of the following are common PPE used to perform maintenance activities EXCEPT: a. Safety Glasses

More information

How To Understand And Understand The Electrical Power System

How To Understand And Understand The Electrical Power System DOE-HDBK-1011/4-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 4 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

More information

Programming Logic controllers

Programming Logic controllers Programming Logic controllers Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable memory to store instructions and implement functions such as logic, sequencing,

More information

ET 332b Ac Electric Machines and Power Systems

ET 332b Ac Electric Machines and Power Systems Instructor: Dr. Carl Spezia, PE Office: Engr. D110 Phone: 453-7839 E-mail: powerguy@siu.edu ET 332b Ac Electric Machines and Power Systems Office Hours: 9:00 am - 10:00 am M-W-F 2:00 pm - 3:00 pm M-W-F

More information

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65 COMPUTER AIDED ELECTRICAL DRAWING (CAED) EE Winding Diagrams: (i) DC Winding diagrams (ii) AC Winding Diagrams Terminologies used in winding diagrams: Conductor: An individual piece of wire placed in the

More information

Michelin North America

Michelin North America www.centecinc.com SC Telephone: 864.527.7750 Outside SC: 800.227.0855 Michelin North America Industrial Maintenance Technical Interview Outline Industrial Maintenance Technical Interview Outline The Technical

More information

The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions:

The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions: The Charging System Charging System The charging system has two essential functions: Generate electrical power to run the vehicle s electrical systems Generate current to recharge the vehicle s battery

More information

Operating instructions

Operating instructions Operating instructions Torque transducer type AE with replaceable strain gauge measuring element Model TQ 505 Operating instructions no. 1079 Torque Transducer TQ 505 Page 1 / 16 1. Contents 1. List of

More information

3-Phase BLDC Motor Control with Hall Sensors Using 56800/E Digital Signal Controllers

3-Phase BLDC Motor Control with Hall Sensors Using 56800/E Digital Signal Controllers Freescale Semiconductor Application Note AN1916 Rev. 2.0, 11/2005 3-Phase BLDC Motor Control with Hall Sensors Using 56800/E Digital Signal Controllers Leonard N. Elevich Contents 1. Application Benefits...1

More information

Occupational Profile: Electrical & Electronics Engineering Technician

Occupational Profile: Electrical & Electronics Engineering Technician Occupational Profile: Electrical & Electronics Engineering Technician A competent Electrical & Electronics Engineering Technician should be able to demonstrate the following skills and competences: 1.

More information

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear.

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear. OVERCURRENT & EARTH FAULT RELAYS Objective: To study the protection of equipment and system by relays in conjunction with switchgear. Theory: The function of a relay is to detect abnormal conditions in

More information

WIND TURBINE TECHNOLOGY

WIND TURBINE TECHNOLOGY Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems

More information

GLOLAB Two Wire Stepper Motor Positioner

GLOLAB Two Wire Stepper Motor Positioner Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and

More information

THREE-PHASE INDUCTION MOTOR March 2007

THREE-PHASE INDUCTION MOTOR March 2007 THREE-PHASE INDUCTION MOTOR March 2007 A. PREPARATION 1. Introduction 2. The Rotating Field 3. Rotor Currents 4. Induction Motor Equivalent Circuit 5. Torque and Power Characteristics 6. Operation Beyond

More information

13 ELECTRIC MOTORS. 13.1 Basic Relations

13 ELECTRIC MOTORS. 13.1 Basic Relations 13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This

More information

FREQUENCY CONTROLLED AC MOTOR DRIVE

FREQUENCY CONTROLLED AC MOTOR DRIVE FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly

More information

Power Plant Electrical Distribution Systems

Power Plant Electrical Distribution Systems PDH Course E184 Power Plant Electrical Distribution Systems Gary W Castleberry, PE 2008 PDH Center 2410 Dakota Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcenter.com

More information

Three-phase AC circuits

Three-phase AC circuits Three-phase AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Test Code: 8094 / Version 1

Test Code: 8094 / Version 1 Blueprint Electromechanical Engineering Technology PA Test Code: 8094 / Version 1 Copyright 2014. All Rights Reserved. General Assessment Information Electromechanical Engineering Technology PA Blueprint

More information

How to read this guide

How to read this guide How to read this guide The following shows the symbols used in this Quick start guide with descriptions and examples. Symbol Description Example P oint Reference Caution [ ] This symbol explains information

More information

Direct Current Motors

Direct Current Motors Direct Current Motors DC MOTORS The DC machine can operate as a generator and as a motor. Chap 5. Electrical Machines by Wildi, 6 e Lecturer: R. Alba-Flores Alfred State College Spring 2008 When a DC machine

More information

ATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only

ATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only ATTACHMENT F CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category

More information

3.0 CHARACTERISTICS. AR Auxiliary Relay High Speed, High Threshold 41-759.3C

3.0 CHARACTERISTICS. AR Auxiliary Relay High Speed, High Threshold 41-759.3C 41-759.3C the magnetic core upon energizing of the switch. When the switch closes, the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers

More information

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive

More information

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING. UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING. Group # First Name Last Name UserID @uwaterloo.ca Experiment #3: DIRECT CURRENT

More information

Introduction. related products. Upon completion of Basics of DC Drives you will be able to: Explain the concepts of force, inertia, speed, and torque

Introduction. related products. Upon completion of Basics of DC Drives you will be able to: Explain the concepts of force, inertia, speed, and torque Table of Contents Introduction...2 Totally Integrated Automation and DC Drives...4 Mechanical Basics...6 DC Motors... 12 Basic DC Motor Operation... 15 Types of DC Motors...20 DC Motor Ratings...23 Speed/Torque

More information

Programming A PLC. Standard Instructions

Programming A PLC. Standard Instructions Programming A PLC STEP 7-Micro/WIN32 is the program software used with the S7-2 PLC to create the PLC operating program. STEP 7 consists of a number of instructions that must be arranged in a logical order

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional

More information

3BASIC RELAY INSTRUCTIONS

3BASIC RELAY INSTRUCTIONS M O D U L E T H R E E 3BASIC RELAY INSTRUCTIONS Key Points So far, you have learned about the components of the MicroLogix 1000 PLC, including the CPU, the memory system, the power supply, and the input/output

More information

Series 427. 1/16 DIN Multi-Mode Bar Graph Display Timer TIMERS PRODUCT HIGHLIGHTS

Series 427. 1/16 DIN Multi-Mode Bar Graph Display Timer TIMERS PRODUCT HIGHLIGHTS Series 427 1/16 DIN Multi-Mode Bar Graph Display Timer PRODUCT HIGHLIGHTS Digital Setting with 0.1% Accuracy Unique LED Bargraph Indicates Time Cycle in 20% Increments 8 Field Selectable Modes of Operation

More information

INDUCTION REGULATOR. Objective:

INDUCTION REGULATOR. Objective: INDUCTION REGULATOR Objective: Using a wound rotor induction motor an Induction Regulator, study the effect of rotor position on the output voltage of the regulator. Also study its behaviour under load

More information

An overview of Computerised Numeric Control (C.N.C.) and Programmable Logic Control (P.L.C.) in machine automation

An overview of Computerised Numeric Control (C.N.C.) and Programmable Logic Control (P.L.C.) in machine automation An overview of Computerised Numeric Control (C.N.C.) and Programmable Logic Control (P.L.C.) in machine automation By Pradeep Chatterjee, Engine Division Maintenance, TELCO, Jamshedpur 831010 E-mail: pradeep@telco.co.in

More information

chapter6 Electrical machines and motors Unit 1 outcome 6

chapter6 Electrical machines and motors Unit 1 outcome 6 Electrical machines and motors chapter6 Unit 1 outcome 6 The principles of magnetism are central to many of the tasks you will carry out as an electrician. Magnetism, like gravity, is a fundamental force.

More information

MARINE ELECTRICAL TRAINING CENTER

MARINE ELECTRICAL TRAINING CENTER MARINE ELECTRICAL TRAINING CENTER SPLIT - CROATIA Introduction: Our recognized course instruction teaches electrical maintenance, testing, power studies and safety skills.withcourseslastingnomorethanfewdays,wespecializeinfast,effectiveelectricalskillstraining.

More information

PHASE CONVERSION TECHNOLOGY OVERVIEW

PHASE CONVERSION TECHNOLOGY OVERVIEW Dr. Larry Meiners, Ph.D. PHASE CONVERSION TECHNOLOGY OVERVIEW Introduction A wide variety of commercial and industrial electrical equipment requires three-phase power. Electric utilities do not install

More information

Section 10. Application Manual for NEMA Motors. Special Applications

Section 10. Application Manual for NEMA Motors. Special Applications Special Applications 1 Power Factor Correction 1 Methods of Starting 3AC Induction Motors 5 3 Duty Cycles and Inertia 3 4 Horsepower Determination 30 5 Formulas and General Data 34 Power Factor Correction

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Power Quality Paper #3

Power Quality Paper #3 The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production

More information

MasterINTERFACE 39 Series - Relay interface modules

MasterINTERFACE 39 Series - Relay interface modules MasterINTERFACE 39 Series - Relay interface modules Common features Space saving 6.2 mm wide Connections for 16-way jumper link Integral coil indication and protection circuit Secure retention and easy

More information

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd 100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center Introduction Roger Hedding Steven Schoenherr, P.E. ABB Inc. Minnesota Power 598 N. Buth Rd 3215 Arrowhead Rd Dousman,

More information

48 SERIES Relay interface modules 10 A

48 SERIES Relay interface modules 10 A 48 Relay interface modules 10 A 1 CO relay interface modules, mm wide Ideal interface for PLC and electronic systems Type 48.P3 1 CO 10 A s Type 48.31 1 CO 10 A s AC coils or DC sensitive coils Supply

More information

Simulation of Ungrounded Shipboard Power Systems in PSpice

Simulation of Ungrounded Shipboard Power Systems in PSpice Simulation of Ungrounded Shipboard Power Systems in PSpice Haibo Zhang IEEE Student Member Karen L.Butler IEEE Member Power System Automation Lab Electrical Engineering Department Texas A&M University

More information

Product Description Full Voltage Starting Electric Fire Pump Controllers FTA1000

Product Description Full Voltage Starting Electric Fire Pump Controllers FTA1000 Product Description Full Voltage Starting Electric Fire Pump Controllers FTA1000 Description Firetrol FTA1000 Full Voltage Fire Pump Controllers are intended for use with electric motor driven fi re pumps

More information

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. 1 How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. The territory of high-performance motor control has

More information

NATIONAL CERTIFICATE (VOCATIONAL)

NATIONAL CERTIFICATE (VOCATIONAL) NATIONAL CERTIFICATE (VOCATIONAL) SUBJECT GUIDELINES ELECTRICAL PRINCIPLES AND PRACTICE NQF Level 4 September 2007 ELECTRICAL PRINCIPLES AND PRACTICE LEVEL 4 CONTENTS INTRODUCTION 1 DURATION AND TUITION

More information

Data Sheet. Electro-mechanical counters Hengstler 800 series

Data Sheet. Electro-mechanical counters Hengstler 800 series Data Pack D Issued March 00 504897 Data Sheet Electro-mechanical counters Hengstler 800 series The 800 series totalising and predetermining batch counters, manufactured by Hengstler, is available from

More information

Quick Start Instructions. Frequency Inverter. Series KFU 2- / 4- 0,55 to 3,0 kw 230 V KFU 2-0,55 to 132 kw 400 V KFU 4- KN 621.

Quick Start Instructions. Frequency Inverter. Series KFU 2- / 4- 0,55 to 3,0 kw 230 V KFU 2-0,55 to 132 kw 400 V KFU 4- KN 621. Quick Start Instructions Frequency Inverter Series KF 2- / 4-0,55 to 3,0 kw 230 V KF 2-0,55 to 132 kw 400 V KF 4- KN 621.1401e This documentation describes the first steps for an easy commissioning of

More information

PRODUCTS DC MOTORS BLPM MOTORS AC MOTORS CONTROLLERS

PRODUCTS DC MOTORS BLPM MOTORS AC MOTORS CONTROLLERS D R I V E S Y S T E M S PRODUCTS DC MOTORS BLPM MOTORS AC MOTORS CONTROLLERS The vision of Iskra Avtoelektrika is to be: One of the world's leading manufacturers of electric motors and controllers for

More information

Three-Phase Electric Power Distribution for Computer Data Centers

Three-Phase Electric Power Distribution for Computer Data Centers Three-hase Electric ower Distribution for Computer Data Centers WHITE AER E901 Geist January 008 Summary This paper will describe the characteristics of three-phase power and outline the advantages of

More information

Current Transformers

Current Transformers Tyco Electronics Corporation Crompton Instruments 1610 Cobb International Parkway, Unit #4 Kennesaw, GA 30152 Tel. 770-425-8903 Fax. 770-423-7194 Current Transformers Current transformers (CT's) provide

More information

DISTRIBUTION TRANSFORMER OVERLOAD PROTECTION TRIPPING CIRCUIT

DISTRIBUTION TRANSFORMER OVERLOAD PROTECTION TRIPPING CIRCUIT DISTRIBUTION TRANSFORMER OVERLOAD PROTECTION TRIPPING CIRCUIT Dr. Dipesh Patel 1, Jigar Juthani 2, Harsh Parikh 3, Rushit Bhavsar 4, Ujjaval Darbar 5 1 Head of Electrical Department, BITS edu campus, Vadodara

More information

Chen. Vibration Motor. Application note

Chen. Vibration Motor. Application note Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table

More information