Achieving Maximum Sensitivity in GCMS

Size: px
Start display at page:

Download "Achieving Maximum Sensitivity in GCMS"

Transcription

1 Achieving Maximum Sensitivity in GCMS The combined technique of Gas Chromatography/Mass Spectrometry (GCMS) provides a powerful tool for separation, identification and quantification of compounds in complex mixtures. Many applications rely on the ability of GCMS instrumentation to detect and identify minute quantities of compounds. Increasingly sensitive instruments are invaluable to experts in a variety of fields who were previously unable to identify trace compounds in complicated or difficult samples. Instrument manufacturers and users alike frequently equate best with most sensitive when considering GCMS instrumentation. Instrument specifications should provide the information consumers need to make an informed decision regarding the suitability of a particular instrument for accurate and reliable measurement of samples likely to be encountered in a real lab. Instrument manufacturers naturally want to publicize impressive performance specifications in order to convince shoppers to purchase their product. Manufacturers are constantly vying to outdo each other in publishing the highest X or the lowest Y specifications for their models. The buyer is not only faced with comparing features of different models, but decoding confusing market-specific terminology in order to determine whether the information supplied by the manufacturer is relevant to their purchase decision. Very often, the first and only question a customer has in mind when selecting a GCMS is: How sensitive is it? Specifications should assist the consumer in making an appropriate selection of a GCMS. From the buyer s standpoint, it can be argued that at the very least, instrument specifications should answer three fundamental questions: 1. How accurate will my measurement be? 2. How repeatable will my measurement be? 3. What is the smallest mass or concentration of analyte that can be accurately and reliably measured; in other words, how sensitive is it? On the surface, it would appear that these questions can be answered quite simply. For example, manufacturers can state measurement accuracy as a comparison between measured and referenced data of a certified reference standard. Measurement repeatability can be easily stated as the standard deviation or relative standard deviation of measurements made on a certified reference standard. However, the reality is that, very often, the first and only question a customer has in mind when selecting a GCMS is: How sensitive is it? 1

2 Defining Sensitivity In reality, defining sensitivity is not straightforward. Unlike the responses to the first two questions, the issue of minimum analyte detectability (i.e., sensitivity) does not lend itself to a quick and easy answer. Equally unfortunate, manufacturers tend to use their sensitivity specification as the platform from which to promote their instruments to demonstrate that their instrument is superior to competitors models. Most frequently, sensitivity is specified as the Signal-to-Noise Ratio or S/N. Ideally, this numerical value stands as a truthful indicator of the minimum detectable analyte that an instrument can measure and a useful comparator of instrument performance. However, such values alone cannot do this. Additional information is needed, particularly in the details of signal and noise measurements. Exact definitions and measurement conditions for both signal and noise are required in order to give meaning to the numerical S/N value. For hyphenated chromatographic instruments such as GCMS, chromatographic conditions influence the final S/N result. So, in order to make sense of the S/N specification for a particular model of GCMS, we need to know: 1. The models of GC and MS used 2. The chromatographic conditions employed 3. The MS conditions employed 4. The identity and source of the analyte 5. The definition of signal 6. The definition of noise The industry standard for sensitivity of GCMS instruments is based on octafluoronaphthalene (OFN); the sensitivity of an instrument is defined as the signal to noise (S/N) obtained from a 1μL injection of a solution containing 1pg/μL OFN. On the surface, it appears that all of the information needed to make an objective evaluation of sensitivity is readily available. However, while GCMS conditions and analyte identity and amount are objective parameters, the definition of both signal and noise are left up to the writers of instrument specifications and are often a venue for marketing creativity. The signal from a mass spectrometer is a series of mass spectra taken at regular intervals over time. The equipment can display them in a variety of ways, often as mass chromatograms, or the display of the signal for a specified mass over time. This is shown graphically in Figure 1. It should be noted that the Gaussianappearing chromatographic peak shown in Figure 1 is actually reconstructed from a series of discrete measurements, ten in the example shown. 2

3 Intensity Time Figure 1: Mass Chromatogram Peak It is generally accepted that a minimum of ten points (spectra) across a chromatographic peak are required to obtain accurate measurements. This translates to scan rates of sec/scan (2.5-5 spectra/sec) for the most commonly used GC columns. Significant error is introduced when lower sampling frequencies are used, and variation in sampling rates can affect signal and noise. So the question then becomes how to specify signal. Is it the maximum response value of a known quantity of a specified analyte measured under defined conditions? Will it use the peak area only or the sum of the discrete responses over a defined analyte peak? And where shall we specify the response to be used as noise? These are important considerations when trying to compare and understand an instrument s sensitivity. It is critically important to know that the manufacturer s conditions for calculating the S/N specification are representative of conditions employed in day-to-day operations. All conditions used for measuring S/N, including any noisesuppression algorithms, should be the same for both the S/N calculations and for all other routine analyses. Achieving Sensitivity There are a number of ways to optimize the sensitivity of GCMS. When sensitivity is defined in terms of S/N, increasing sensitivity is achieved by increasing signal or decreasing noise, or by a combination of both. Because S/N is a simple ratio, factors affecting signal or noise have equivalent influence on sensitivity (S/N). 3

4 Optimizing the transfer of analyte from the injector through all of the components of the GCMS system to the detector can increase the signal. Optimizing the response of the detector to obtain adequate signal without excessive noise is a complementary approach to increasing signal. Many components of the GCMS system can contribute to background, or chemical, noise. In addition, noise can originate from the sample itself, from the injection technique or from the type of chromatographic column. Electronic and detector noise are primarily dependent upon instrument design and manufacturing. Significant noise can also emanate from the electrical power source. When sensitivity is defined in terms of S/N, increasing sensitivity is achieved by increasing signal or decreasing noise, or by a combination of both. Alternate data acquisition modes (SIM and recently introduced Scan/SIM techniques) have dramatic effects on GCMS sensitivity. In a similar manner, alternate ionization techniques (chemical ionization, negative ion chemical ionization) can enhance sensitivity, especially for selected analytes. The present discussion of sensitivity is limited to the full-scan electron impact mode of operation and applies primarily to single-quadruple instruments. Increasing signal Optimizing the signal can be considered in three phases: maximizing the injection, or transfer, to the GC column; optimizing the GC column for maximum sensitivity; and adjusting the detector (MS) conditions. GC injection Efficient transfer of sample to the GC column is dependent upon optimizing the injector conditions. Minor inefficiencies in injector operation become major obstacles when trace quantities of analyte are injected. The selection of injectionport liner, split- and septum-purge flow rates, syringe needle penetration, column positioning in the injector and other parameters affect the efficient transfer of analyte to the GC column. The use of alternate injector types can enhance the transfer of analytes to the GC column. GC column selection For most GCMS applications, the GC typically employs relatively long narrowbore capillary columns ( mm OD; M long). Sensitivity increases as the GC column diameter decreases, because narrower columns give taller, narrower peaks. If noise remains constant, S/N is greater with tall, narrow chromatographic peaks. 4

5 Optimizing the MS signal Signal generation in the MS consists of three processes: Creation of ions (from the ion source) Transmission of ions (through the lenses and mass filter) Detection of ions (with the electron multiplier) The combined efficiency of these processes results in optimizing signal intensity. In some cases, inefficiencies in these processes also affect noise. These efficiencies are affected by instrument design and condition (cleanliness, age), as well as operating parameters. As a result, instrument design accounts significantly for differences in sensitivities between different models of GCMS instruments. Ionization and ion transmission Sensitivity is affected considerably by ion source condition (cleanliness) and optimum tuning. Ion source operating parameters have a significant effect on sensitivity because these parameters control ion production. Various design improvements in mass spectrometer sources in recent years have resulted in significant improvements in sensitivity compared to previous designs. Filament construction and placement is one such design improvement that results in enhanced sensitivity. Filament shielding can ensure efficient ion transport to the detector while protecting thermally labile compounds. Thus, a high-efficiency ion source provides more uniform temperature control for increased sensitivity. The vacuum system significantly affects ion transmission. Differentially pumped vacuum systems, in some mass spectrometer designs, maintain a higher level of vacuum in the mass analyzer region. An increased vacuum results in longer meanfree paths for ions, which allows for more efficient ion transmission through the mass filter. This, in turn, enables greater sensitivity. Most differentially-pumped instrument designs employ two separate turbo molecular pumps or oil-diffusion pumps. One new design utilizes a differential split-flow turbo molecular pump with two sets of rotors, which operate as two separate pumps in a single unit. Detectors Electron multipliers detect and convert ions to a signal. When impacted by a charged particle (ion), the surface of the multiplier emits several electrons in a process called secondary emission. This process repeats several times to give up to a million electrons for each ion impact on the electron multiplier surface. The gain, or signal amplification, is determined by the voltage applied across the entire electron several hundred to several thousand volts. Most GCMS instruments employ two types of electron multipliers: continuous dynode types and discrete dynode types. Discrete dynode electron multipliers 5

6 typically operate at lower voltages, so they show slightly less noise than continuous dynode types. Typically, sensitivity of the electron multiplier can be optimized to obtain a maximum signal with minimum noise. Decreasing Noise Challenges and solutions in the GC that affect the S/N ratio directly affect the sensitivity of the GCMS system as a whole. Lowering the background signal originating from the GC and improving the chromatographic resolution can improve GC sensitivity. As the quantity of a specific analyte to be detected is decreased, the effects of minor interferences on the ability to detect the specific analyte become an increasingly significant problem. Carrier gas Achieving the highest possible purity in the carrier gas helps to decrease noise, specifically chemical noise. For example, carbon dioxide gives a background signal at m/z 44 that increases chemical noise. Oxygen degrades column phase, which results in increased bleed (i.e., background signal at m/z 207). Using pure carrier gas and eliminating contamination and leaks in carrier gas lines are important factors affecting instrument sensitivity as well as overall chromatographic performance. Use of high-purity gases with appropriate filters can significantly lower the chromatographic background signal and therefore increase sensitivity. Injection ports Chromatographers face the continuing challenge of assuring complete sample volatilization and transfer of sample to the GC. Use of appropriate injection-port operating parameters and maintenance procedures ensure optimum transfer of sample to the GC column. Background noise often arises from siloxanes from the GC septa, glass wool used in injection port liners, deactivation of injection port liners and other sources. These peaks are commonly seen in normal GCMS backgrounds. Use of low-bleed septa, preconditioning of septa and liners, and use of injection-port septum purge can minimize this source of contamination. GC columns Another common source of background noise originates from the GC column stationary phases. Traces of oxygen in the carrier gas can degrade the liquid phase. To minimize this problem, the GC column, injection port and transfer line temperatures should never exceed the maximum-rated temperature of the liquid phase of the capillary column. Thin liquid phases result in lower column bleed and decreased chemical noise. In addition, several proprietary low-bleed column 6

7 phases, designed specifically for GCMS use, have been introduced in recent years. Electronic and vibrational noise Electronic noise is determined largely by the instrument design and manufacture. Minimizing overall electronic noise is a major consideration in instrument design and selection of electronic components. Noise is frequently minimized by supplying clean or conditioned electrical power for instrument operation. In addition, minimizing vibration from motors and other devices such as mechanical pumps is an important consideration in minimizing overall instrument noise. Evaluating Sensitivity Specifications Manufacturers go to great lengths to present their products in the most positive light. These presentations often include technically confusing arguments. In the absence of industry-standardized test procedures (as in automobile crash-safety tests), it is unlikely that vendors will take it upon themselves to standardize conditions used to evaluate sensitivity. Indeed, optimum conditions for one model may not be appropriate for another. So, with all the considerations affecting sensitivity mentioned above, how can the instrument user objectively evaluate manufacturer specifications for sensitivity? The answer(s) are contained in the details of the S/N determination and fine print qualifiers applied to the specifications. At a minimum, users should expect manufacturers to supply basic information regarding their S/N measurement, which should correspond to normal operating parameters. The following questions should be considered when evaluating instrument specifications: Are reasonably common chromatographic conditions used (GC column, liner, injector, etc.)? Columns with dimensions about 0.25 mm x M and a splitless injection are common. Would the data acquisition parameters used for the S/N measurement reasonably apply to real-world applications? Scan intervals of /sec are appropriate for columns of 0.25 mm diameter. Scan ranges should not be unusually small (<100 amu). Unit mass resolution (bandwidth) is typical for normal operation, and serious deviations should be challenged. Is noise evaluated objectively? If unusual noise-suppression algorithms or amplifier zeroing out of noise is evident, the answer is probably no. Threshold or minimum areas set to zero or turned off are indicators that noise is measured properly. 7

8 Finally, does the S/N specification represent an optimum, average or minimum value for units of the model in question? A good test is how frequently the S/N test is applied. If the test is applied to each instrument (unit) during every installation, the S/N specification is probably a realistic minimum representation of instrument sensitivity. Conclusion The combined benefits of GCMS analysis have made the technique an extremely powerful tool for the analytical chemist. The evolution of the GC and MS in combination provides a high degree of qualitative and quantitative accuracy in substance identification. Sensitivity is now more easily achieved with these easyto-use and affordable instruments. While instrument sensitivity can be optimized by proper selection of instrument operating conditions and consumables, it is fundamentally related to the mass spectrometer design and manufacture (specific model). When evaluating instrument-sensitivity specifications, it is important to note the exact method by which signal and noise are measured in order to put the sensitivity specification in proper perspective. # # # For more information on sensitivity in GCMS, contact: Shimadzu Scientific Instruments, Inc Riverwood Drive Columbia, MD

Pesticide Analysis by Mass Spectrometry

Pesticide Analysis by Mass Spectrometry Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine

More information

Request for Quotes Goods/Trade Services RFQ for Gas Chromatograph Mass Spectrometer (GCMS) (PCS# 600000-1621-RFQ)

Request for Quotes Goods/Trade Services RFQ for Gas Chromatograph Mass Spectrometer (GCMS) (PCS# 600000-1621-RFQ) Request for Quotes Goods/Trade Services RFQ for Gas Chromatograph Mass Spectrometer (GCMS) Closing Date and Time: Wednesday, April 13, 2016 at 5:00 p.m. (Pacific Time) Contact: Aaron Galloway Fax: 541-888-3250

More information

Gas Chromatography Liner Selection Guide

Gas Chromatography Liner Selection Guide Gas Chromatography Liner Selection Guide Peter Morgan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20551 Key Words Liner, focus Abstract The liner serves an important function in allowing

More information

Analysis of Liquid Samples on the Agilent GC-MS

Analysis of Liquid Samples on the Agilent GC-MS Analysis of Liquid Samples on the Agilent GC-MS I. Sample Preparation A. Solvent selection. 1. Boiling point. Low boiling solvents (i.e. b.p. < 30 o C) may be problematic. High boiling solvents (b.p. >

More information

Background Information

Background Information 1 Gas Chromatography/Mass Spectroscopy (GC/MS/MS) Background Information Instructions for the Operation of the Varian CP-3800 Gas Chromatograph/ Varian Saturn 2200 GC/MS/MS See the Cary Eclipse Software

More information

Electrospray Ion Trap Mass Spectrometry. Introduction

Electrospray Ion Trap Mass Spectrometry. Introduction Electrospray Ion Source Electrospray Ion Trap Mass Spectrometry Introduction The key to using MS for solutions is the ability to transfer your analytes into the vacuum of the mass spectrometer as ionic

More information

AMD Analysis & Technology AG

AMD Analysis & Technology AG AMD Analysis & Technology AG Application Note 120419 Author: Karl-Heinz Maurer APCI-MS Trace Analysis of volatile organic compounds in ambient air A) Introduction Trace analysis of volatile organic compounds

More information

Signal, Noise, and Detection Limits in Mass Spectrometry

Signal, Noise, and Detection Limits in Mass Spectrometry Signal, Noise, and Detection Limits in Mass Spectrometry Technical Note Chemical Analysis Group Authors Greg Wells, Harry Prest, and Charles William Russ IV, Agilent Technologies, Inc. 2850 Centerville

More information

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax.

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax. Standard Method for Analysis of Benzene and Toluene Content in Hydrocarbon Waxes by Headspace Gas Chromatography EWF METHOD 002/03 (Version 1 Reviewed 2015) 1 Scope 1.1 This test method covers the qualitative

More information

C146-E087F. GCMS-QP2010 Plus. Shimadzu Gas Chromatograph Mass Spectrometer

C146-E087F. GCMS-QP2010 Plus. Shimadzu Gas Chromatograph Mass Spectrometer C146-E087F GCMS-QP2010 Plus Shimadzu Gas Chromatograph Mass Spectrometer The performance you have been waiting for is here. GCMS-QP2010 Plus GCMS-QP2010 Plus Shimadzu Gas Chromatograph Mass Spectrometer

More information

Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview.

Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview. Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM Technical Overview Introduction The 5975A and B series mass selective detectors (MSDs) provide

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Appendix 5 Overview of requirements in English

Appendix 5 Overview of requirements in English Appendix 5 Overview of requirements in English This document is a translation of Appendix 4 (Bilag 4) section 2. This translation is meant as a service for the bidder and in case of any differences between

More information

Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference

Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Abstract The advantages of mass spectrometry (MS) in combination with gas

More information

Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction

Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction Advantages of Using Triple Quadrupole over Single Quadrupole Mass Spectrometry to Quantify and Identify the Presence of Pesticides in Water and Soil Samples André Schreiber AB SCIEX Concord, Ontario (Canada)

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

23 The Thermal Conductivity Detector

23 The Thermal Conductivity Detector 23 The Thermal Conductivity Detector General Information TCD pneumatics Conditions that prevent the detector from operating Filament passivation Carrier, reference, and makeup gas Negative polarity Analyzing

More information

Signal to Noise Instrumental Excel Assignment

Signal to Noise Instrumental Excel Assignment Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a

More information

Split / Splitless Injection for Capillary GC

Split / Splitless Injection for Capillary GC Split / Splitless Injection for Capillary GC Speakers John V Hinshaw CHROMacademy GC Dean GC Connections editor Moderator Tony Taylor CHROMacademy Trainer Technical Director, Crawford Scientific Dave Walsh

More information

How To Use Gc-Ms

How To Use Gc-Ms The CHROMacademy Essential Guide Understanding GC-MS Analysis Part 1 Speakers John Hinshaw GC Dept. Dean CHROMacademy Tony Taylor Technical Director Crawford Scientific Moderator M ( g ) e M ( g ) 2e Peter

More information

Technical Report. Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database

Technical Report. Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database C146-E175A Technical Report Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database Hitoshi Tsuchihashi 1 Abstract: A sample consisting

More information

Expectations for GC-MS Lab

Expectations for GC-MS Lab Expectations for GC-MS Lab Since this is the first year for GC-MS to be used in Dr. Lamp s CHEM 322, the lab experiment is somewhat unstructured. As you move through the two weeks, I expect that you will

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

THERMAL DESORPTION. Introduction and Principles. Focusing on Volatiles

THERMAL DESORPTION. Introduction and Principles. Focusing on Volatiles THERMAL DESORPTION Introduction and Principles Thermal Desorption Thermal desorption is a simple extension of the technique of gas chromatography (GC) It involves the use of heat and a flow of inert gas

More information

SCION SQ Series GC-MS

SCION SQ Series GC-MS SCION SQ Series GC-MS The Gas Chromatographers Detector SCION SQ TM GC-MS The SCION SQ series GC-MS systems combine innovative engineering with detailed cutomer requirements to produce a truly innovative

More information

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC.

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Gas Chromatography Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Samples in 10mL sealed glass vials were placed in the MPS-2

More information

Gas Chromatograph GC Consumables. p/n: 220-94898-02

Gas Chromatograph GC Consumables. p/n: 220-94898-02 Gas Chromatograph GC Consumables p/n: 220-94898-02 Diag. # 1) Septum Nut 2) Needle Guide 3) Septum 4) Injection Port A Assy 5) O-ring for Glass Insert 6) Glass Insert 7) Gold Gasket 8) Capillary Adaptor

More information

Thermal Conductivity Detector

Thermal Conductivity Detector Thermal Conductivity Detector Troubleshooting Tips The thermal conductivity detector (TCD) detects the difference in thermal conductivity between column effluent flow (carrier gas + sample components)

More information

GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE

GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE ACTA CHROMATOGRAPHICA, NO. 13, 2003 GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE A. Pavlova and R. Ivanova Refining and Petrochemistry Institute, Analytical Department, Lukoil-Neftochim-Bourgas

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

Analyzing Small Molecules by EI and GC-MS. July 2014

Analyzing Small Molecules by EI and GC-MS. July 2014 Analyzing Small Molecules by EI and GC-MS July 2014 Samples Appropriate for GC-MS Volatile and semi-volatile organic compounds Rule of thumb,

More information

GC Troubleshooting 10. How to use this Troubleshooting Help system... 10. GC Troubleshooting - Top Level... 10 Generic problem descriptions...

GC Troubleshooting 10. How to use this Troubleshooting Help system... 10. GC Troubleshooting - Top Level... 10 Generic problem descriptions... Table of Contents GC Troubleshooting 10 How to use this Troubleshooting Help system... 10 GC Troubleshooting - Top Level... 10 Generic problem descriptions... 11 Baseline related problems... 11 Peak related

More information

Lecture Chromo-3: Gas Chromatography. CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography. Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder

Lecture Chromo-3: Gas Chromatography. CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography. Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder Lecture Chromo-3: Gas Chromatography CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder Outline Introduction Instrument overview Carrier gas Sample

More information

Fractional Distillation and Gas Chromatography

Fractional Distillation and Gas Chromatography Fractional Distillation and Gas Chromatography Background Distillation The previous lab used distillation to separate a mixture of hexane and toluene based on a difference in boiling points. Hexane boils

More information

Application Requirement

Application Requirement Hazardous Gas Monitors Sensor Selection Overview Safety Monitoring (LEL) Toxic Limit Detection (PEL) Leak Detection Personal Safety Application Requirement Exposure Assessment (TWA) Ambient Air Quality

More information

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample

More information

GC-xt. The most flexible GC /GC-MS liquid sample injector

GC-xt. The most flexible GC /GC-MS liquid sample injector GC-xt Prep and Load Platform The most flexible GC /GC-MS liquid sample injector Environmental Foods/Beverages Consumer Products Forensics Petrochemicals/Polymers Pharmaceuticals GC-xt Liquid mode Prep

More information

The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory Port

The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory Port APPLICATION NOTE Gas Chromatography/ Mass Spectrometry Authors: Andrew Tipler Sheila Eletto PerkinElmer, Inc. Shelton, CT The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory

More information

GAS CHROMATOGRAPHY. DETERMINING THE PERCENT COMPOSITION OF A MIXTURE OF VOLATILE LIQUIDS USING A GAS CHROMATOGRAPH. (Revised: 1-12-93)

GAS CHROMATOGRAPHY. DETERMINING THE PERCENT COMPOSITION OF A MIXTURE OF VOLATILE LIQUIDS USING A GAS CHROMATOGRAPH. (Revised: 1-12-93) DETERMINING THE PERCENT COMPOSITION OF A MIXTURE OF VOLATILE LIQUIDS USING A GAS CHROMATOGRAPH. (Revised: 1-12-93) INTRODUCTION Gas chromatography is a technique used to analyze mixtures. The instrument

More information

The Use of Hydrogen Carrier Gas for GC/MS

The Use of Hydrogen Carrier Gas for GC/MS Technical Note The Use of Hydrogen Carrier Gas for GC/MS Gas Chromatography/ Mass Spectrometry Highlights Guidelines that can mitigate dangers and leverage benefits of using hydrogen Key safety factors

More information

UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs

UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Application Note: 439 UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Guifeng Jiang, Thermo Fisher Scientific, San Jose, CA, USA Key Words Accela UHPLC System MSQ Plus MS Detector Drugs

More information

Thermo Scientific GC-MS Data Acquisition Instructions for Cerno Bioscience MassWorks Software

Thermo Scientific GC-MS Data Acquisition Instructions for Cerno Bioscience MassWorks Software Thermo Scientific GC-MS Data Acquisition Instructions for Cerno Bioscience MassWorks Software Mark Belmont and Alexander N. Semyonov, Thermo Fisher Scientific, Austin, TX, USA Ming Gu, Cerno Bioscience,

More information

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It? NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists

More information

Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF

Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF Simultaneous qualitative and quantitative analysis using the Agilent 654 Accurate-Mass Q-TOF Technical Overview Authors Pat Perkins Anabel Fandino Lester Taylor Agilent Technologies, Inc. Santa Clara,

More information

Optimizing the Post-implementation Monitoring of a LC-MS/MS Method

Optimizing the Post-implementation Monitoring of a LC-MS/MS Method Optimizing the Post-implementation Monitoring of a LC-MS/MS Method Julianne Cook Botelho, PhD Centers for Disease Control and Prevention Atlanta, GA AACC- Mass Spectrometry in the Clinical Lab: Best Practice

More information

LC-MS/MS for Chromatographers

LC-MS/MS for Chromatographers LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS, with an emphasis on the analysis of drugs in biological matrices LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS,

More information

GUIDELINES ON THE USE OF MASS SPECTROMETRY (MS) FOR IDENTIFICATION, CONFIRMATION AND QUANTITATIVE DETERMINATION OF RESIDUES CAC/GL 56-2005

GUIDELINES ON THE USE OF MASS SPECTROMETRY (MS) FOR IDENTIFICATION, CONFIRMATION AND QUANTITATIVE DETERMINATION OF RESIDUES CAC/GL 56-2005 CAC/GL 56-2005 Page 1 of 6 GUIDELINES ON THE USE OF MASS SPECTROMETRY (MS) FOR IDENTIFICATION, CONFIRMATION AND QUANTITATIVE DETERMINATION OF RESIDUES CAC/GL 56-2005 CONFIRMATORY TESTS When analyses are

More information

Separation of Amino Acids by Paper Chromatography

Separation of Amino Acids by Paper Chromatography Separation of Amino Acids by Paper Chromatography Chromatography is a common technique for separating chemical substances. The prefix chroma, which suggests color, comes from the fact that some of the

More information

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Analysis of Phthalate Esters in Children's Toys Using GC-MS

Analysis of Phthalate Esters in Children's Toys Using GC-MS C146-E152 Analysis of Phthalate Esters in Children's Toys Using GC-MS GC/MS Technical Report No.4 Yuki Sakamoto, Katsuhiro Nakagawa, Haruhiko Miyagawa Abstract As of February 29, the US Consumer Product

More information

QGA Quantitative Gas Analyser

QGA Quantitative Gas Analyser QGA Quantitative Gas Analyser A compact bench-top system for real-time gas and vapour analysis Detailed product information / introduction catalysis studies environmental gas analysis fermentation off-gas

More information

PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW

PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW OVERVIEW Exact mass LC/MS analysis using an orthogonal acceleration time of flight (oa-tof) mass spectrometer is a well-established technique with a broad range of applications. These include elemental

More information

Weight Loss Determined from Mass Spectrometry Trend Data in a Thermogravimetric/Mass Spectrometer System

Weight Loss Determined from Mass Spectrometry Trend Data in a Thermogravimetric/Mass Spectrometer System Weight Loss Determined from Mass Spectrometry Trend Data in a Thermogravimetric/Mass Spectrometer System Carlton G. Slough TA Instruments, 109 Lukens Drive, New Castle DE 19720, USA ABSTRACT The use of

More information

Using Technology Equipment to Teach Chemistry Laboratory Exercises in Community Colleges

Using Technology Equipment to Teach Chemistry Laboratory Exercises in Community Colleges Using Technology Equipment to Teach Chemistry Laboratory Exercises in Community Colleges Marilyn Barger, Elizabeth McCullough, Kathleen Carvalho Hillsborough Community College/ Hillsborough Community College

More information

Tuning & Mass Calibration

Tuning & Mass Calibration Tuning & Mass Calibration 1 1 The Sample List Sample List Name Project Name 2 The sample list is the top level screen in the TurboMass Gold Software. Data storage is set up in PROJECT files and within

More information

Alignment and Preprocessing for Data Analysis

Alignment and Preprocessing for Data Analysis Alignment and Preprocessing for Data Analysis Preprocessing tools for chromatography Basics of alignment GC FID (D) data and issues PCA F Ratios GC MS (D) data and issues PCA F Ratios PARAFAC Piecewise

More information

The First Quantitative Analysis of Alkylated PAH and PASH by GCxGC/MS and its Implications on Weathering Studies

The First Quantitative Analysis of Alkylated PAH and PASH by GCxGC/MS and its Implications on Weathering Studies The First Quantitative Analysis of Alkylated PAH and PASH by GCxGC/MS and its Implications on Weathering Studies INEF Penn State Conference 2013 Albert Robbat, Jr. and Patrick Antle Tufts University, Chemistry

More information

Ecology Quality Assurance Glossary

Ecology Quality Assurance Glossary Ecology Quality Assurance Glossary Edited by William Kammin, Ecology Quality Assurance Officer Accreditation - A certification process for laboratories, designed to evaluate and document a lab s ability

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

ALLERGENS IN PERFUMES: GAS CHROMATOGRAPHY^ MASS SPECTROMETRY

ALLERGENS IN PERFUMES: GAS CHROMATOGRAPHY^ MASS SPECTROMETRY 1974 III / ALLERGENS IN PERFUMES: GAS CHROMATOGRAPHY^MASS SPECTROMETRY ALLERGENS IN PERFUMES: GAS CHROMATOGRAPHY^ MASS SPECTROMETRY S. C. Rastogi, National Environmental Research Institute, Rokilde, Denmark

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology. Step 5

ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology. Step 5 European Medicines Agency June 1995 CPMP/ICH/381/95 ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology Step 5 NOTE FOR GUIDANCE ON VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND

More information

AutoSpec Premier. Are you? Analyzing dioxins and related compounds? Required to satisfy regulatory requirements?

AutoSpec Premier. Are you? Analyzing dioxins and related compounds? Required to satisfy regulatory requirements? AutoSpec Premier Are you? Analyzing dioxins and related compounds? Required to satisfy regulatory requirements? Looking for sensitivity, selectivity and dynamic range? The AutoSpec Premier is the latest

More information

High Voltage Power Supplies for Analytical Instrumentation

High Voltage Power Supplies for Analytical Instrumentation ABSTRACT High Voltage Power Supplies for Analytical Instrumentation by Cliff Scapellati Power supply requirements for Analytical Instrumentation are as varied as the applications themselves. Power supply

More information

Develop a Quantitative Analytical Method for low (» 1 ppm) levels of Sulfate

Develop a Quantitative Analytical Method for low (» 1 ppm) levels of Sulfate Cantaurus, Vol. 7, 5-8, May 1999 McPherson College Division of Science and Technology Develop a Quantitative Analytical Method for low (» 1 ppm) levels of Sulfate Janet Bowen ABSTRACT Sulfate is used in

More information

Method development for analysis of formaldehyde in foodsimulant. melamine-ware by GC-MS and LC-MS/MS. Internal Technical Report

Method development for analysis of formaldehyde in foodsimulant. melamine-ware by GC-MS and LC-MS/MS. Internal Technical Report of melamine-ware by GC-MS and LC-MS/MS Page 1 of 15 Method development for analysis of formaldehyde in foodsimulant extracts of melamine-ware by GC-MS and LC-MS/MS December 2012 Contact Point: Chris Hopley

More information

GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert1, Michel Lhermitte 1, Frederic Grisel 2 1

GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert1, Michel Lhermitte 1, Frederic Grisel 2 1 GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert, Michel Lhermitte, Frederic Grisel Laboratoire de Toxicologie & Génopathologie, CHRU Lille, France Waters Corporation, Guyancourt,

More information

Identification of Arson Accelerants by Gas Chromatography

Identification of Arson Accelerants by Gas Chromatography Identification of Arson Accelerants by Gas Chromatography Purpose Arson is an insidious crime that annually claims the lives of hundreds of Americans and costs billions of dollars. 1 Scientists and criminal

More information

Encoders for Linear Motors in the Electronics Industry

Encoders for Linear Motors in the Electronics Industry Technical Information Encoders for Linear Motors in the Electronics Industry The semiconductor industry and automation technology increasingly require more precise and faster machines in order to satisfy

More information

amazon SL Innovation with Integrity Setting New Standards in Performance, Simplicity and Value Ion Trap MS

amazon SL Innovation with Integrity Setting New Standards in Performance, Simplicity and Value Ion Trap MS amazon SL Setting New Standards in Performance, Simplicity and Value Innovation with Integrity Ion Trap Best-In-Class Ion Trap Mass Spectrometer for Routine Analysis The amazon SL entry-level system is

More information

On-line Dissolved Gas Analysis

On-line Dissolved Gas Analysis On-line Dissolved Gas Analysis accord. to IEC 567/ASTM 3612 Online-Monitoring of transformers Automatic on-line analysis of 11 gases The analysis is done in 2 steps with high selectivity and accuracy fully

More information

AxION edoor. Web-Based, Open-Access Mass Spectrometry Software

AxION edoor. Web-Based, Open-Access Mass Spectrometry Software AxION edoor Web-Based, Open-Access Mass Spectrometry Software 2 AxION edoor is the open-access software solution for today s fast-paced laboratory. It is designed to operate and optimize the management

More information

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. Jaap de Zeeuw, Ron Stricek and Gary Stidsen Restek Corp Bellefonte, USA To analyze basic compounds at

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

Eleanor Riches Waters Corporation, Manchester, UK INTRODUCTION

Eleanor Riches Waters Corporation, Manchester, UK INTRODUCTION X E V O T Q MS W IT H AT MOS P H E RIC P R E S SU R E P HOT O IO NIZ AT IO N (A P P I) SOU RC E: T H E IONIZATION OF COMPOUNDS WITH DIVERSE STRUCTURES USING VITAMINS AS A MODEL Eleanor Riches Waters Corporation,

More information

C184-E014D GC-2014. Shimadzu Gas Chromatograph System

C184-E014D GC-2014. Shimadzu Gas Chromatograph System C184-E014D GC-2014 Shimadzu Gas Chromatograph System Big Performance & Small Space GC-2014 GC-2014 Shimadzu Gas Chromatograph System High Performance and Expandability Merged at a higher level High Performance

More information

INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE. AxION iqt GC/MS/MS

INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE. AxION iqt GC/MS/MS AxION iqt GC/MS/MS INTEGRATED TECHNOLOGY TO SEE THE WHOLE PICTURE IDENTIFY WHAT YOU RE LOOKING FOR (AND EVEN WHAT YOU RE NOT) The GC/MS/MS Solution for the Work You Do The ideal solution for industrial,

More information

Electrospray Mass Spectrometry of Tris-acetylacetonatochromium(III)

Electrospray Mass Spectrometry of Tris-acetylacetonatochromium(III) Electrospray Mass Spectrometry of Tris-acetylacetonatochromium(III) Purpose: Verify the synthesis of the synthesis product, Cr(acac) 3. The presence of any urea containing byproducts will also be determined.

More information

WATERS QUANTITATIVE ANALYSIS solutions

WATERS QUANTITATIVE ANALYSIS solutions More sensitivity. More speed. What more can you ask for in a complete quantitative analysis solution? WATERS QUANTITATIVE ANALYSIS solutions THE CHALLENGE OF QUANTITATIVE ANALYSIS Tandem mass spectrometry,

More information

How To Analyze Plasma With An Inductively Coupled Plasma Mass Spectrometer

How To Analyze Plasma With An Inductively Coupled Plasma Mass Spectrometer What is ICP-MS? and more importantly, what can it do? Inductively Coupled Plasma Mass Spectrometry or ICP-MS is an analytical technique used for elemental determinations. The technique was commercially

More information

GCxGC COUPLED TO FAST SCANNING QUADRUPOLE MS FOR TRACE ANALYSIS OF POPs

GCxGC COUPLED TO FAST SCANNING QUADRUPOLE MS FOR TRACE ANALYSIS OF POPs GCxGC COUPLED TO FAST SCANNING QUADRUPOLE MS FOR TRACE ANALYSIS OF POPs Kinet C, De Pauw E, Focant JF CART, Mass Spectrometry Laboratory, Chemistry Department, University of Liège, Allée de la Chimie 3,

More information

Mass spectrometry. What are the principles behind MS? What do all MS instruments have in common?

Mass spectrometry. What are the principles behind MS? What do all MS instruments have in common? Mass spectrometry What are the principles behind MS? What do all MS instruments have in common? What are the different types of MS? Lecture outline: 1) Introduction to mass spectrometry 2) sample introduction

More information

Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System

Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System Investigating the use of the AB SCIEX TripleTOF 4600 LC/MS/MS System for High Throughput Screening of Synthetic Cannabinoids/Metabolites in Human Urine AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS

More information

How To Build An Amd Quas 3 Ar Mass Spectrometer

How To Build An Amd Quas 3 Ar Mass Spectrometer Classical and special AMD Magnetic Sector mass spectrometers (extracted from power point presentations) High Resolution Mass Spectromter AMD 402/403 S 6 High Resolution Mass Spectrometer AMD 604 S 8 Version

More information

The Theory of HPLC. Gradient HPLC

The Theory of HPLC. Gradient HPLC The Theory of HPLC Gradient HPLC i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual. Aims

More information

A Comparison between EPA Compendium Method TO- 15 and EPA Method 8260B for VOC Determination in Soil Gas

A Comparison between EPA Compendium Method TO- 15 and EPA Method 8260B for VOC Determination in Soil Gas A Comparison between EPA Compendium Method TO- 15 and EPA Method 8260B for VOC Determination in Soil Gas Paper #46 Heidi C. Hayes Air Toxics, Ltd., 180 Blue Ravine Rd. Ste. B, Folsom, CA 95630 Diane J.

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

AB SCIEX TOF/TOF 4800 PLUS SYSTEM. Cost effective flexibility for your core needs

AB SCIEX TOF/TOF 4800 PLUS SYSTEM. Cost effective flexibility for your core needs AB SCIEX TOF/TOF 4800 PLUS SYSTEM Cost effective flexibility for your core needs AB SCIEX TOF/TOF 4800 PLUS SYSTEM It s just what you expect from the industry leader. The AB SCIEX 4800 Plus MALDI TOF/TOF

More information

The Control of ph and Oxidation Reduction Potential (ORP) in Cooling Tower Applications By Charles T. Johnson, Walchem Corporation

The Control of ph and Oxidation Reduction Potential (ORP) in Cooling Tower Applications By Charles T. Johnson, Walchem Corporation The Control of ph and Oxidation Reduction Potential (ORP) in Cooling Tower Applications By Charles T. Johnson, Walchem Corporation Introduction The importance of keeping cooling tower water in proper chemical

More information

Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS

Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS Stephen Lock 1 and Matthew Noestheden 2 1 AB SCIEX Warrington, Cheshire (UK), 2 AB SCIEX Concord, Ontario (Canada) Overview A rapid,

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS

Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS Using PeakView Software with the XIC Manager to Get the Answers

More information

RAPID MARKER IDENTIFICATION AND CHARACTERISATION OF ESSENTIAL OILS USING A CHEMOMETRIC APROACH

RAPID MARKER IDENTIFICATION AND CHARACTERISATION OF ESSENTIAL OILS USING A CHEMOMETRIC APROACH RAPID MARKER IDENTIFICATION AND CHARACTERISATION OF ESSENTIAL OILS USING A CHEMOMETRIC APROACH Cristiana C. Leandro 1, Peter Hancock 1, Christian Soulier 2, Françoise Aime 2 1 Waters Corporation, Manchester,

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs

Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs Liquid Chromatography Mass Spectrometry SSI-LCMS-068 Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs LCMS-8050 Summary By utilizing the LCMS-8050 s ultrafast scan

More information

AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis

AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis Analysis of Amino Acid Standards Label free analysis using the HPCE-512 ABSTRACT Capillary electrophoresis using indirect UV detection

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Q2B Validation of Analytical Procedures: Methodology November 1996 ICH Guidance for Industry Q2B Validation of Analytical Procedures: Methodology Additional copies are available from:

More information

An example: helium isotopes. An example: helium isotopes. Limits to Detection/Measurement. Lecture 14 Measurements II: Mass spectrometry

An example: helium isotopes. An example: helium isotopes. Limits to Detection/Measurement. Lecture 14 Measurements II: Mass spectrometry Limits to Detection/Measurement Ionization is fundamentally a Probabilistic Process Just like radioactive decay So is transmission through the analyzer There is an intrinsic statistical uncertainty Proportional

More information