Fractional Distillation and Gas Chromatography

Size: px
Start display at page:

Download "Fractional Distillation and Gas Chromatography"

Transcription

1 Fractional Distillation and Gas Chromatography Background Distillation The previous lab used distillation to separate a mixture of hexane and toluene based on a difference in boiling points. Hexane boils at 69 C and toluene boils at 110 C. In an idealized situation, you could imagine heating a mixture of hexane and toluene to 69 C and all of the hexane would start boiling, leaving the toluene behind. You could then collect the vapor, condense it, and obtain hexane. Unfortunately the real situation is not so simple. Just as with melting points, when you start mixing solvents together, the mixed solution has a boiling point that is different from the components. Figure 4.1 shows an approximate boiling curve, showing that a mixture of hexane and toluene boils somewhere between hexane and toluene. Figure 4.1 Boiling points for mixtures of hexane and toluene 110 C temperature 69 C hexane 50:50 mixture mixture composition toluene fysiske egenskaber af zink sulfat

2 When a mixture of hexane and toluene begins to boil, hexane is not the only component to go into the gas phase. Some toluene molecules will also go into the gas phase. However, since hexane is more volatile, more molecules of hexane will go into the gas phase. So if a 50:50 mixture of hexane and toluene boils, the gas coming off will not be hexane, but it will also not be a 50:50 mixture. In figure 4.2, the red curve shows the boiling points for different mixtures of hexane and toluene. The blue curve shows the composition of vapor at any given temperature. That is, if you follow the vertical dotted line up for the 50:50 solvent mixture, you will find the boiling point for that mixture on the red curve. Then follow the horizontal dotted line to the left, the point that it intersects the blue curve gives the composition of the gas phase mixture at that temperature. That is, the composition of the gas vapor boiling off will not be hexane, but it will be enriched in hexane having more hexane than the initial liquid mixture. Figure 4.2 Composition of the gas phase mixture at various temperatures 110 C temperature 69 C hexane 50:50 mixture mixture composition toluene

3 In a simple distillation, you condense the vapor that boils off and collect it as a liquid. However, given the discussion above, this will not be hexane, but will instead be a mixture of hexane and toluene with somewhere between 50% and 100% hexane (Figure 4.3). Figure 4.3 Simple distillation 110 C condense temperature 69 C boil collect initial mixture hexane 50:50 mixture mixture composition toluene If you collected this enriched mixture of hexane and toluene and re-boiled it, you would again get a gas phase mixture that had more hexane than you started with. Collection of the condensate would provide a liquid that was even more enriched in hexane (Figure 4.4). Figure 4.4 A second simple distillation

4 110 C temperature 69 C collect start hexane 50:50 mixture mixture composition toluene If this process were repeated several times, every time you would collect a liquid that was closer and closer to hexane. Eventually you would have one solvent. However, this would be an extremely tedious process. The solution to this problem is instead to perform a fractional distillation. In a fractional distillation setup (Figure 4.5), the vapor that comes from the boiling mixture is not immediately collected, as it was in a simple distillation. Instead there is a long fractionating column between the boiling liquid and the condenser.

5 Figure 4.5 Fractional distillation setup As the vapor from the boiling solution rises up the fractionating column, it will begin to cool and collect as a very thin film of liquid on the inside of the fractionating column. This thin film will be enriched in hexane, as this is essentially the first simple distillation described in Figure 4.3. There is enough heat energy present, though, to boil

6 this thin film of liquid, and it will re-enter the gas phase and continue to rise up the fractionating column. Again it will cool and condense on the sides, forming a liquid that is even more enriched in hexane. This is essentially the second simple distillation described in Figure 4.4. By the time the vapor reaches the top of the column it will have condensed and boiled many times. As shown in Figure 4.6, as you go back and forth from the liquid to the gas phase, you become more and more enriched in hexane, and the result of this fractional distillation will be a sample of hexane. Figure 4.6 Fractional distillation resulting in hexane 110 C temperature 69 C hexane 50:50 mixture mixture composition toluene The number of times a solvent boils and condenses by the time it reaches the top is called the number of theoretical plates of the column. The number of theoretical plates can be increased if the column is longer, or if it has a greater surface area for the vapor to condense onto. A greater surface area can be achieved with different columns with bumpy inner surfaces, or by packing the column with something like glass beads. Greater numbers of theoretical plates lead to more efficient distillations resulting in extremely solvents.

7 Gas Chromatography Like thin layer chromatography (TLC), gas chromatography (GC) involves organic compounds carried through a stationary phase, pushed along by a mobile phase. In TLC the stationary phase was silica gel powder coated onto a solid surface and the mobile phase was an organic solvent that soaked up the TLC plate through the powder. In GC the stationary phase is a viscous liquid that coats the interior surface of a very long thin tube (the column ). The mobile phase is an inert gas such as helium that is pressurized and pushed through the column. A gas chromatograph is shown in Figure 4.7 (reference: Figure 4.7 Typical GC In GC, the sample is in the gas phase, which means that it must be kept hot enough so it does not condense into a liquid. To accomplish this, the column is kept in an oven that maintains a set temperature. Figure 4.8 shows a schematic for a typical GC. On the left hand side is a cylinder filled with the carrier gas. This is under pressure so it runs through the coiled column and out through the detector. When a sample is injected, it is carried along through the column (stationary phase) by the carrier gas (mobile phase). Due to interactions between the organic compounds in the sample and the

8 stationary phase, different compounds move through the column at different rates. As they reach the detector they are measured and a signal is recorded as a series of peaks, called a chromatogram. Figure 4.8 GC schematic inject sample here x flow recorder He gas oven detector Compounds are characterized by their retention time the length of time between the injection of the sample and the detection of the individual component. This is similar to the Rf values in TLC. Compounds with lower boiling points move through the column more quickly, and so have shorter retention times. Compounds with higher boiling points have longer retention times. In a chromatogram, the different signals correspond to different organic compounds. Figure 4.9 shows a gas chromatogram of a car exhaust (reference: Each of the different peaks represents a separate organic component. This is an example of how GC can be used to monitor environmental pollutants. For example, peak 7 is toluene. Figure 4.9 Organic components of automobile exhaust

9 Figure 4.10 shows a medical application of GC (reference: Part a) shows a portion of the chromatogram of a urine sample. Part b) shows the same sample with ethanol (the intoxicant in alcoholic drinks) added. The peak marked with an arrow represents the ethanol. Note that in part a) there is no peak at the retention time marked with an arrow, meaning that there was no ethanol in the urine. Part c) shows a urine sample taken a few hours after the patient drank a glass of wine. The signal marked with an arrow shows that ethanol can be found in the urine. You could easily imagine how such tests might be used for legal or medical reasons. Figure 4.10 Ethanol in urine samples

10 In addition to acting as a qualitative tool, telling what different components are present, GC can also act as a quantitative tool, telling how much of each component is present. The relative sizes of the peaks, measured as the area under each peak, corresponds to their relative concentrations in the sample. To measure the relative sizes of the peaks, we treat the signals as if they were triangles. Figure 4.11 a) shows a typical signal in black and a triangle in red. If we can measure the area of the red triangle, the area of the peak is about the same. The area of a triangle is calculated as one half of the height times the width at the base. Figure 4.11 a), though, shows that at the bottom of the peak, the chromatogram signal deviates from the red triangle quite a bit, so measuring the width of the base is difficult. In Figure 4.11 b), though, it is shown that the area of a triangle can also be defined as the height times the width of the triangle half-way up. In 4.11 a), about half-way up the red triangle and the black peak signal match very closely, and this used to measure the area of the peak. Figure 4.11 Areas of peaks and areas of triangles a) b) height height width at half the height base To measure the area of the peak, follow the procedure shown in Figure For a given signal, use a ruler to draw a straight line connecting the baseline on the left side to the baseline on the right side (shown in green). Then draw a vertical line from this baseline to the top of the peak (shown in blue). Using your ruler, find the midpoint of this vertical line and draw a horizontal line from one side of the peak to the other (shown in red). Measure the lengths of the blue and red lines and multiply these. This is the height times the width at half the height, or the area of the peak. Do this for each of the

11 signals. Add these all up to get the total area, and divide each peak by the whole and multiply by 100 to get the percent areas. Figure 4.12 Approximating peak area For example, in Figure 4.12, I get the following measurements (your measurements will vary depending on how large you print this file, but the percent areas should end up roughly the same). For the left-hand peak, the height is 67 mm and the width at the halfway point is 49 mm. This gives an area of 3283 square mm. For the right-hand peak, the height is 57 mm and the width at half the height is 16 mm, for a peak area of 912 square mm. The total area of the two peaks is = The percent area of the left-hand peak = (3283 / 4195) x 100 = 78%. The percent area of the right-hand peak = (912 / 4195) x 100 = 22%. Note that the percent areas should always add up to 100%. Using GC, you can identify the components in a mixture by their retention times and calculate the relative amounts of each component using the peak areas. This analytical technique has a wide variety of applications in the laboratory, in medicine, in environmental science, and many other fields.

Gas Chromatography notes

Gas Chromatography notes Reminder: These notes are meant to supplement, not replace, the lab manual. Gas Chromatography notes Application: Gas Chromatography (GC) provides a quick, accurate and relatively inexpensive way to analyze

More information

The term chromatography applies to the separation of chemical constituents

The term chromatography applies to the separation of chemical constituents Chem 112: Gas Chromatography Page 103 Determination of Alcohols by Gas Chromatography John Schaumloffel, SUC-Oneonta Chemistry Department Introduction The term chromatography applies to the separation

More information

Clinical Chemistry (CHE221) Professor Hicks Lecture 12. Chromatography. chromatography. normal phase chromatography like a tug of war

Clinical Chemistry (CHE221) Professor Hicks Lecture 12. Chromatography. chromatography. normal phase chromatography like a tug of war Clinical Chemistry (CHE221) Professor Hicks Lecture 12 Chromatography chromatography technique to separate mixtures each peak a different substance stationery phase = material mixtures comes in contact

More information

EXPERIMENT 7 DISTILLATION PRELAB ASSIGNMENT

EXPERIMENT 7 DISTILLATION PRELAB ASSIGNMENT EXPERIMENT 7 DISTILLATION PRELAB ASSIGNMENT 1. Prepare a Table of Physical Constants for this experiment, for the compounds, ethyl acetate and 1-butanol. Include boiling point and refractive index. 2.

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample

More information

Experiment 4 Analysis by Gas Chromatography

Experiment 4 Analysis by Gas Chromatography Experiment 4 Analysis by Gas Chromatography In this experiment we will study the method of gas chromatography. Gas chromatography (GC) is one of the most important analytical tools that the chemist has.

More information

Distillation Lab. CHM220 Distillation Lab

Distillation Lab. CHM220 Distillation Lab CHM220 Distillation Lab Distillation Lab Introduction - Since organic compounds do not usually occur in pure condition in nature, and are accompanied by impurities when synthesized, the purification of

More information

ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.

ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. ORGANIC LABORATORY TECHNIQUES 10 10.1 DISTILLATION NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. The most common methods of distillation are simple distillation

More information

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax.

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax. Standard Method for Analysis of Benzene and Toluene Content in Hydrocarbon Waxes by Headspace Gas Chromatography EWF METHOD 002/03 (Version 1 Reviewed 2015) 1 Scope 1.1 This test method covers the qualitative

More information

CHEM 344 Thin Layer Chromatography

CHEM 344 Thin Layer Chromatography CHEM 344 Thin Layer Chromatography Thin layer chromatography (TLC) is a useful technique for the separation and identification of compounds in mixtures. TLC is used routinely to follow the progress of

More information

Distillation of liquid mixtures

Distillation of liquid mixtures CHEM 344 Distillation of liquid mixtures 1. Distillation basics The vaporization of a liquid and condensation of the resulting vapor is the basis of distillation. Organic liquids containing small amounts

More information

Experiment 4 Fractional Distillation of Unknown Mixture

Experiment 4 Fractional Distillation of Unknown Mixture Experiment 4 Fractional Distillation of Unknown Mixture In this experiment you are not going to synthesize a new compound but you are going to use the technique of fractional distillation to separate an

More information

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC.

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Gas Chromatography Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Samples in 10mL sealed glass vials were placed in the MPS-2

More information

GAS CHROMATOGRAPHY. DETERMINING THE PERCENT COMPOSITION OF A MIXTURE OF VOLATILE LIQUIDS USING A GAS CHROMATOGRAPH. (Revised: 1-12-93)

GAS CHROMATOGRAPHY. DETERMINING THE PERCENT COMPOSITION OF A MIXTURE OF VOLATILE LIQUIDS USING A GAS CHROMATOGRAPH. (Revised: 1-12-93) DETERMINING THE PERCENT COMPOSITION OF A MIXTURE OF VOLATILE LIQUIDS USING A GAS CHROMATOGRAPH. (Revised: 1-12-93) INTRODUCTION Gas chromatography is a technique used to analyze mixtures. The instrument

More information

Interpretation of Experimental Data

Interpretation of Experimental Data Lab References When evaluating experimental data it is important to recognize what the data you are collecting is telling you, as well as the strengths and limitations of each method you are using. Additionally,

More information

Identification of Arson Accelerants by Gas Chromatography

Identification of Arson Accelerants by Gas Chromatography Identification of Arson Accelerants by Gas Chromatography Purpose Arson is an insidious crime that annually claims the lives of hundreds of Americans and costs billions of dollars. 1 Scientists and criminal

More information

Separation of Mixtures by Paper Chromatography

Separation of Mixtures by Paper Chromatography Exercise 14 Page 1 Illinois Central College CHEMISTRY 130 Laboratory Section: Name: Separation of Mixtures by Paper Chromatography Objectives In this experiment we will effect a separation of a mixture

More information

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components.

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components. Water Lab I. Distillation Hypothesis: Water can be purified by distillation. Objective: To distill samples of water that contains volatile and nonvolatile components. Materials and Equipment: Sodium chloride,

More information

Distillation Experiment

Distillation Experiment Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure

More information

Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03

Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03 1. Scope Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03 (Version 1 Reviewed 2015) 1. 1 This test method provides for the determination of the carbon number

More information

Lab 6: Paper Chromatography. Pages145-154 Pre-lab page 151 No Post lab Chromatogram must be turned in attached to lab report

Lab 6: Paper Chromatography. Pages145-154 Pre-lab page 151 No Post lab Chromatogram must be turned in attached to lab report Lab 6: Paper Chromatography Pages145-154 Pre-lab page 151 No Post lab Chromatogram must be turned in attached to lab report Chromatography Chromatography is an analytical technique used to separate the

More information

Background Information

Background Information 1 Gas Chromatography/Mass Spectroscopy (GC/MS/MS) Background Information Instructions for the Operation of the Varian CP-3800 Gas Chromatograph/ Varian Saturn 2200 GC/MS/MS See the Cary Eclipse Software

More information

Fractional Distillation notes

Fractional Distillation notes Reminder: These notes are meant to supplement, not replace, the textbook and laboratory manual. Fractional Distillation notes History and Application: Fractional distillation is one of the most widely

More information

LIQUID CHROMATOGRAPHY HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: 1-13-93)

LIQUID CHROMATOGRAPHY HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: 1-13-93) INTRODUCTION HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: 1-13-93) Headache, sore muscles, arthritis pain... How do you spell relief?

More information

Gas Chromatography with FID

Gas Chromatography with FID Gas Chromatography with FID Introduction Gas chromatography is an instrumental method for the separation and identification of chemical compounds. Chromatography involves a sample (or sample extract) being

More information

Hydrogen Isotope Separation Using Gas Chromatography

Hydrogen Isotope Separation Using Gas Chromatography 1 Hydrogen Isotope Separation Using Gas Chromatography Aaron Jo Victor Senior High School Advisors: Dr. Walter Shmayda, Neil Redden Dec 2012 2 Abstract A gas chromatograph (GC) system was commissioned

More information

An HPLC Analysis of Sweeteners in Beverages

An HPLC Analysis of Sweeteners in Beverages CHEM 311L Quantitative Analysis Laboratory Version 1.1 An HPLC Analysis of Sweeteners in Beverages In this laboratory exercise we will perform a separation of the components of diet soft drinks using reversed-phase

More information

Theory of Chromatography

Theory of Chromatography Theory of Chromatography The Chromatogram A chromatogram is a graph showing the detector response as a function of elution time. The retention time, t R, for each component is the time needed after injection

More information

#13 Chromatography is a Gas: An Inquiry-Based Introduction to Gas Chromatography Cynthia N. Peck, Delta College, University Center, MI 48710

#13 Chromatography is a Gas: An Inquiry-Based Introduction to Gas Chromatography Cynthia N. Peck, Delta College, University Center, MI 48710 #13 Chromatography is a Gas: An Inquiry-Based Introduction to Gas Chromatography Cynthia N. Peck, Delta College, University Center, MI 48710 INTRODUCTION To close the yellow note, click once to select

More information

The Determination of Benzene and Toluene in Finished Gasolines Containing Ethanol Using the PerkinElmer Clarus 680 GC with Swafer Technology

The Determination of Benzene and Toluene in Finished Gasolines Containing Ethanol Using the PerkinElmer Clarus 680 GC with Swafer Technology application Note Gas Chromatography Author A. Tipler PerkinElmer, Inc. Shelton, CT 06484 USA The Determination of and in Finished Gasolines Containing Using the PerkinElmer Clarus 680 GC with Swafer Technology

More information

SUCRALOSE. White to off-white, practically odourless crystalline powder

SUCRALOSE. White to off-white, practically odourless crystalline powder SUCRALOSE Prepared at the 41st JECFA (1993), published in FNP 52 Add 2 (1993). Metals and arsenic specifications revised at the 63rd JECFA (2004). An ADI of 0-15 mg/kg bw was established at the 37th JECFA

More information

Organic Chemistry Laboratory 2230 Final Exam Study Guide

Organic Chemistry Laboratory 2230 Final Exam Study Guide Organic Chemistry Laboratory 2230 Final Exam Study Guide Many students do not adequately prepare for the final exam in 2230L.The average grade is typically in the mid to upper 60 s. Each semester, some

More information

A Comparison of GC-Inlets for Simulated Distillation Analyses

A Comparison of GC-Inlets for Simulated Distillation Analyses A Comparison of GC-Inlets for Simulated Distillation Analyses David Grudoski wemeasureit Albany,CA 1 A Comparison of GC-Inlets for Simulated Distillation Analyses Abstract: 2013 Gulf Coast Conference,Galveston

More information

Experiment 5: Column Chromatography

Experiment 5: Column Chromatography Experiment 5: Column Chromatography Separation of Ferrocene & Acetylferrocene by Column Chromatography Reading: Mohrig, Hammond & Schatz Ch. 18 pgs 235-253 watch the technique video on the course website!

More information

ß-CYCLODEXTRIN SYNONYMS

ß-CYCLODEXTRIN SYNONYMS ß-CYCLODEXTRIN Prepared at the 44th JECFA (1995), published in FNP 52 Add 3 (1995) superseding specifications prepared at the 41st JECFA (1993), published in FNP 52 Add 2 (1993). Metals and arsenic specifications

More information

Reminder: These notes are meant to supplement, not replace, the laboratory manual.

Reminder: These notes are meant to supplement, not replace, the laboratory manual. Reminder: These notes are meant to supplement, not replace, the laboratory manual. Thin Layer and Column Chromatography History and Application: Chromatography is a very old and widely used analytical

More information

Lecture Chromo-3: Gas Chromatography. CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography. Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder

Lecture Chromo-3: Gas Chromatography. CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography. Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder Lecture Chromo-3: Gas Chromatography CHEM 5181 Fall 2004 Mass Spectrometry & Chromatography Jessica Gilman and Prof. Jose-Luis Jimenez CU-Boulder Outline Introduction Instrument overview Carrier gas Sample

More information

H A + B u x. Contributions to Band Broadening as described in Van Deemter Equation

H A + B u x. Contributions to Band Broadening as described in Van Deemter Equation Chem 2001 Summer 2004 Why Do Bands Spread? A band of solute invariably spreads as it travels through the column and emerges at the detector with a standard deviation, σ. Plate height (H) is proportional

More information

Vapor Pressure Diagrams and Boiling Diagrams

Vapor Pressure Diagrams and Boiling Diagrams Vapor Pressure Diagrams and Boiling Diagrams We are now ready to begin talking about phase diagrams involving two components. Our first few phase diagrams will involve only the liquid and gas (or vapor)

More information

3s Paper Chromatography

3s Paper Chromatography 3s Paper Chromatography OBJECTIVES To demonstrate the separation of components of a mixture using Chromatography To study the affects on a chromatogram of changing the mobile phase. To use a chromatogram

More information

EXPERIMENT 1 - Determination of the purity and identity of organic compounds by melting point and/or analytical thin layer chromatography

EXPERIMENT 1 - Determination of the purity and identity of organic compounds by melting point and/or analytical thin layer chromatography EXPERIMENT 1 - Determination of the purity and identity of organic compounds by melting point and/or analytical thin layer chromatography PART A Melting points and mixed melting points. As discussed in

More information

PAPER CHROMATOGRAPHY

PAPER CHROMATOGRAPHY PAPER CHROMATOGRAPHY INTRODUCTION Chromatography is a technique that is used to separate and to identify components of a mixture. This analytical technique has a wide range of applications in the real

More information

Chemical Composition of Instead Electronic Cigarette Smoke Juice and Vapor

Chemical Composition of Instead Electronic Cigarette Smoke Juice and Vapor Chemical Composition of Instead Electronic Cigarette Smoke Juice and Vapor Alliance Technologies, LLC 2009 info@alliancetechgroup.com 732.355.1234 (ph) 9 December 2009 Study: Chemical Composition of Instead

More information

RECITATION NOTES FOR EXPERIMENT # 5 A&B THIN LAYER CHROMATOGRAPHY

RECITATION NOTES FOR EXPERIMENT # 5 A&B THIN LAYER CHROMATOGRAPHY RECITATION NOTES FOR EXPERIMENT # 5 A&B THIN LAYER CHROMATOGRAPHY Have your lab textbook available for quick reference to specific pages, indicated in red. BASIC PRINCIPLES OF CHROMATOGRAPHY Chromatography

More information

MINERAL OIL (MEDIUM VISCOSITY)

MINERAL OIL (MEDIUM VISCOSITY) MINERAL OIL (MEDIUM VISCOSITY) Prepared at the 76 th JECFA, published in FAO JECFA Monographs 13 (2012), superseding specifications for Mineral oil (Medium and low viscosity), class I prepared at the 59th

More information

THERMAL DESORPTION. Introduction and Principles. Focusing on Volatiles

THERMAL DESORPTION. Introduction and Principles. Focusing on Volatiles THERMAL DESORPTION Introduction and Principles Thermal Desorption Thermal desorption is a simple extension of the technique of gas chromatography (GC) It involves the use of heat and a flow of inert gas

More information

YEAST RESPIRATION AND FERMENTATION

YEAST RESPIRATION AND FERMENTATION YEAST RESPIRATION AND FERMENTATION STUDENT HANDOUT...pages 1-6 TEACHER REFERENCE PAGES...pages 7-18 GAS CHROMATOGRAPH INSTRUCTIONS...pages 19-23 Yeast Respiration and Fermentation STUDENT HANDOUT Introduction

More information

Unit title: Chemical Laboratory Techniques

Unit title: Chemical Laboratory Techniques Unit title: Chemical Laboratory Techniques Unit code: H/601/0355 QCF level: 4 Credit value: 15 Aim This unit gives learners the opportunity to practise and become proficient in a range of practical skills

More information

THIN LAYER CHROMATOGRAPHY- TLC

THIN LAYER CHROMATOGRAPHY- TLC Page 1 THIN LAYER CHROMATOGRAPHY- TLC GREEN LAB Students work in teams of four CCO SATISFIED Chromatography IMPORTANT TECHNIQUES Analysis- quantitative; TLC HAZARDS None EXPECTED RESULTS WASTE The student

More information

Pressure/composition phase diagram There are 2 main types of composition diagrams pressure and temperature. This is an example of how the total vapor

Pressure/composition phase diagram There are 2 main types of composition diagrams pressure and temperature. This is an example of how the total vapor Pressure/composition phase diagram There are 2 main types of composition diagrams pressure and temperature. This is an example of how the total vapor pressure changes for an ideal solution. Pressure/composition

More information

Gas Chromatography Liner Selection Guide

Gas Chromatography Liner Selection Guide Gas Chromatography Liner Selection Guide Peter Morgan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20551 Key Words Liner, focus Abstract The liner serves an important function in allowing

More information

Fast Analysis of Natural Gas Using the Agilent 490 Micro GC Natural Gas Analyzer

Fast Analysis of Natural Gas Using the Agilent 490 Micro GC Natural Gas Analyzer Fast Analysis of Natural Gas Using the Agilent 90 Micro GC Natural Gas Analyzer Application Note Author Micro Gas Chromatography, Hydrocarbon Processing, Natural Gas Analysis Remko van Loon, Agilent Technologies,

More information

DETERMINING CAFFEINE CONCENTRATIONS IN SOFT DRINKS (Revised: )

DETERMINING CAFFEINE CONCENTRATIONS IN SOFT DRINKS (Revised: ) INTRODUCTION DETERMINING CAFFEINE CONCENTRATIONS IN SOFT DRINKS (Revised: 5-18-93) Chromatography is a separation technique that was first used by the Russian botanist Mikhal Tsvet. Around the turn of

More information

Distillation of Alcohol

Distillation of Alcohol CHEM 121L General Chemistry Laboratory Revision 1.6 Distillation of Alcohol To learn about the separation of substances. To learn about the separation technique of distillation. To learn how to characterize

More information

STEP 5: ESTRONE-3-METHYL ETHER-17-ETHYLENE KETAL. Li / NH 3 (l) 1. Procedure

STEP 5: ESTRONE-3-METHYL ETHER-17-ETHYLENE KETAL. Li / NH 3 (l) 1. Procedure STEP 5: ESTRNE-3-METYL ETER-17-ETYLENE KETAL 3 C Li / N 3 (l) 3 C C 3 C 3 1. Procedure At least 24 hours in advance: Fill a 250-mL, 3-necked round-bottomed flask equipped with a stirbar with 50 ml acetone.

More information

GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE

GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE ACTA CHROMATOGRAPHICA, NO. 13, 2003 GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE A. Pavlova and R. Ivanova Refining and Petrochemistry Institute, Analytical Department, Lukoil-Neftochim-Bourgas

More information

Separation of Amino Acids by Paper Chromatography

Separation of Amino Acids by Paper Chromatography Separation of Amino Acids by Paper Chromatography Chromatography is a common technique for separating chemical substances. The prefix chroma, which suggests color, comes from the fact that some of the

More information

Blood Alcohol Content Analysis using Nitrogen Carrier Gas

Blood Alcohol Content Analysis using Nitrogen Carrier Gas Blood Alcohol Content Analysis using Nitrogen Carrier Gas Alcohol consumption can seriously affect the ability of a driver to operate a vehicle and blood alcohol content (BAC) directly correlates with

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

NATIONAL STANDARD FOR FOOD SAFETY OF THE PEOPLE S REPUBLIC OF CHINA

NATIONAL STANDARD FOR FOOD SAFETY OF THE PEOPLE S REPUBLIC OF CHINA NATIONAL STANDARD FOR FOOD SAFETY OF THE PEOPLE S REPUBLIC OF CHINA GB 5413.9 2010 National food safety standard Determination of vitamin A, D, E in foods for infants and young children, milk and milk

More information

Thin Layer Chromatographic Analyses

Thin Layer Chromatographic Analyses CHEM 333L Organic Chemistry Laboratory Revision 1.3 Thin Layer Chromatographic Analyses In this laboratory exercise we will analyze a commercial pain reliever to determine the identity of the active analgesic

More information

Thin Layer and Column Chromatography

Thin Layer and Column Chromatography Thin Layer and Column Chromatography Chromatography is a widely used chemical separation method that takes advantage of different affinities of compounds to a fixed or stationary phase and a mobile phase.

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

DETECTORS Nitrogen/Phophorus Detector - NPD. Overview

DETECTORS Nitrogen/Phophorus Detector - NPD. Overview Overview The SRI Nitrogen-Phosphorus Detector (NPD) has a linear response selective to organic compounds containing nitrogen and/or phosphorus. The NPD also responds to normal hydrocarbons, but approximately

More information

Hydrogen Carrier Gas for Total Petroleum Hydrocarbon. By Ed Connor, GC Product Specialist, Peak Scientific Instruments Ltd

Hydrogen Carrier Gas for Total Petroleum Hydrocarbon. By Ed Connor, GC Product Specialist, Peak Scientific Instruments Ltd Hydrogen Carrier Gas for Total Petroleum Hydrocarbon By Ed Connor, GC Product Specialist, Peak Scientific Instruments Ltd Many labs are facing helium supply difficulties and rapid price increases as a

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Part A: understanding R f Part B: R f & solvent polarity Part C: R f & compound functionality Part D: identification of commercial food dye components Reading: MHS Ch. 17 pgs 219-235

More information

Purification of reaction mixtures using flash chromatography.

Purification of reaction mixtures using flash chromatography. Purification of reaction mixtures using flash chromatography. This technical note details the use of ISOLUTE Flash chromatography columns for the purification of reaction mixtures. What is flash chromatography?

More information

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. Jaap de Zeeuw, Ron Stricek and Gary Stidsen Restek Corp Bellefonte, USA To analyze basic compounds at

More information

PURIFICATION TECHNIQUES

PURIFICATION TECHNIQUES DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) PURIFICATION TECHNIQUES Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia

More information

Investigation M3: Separating Mixtures into Component Parts

Investigation M3: Separating Mixtures into Component Parts Investigation M3: Separating Mixtures into Component Parts Goals: Use various methods to separate mixtures, make inferences from temperature/time graphs, and identify substances. 81 Activity M3.3: What

More information

105 Adopted: 27.07.95

105 Adopted: 27.07.95 105 Adopted: 27.07.95 OECD GUIDELINE FOR THE TESTING OF CHEMICALS Adopted by the Council on 27 th July 1995 Water Solubility INTRODUCTION 1. This guideline is a revised version of the original Guideline

More information

Carrier Gas Selection for Capillary Gas Chromatography

Carrier Gas Selection for Capillary Gas Chromatography Carrier Gas Selection for Capillary Gas Chromatography Len Sidisky, Greg Baney, Katherine Stenerson, and James L. Desorcie Supelco, Div. of Sigma-Aldrich, Bellefonte, PA 16823 USA T411126 www.sigma-aldrich.com

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory Port

The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory Port APPLICATION NOTE Gas Chromatography/ Mass Spectrometry Authors: Andrew Tipler Sheila Eletto PerkinElmer, Inc. Shelton, CT The Characterization of Perfume Fragrances Using GC/MS, Headspace Trap and Olfactory

More information

Melting Point, Boiling Point, and Index of Refraction

Melting Point, Boiling Point, and Index of Refraction Melting Point, Boiling Point, and Index of Refraction Melting points, boiling points, and index of refractions are easily measured physical properties of organic compounds useful in product characterization

More information

Analysis of Blood Alcohol by Headspace with Simultaneous GC-FID and MS Detection. No. GCMS No. SSI-GCMS-1403

Analysis of Blood Alcohol by Headspace with Simultaneous GC-FID and MS Detection. No. GCMS No. SSI-GCMS-1403 Gas Chromatograph Mass Spectrometer No. GCMS-1403 Analysis of Blood Alcohol by Headspace with Simultaneous GC-FID and MS Detection Introduction Determination of Blood Alcohol Content (BAC) has been a standard

More information

Quality Assessment of Fragrance Raw Materials. Mr.Amol Kulkarni FFDC Workshop 16/05/15

Quality Assessment of Fragrance Raw Materials. Mr.Amol Kulkarni FFDC Workshop 16/05/15 Quality Assessment of Fragrance Raw Materials Mr.Amol Kulkarni FFDC Workshop 16/05/15 QUALITY OF FRAGRANCE MATERIALS The totality of properties/characteristics fulfilling the specified requirements of

More information

ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective

ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective Introduction In this experiment, you will use thin-film evaporator (TFE) to separate a mixture of water and ethylene glycol (EG). In a TFE a mixture of two fluids runs down a heated inner wall of a cylindrical

More information

Evaluation copy. Fractional Distillation. computer OBJECTIVES MATERIALS

Evaluation copy. Fractional Distillation. computer OBJECTIVES MATERIALS Fractional Distillation Computer 8 An example of a simple distillation is the separation of a solution of salt and into two separate pure substances. When the salt solution is heated to boiling, vapor

More information

For the highest level of protection, safety goggles that completely cover the. seal against the face are recommended.

For the highest level of protection, safety goggles that completely cover the. seal against the face are recommended. Lab Equipment Safety Goggles For the highest level of protection, safety goggles that completely cover the eye and eye socket and seal against the face are recommended. Lab Apron (folded) Beaker Beakers

More information

Ferda ORHUN Mineral Research and Exploration Institute of Turkey

Ferda ORHUN Mineral Research and Exploration Institute of Turkey GAS CHROMATOGRAPHY, EXPERIMENTAL STUDIES ON THE FLOW RATE EFFECTS OF CARRIER GAS AND APPLICATION OF THE METHOD TO HYDROCARBON ANALYSIS OF SOME NATURAL GASES IN TURKEY Ferda ORHUN Mineral Research and Exploration

More information

Planar Chromatography

Planar Chromatography CH 2252 Instrumental Methods of Analysis Unit V Planar Chromatography M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

Review and apply Investigation 6. Let s review Pages

Review and apply Investigation 6. Let s review Pages Review and apply Investigation 6 Let s review Pages 376-377 1. Think back to the movement of the color in hot and cold water. Does adding heat energy make water molecules move faster, slower, or have no

More information

Lab 3: Extraction of Spinach Pigments and Thin Layer Chromatography (TLC)

Lab 3: Extraction of Spinach Pigments and Thin Layer Chromatography (TLC) Lab 3: Extraction of Spinach Pigments and Thin Layer Chromatography (TLC) Objectives: To learn the highly useful thin layer chromatography technique. To study the chemical composition of plant leaves.

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

1º ESO UNIT 3: Pure substances and mixtures. Susana Morales Bernal

1º ESO UNIT 3: Pure substances and mixtures. Susana Morales Bernal 1º ESO UNIT 3: Pure substances and mixtures Objectives 1. To know that a substance is identified according to its characteristic properties like: density and melting or boiling points. 2. To know the concepts

More information

Lecture Notes: Mixtures, Compounds & Solutions

Lecture Notes: Mixtures, Compounds & Solutions Lecture Notes: Mixtures, Compounds & Solutions The physical properties of any substance include size, shape, state, and color. Changing a physical property of a substance does not change the chemical make-up.

More information

Fundamentals of Gas Chromatography

Fundamentals of Gas Chromatography Application Note Oil & Gas Fundamentals of Gas Chromatography Figure 1 - The Function Components of a Gas Chromatograph Process Line Sample System Chromatograph Oven GC Controller Probe Sample Return Slip

More information

PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION

PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION PURPOSE: To identify the products of yeast cultures grown under aerobic and anaerobic conditions STUDENTS' ENTERING COMPETENCIES: Before doing this lab, students

More information

8.9 - Flash Column Chromatography Guide

8.9 - Flash Column Chromatography Guide 8.9 - Flash Column Chromatography Guide Overview: Flash column chromatography is a quick and (usually) easy way to separate complex mixtures of compounds. We will be performing relatively large scale separations

More information

VCE CHEMISTRY 2008 2011: UNIT 3 SAMPLE COURSE OUTLINE

VCE CHEMISTRY 2008 2011: UNIT 3 SAMPLE COURSE OUTLINE VCE CHEMISTRY 2008 2011: UNIT 3 SAMPLE COURSE OUTLINE This sample course outline represents one possible teaching and learning sequence for Unit 3. 1 2 calculations including amount of solids, liquids

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

PROPYLENE GLYCOL ESTERS of FATTY ACIDS

PROPYLENE GLYCOL ESTERS of FATTY ACIDS PROPYLENE GLYCOL ESTERS of FATTY ACIDS Prepared at the 49th JECFA (1997), published in FNP 52 Add 5 (1997) superseding specifications prepared at the 46th JECFA (1996), published in FNP 52 Add 4 (1996).

More information

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction Organic Lab 1 Make-up Experiment Extraction of Caffeine from Beverages Introduction Few compounds consumed by Americans are surrounded by as much controversy as caffeine. One article tells us that caffeine

More information

Theory and Instrumentation of GC Introduction

Theory and Instrumentation of GC Introduction Theory and Instrumentation of GC Introduction i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference

More information

Separations: Chromatography of M&M and Ink Dyes

Separations: Chromatography of M&M and Ink Dyes Separations: Chromatography o M&M and Ink Dyes Almost all substances we come into contact with on a daily basis are impure; that is, they are mixtures. Similarly, compounds synthesized in the chemical

More information

Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids

Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized

More information

BTU ANALYSIS USING A GAS CHROMATOGRAPH

BTU ANALYSIS USING A GAS CHROMATOGRAPH BTU ANALYSIS USING A GAS CHROMATOGRAPH By Joseph E. Landes Southern Petroleum Laboratories, Inc. Technical Director Hydrocarbon and Field Services 8820 Interchange Drive Houston, Texas 77054 Introduction

More information