Determining Spot Heights from Contours

Size: px
Start display at page:

Download "Determining Spot Heights from Contours"

Transcription

1 Determining Spot Heights from Contours In the last section we looked at drawing contours from your grid observations. As highlighted it is a useful tool to allow you to conduct feasibility studies. As builders you may do this a few times but it is more likely your regular encounter with contour lines will be when you are given drawings to price. You are likely to be given a site plan to price a project. Contours on the plan will indicate the heights of the land. From this you will determine the cut and fill requirements and form a price accordingly. To determine ground levels from a contour drawing it is simply a reverse of what we did in the lesson above. From the contour drawing we recreate the grid. Step 1 On our contoured drawing were place an even grid. Grid size is IMPORTANT. You must use a scale ruler and select a dimension that is, 1. Relevant- A grid size of 100 metres will be too large and no reliable quantities will be determined later. 2. Ease Select a grid size that will make your later calculations easier when you need to do the volume calculations e.g. uses a grid size of say 10m x 10m instead of 13m x 13m. Draw the grid as described and this time lightly draw in the grid lines. 1

2 Step 2 Identify grid intersections that the contour lines pass through

3 Step 3 Method 1 Select a grid intersection between contour lines and use the following formula to interpolate the grid spot heights. Spot Height = Higher Contour ((Higher Contour Lower Contour)) x (Distance from Higher Contour to Grid Distance between Contours)) Note Distance from Higher Contour to Grid is Distance from Higher Contour to Grid heading towards the lower contour. For example at grid B3 the spot height may be determined as follows Distance between Contours = 29mm (Note- while it is important to use a scale when setting the grid, it is not important when interpolating as was displayed when we developed the contour drawing above. The Grids are used for volume calculations later) Spot Height = Higher Contour ((Higher Contour Lower Contour)) x (Distance from Higher Contour to Grid Distance between Contours)) Spot Height = ( ) x = = x

4 Step 3 Method 2 Select a grid intersection between contour lines and use the following method to interpolate the grid spot heights. In our example we will use grid B3. 1. Determine the height difference between the two contours e.g = Determine the distance between the two contour lines. The distance measured must be along the grid line passing through the grid intersection (Scale is not important for the same reason outlined above). In this case = 29mm 3. Determine the amount of fall per mm measured on the plan mm = m Therefore for every 1mm actually measured along the grid line there is a decrease of m in vertical height. 4. Measure the distance from the highest contour to the required grid intersection. It is important that this is measured along the same line as the previous measurement. In this case = 18mm 5. Determine the actual difference in height from the highest contour to the grid intersection x 18mm = Subtract the answer in point 5 (0.124) from the highest contour value ( ) = This RL of the grid intersection B3 = mm 45mm 72mm 98mm x

5 Step 4 Repeat the process described above for each grid intersection. For example grid points C2 to F2 may be done in this manner. Distance between Contour & along Grid 2 = 125mm (Note that may change for you depending what scale the document is printed at) Method 1 Using the formula Spot Height = Higher Contour ((Higher Contour Lower Contour)) x (Distance from Higher Contour to Grid Distance between Contours)) C2 = ( ) x = D2 = ( ) x = E2 = ( ) x = E2 = ( ) x = Method 2 1. Determine the height difference between the two contours e.g = Determine the distance between the two contour lines. The distance measured must be along the grid line passing through the grid intersection (Scale is not important for the same reason outlined above). In this case = 125mm 3. Determine the amount of fall per mm measured on the plan mm = m Therefore for every 1mm actually measured along the grid line there is a decrease of m in vertical height. 4. Measure the distance from the highest contour to the required grid intersection. It is important that this is measured along the same line as the previous measurement. In this case the measurements are a. 18mm b. 45mm c. 72mm 5

6 d. 98mm 5. Determine the actual difference in height from the highest contour to the grid intersections. a. 18mm x m = b. 45mm x m = c. 72mm x m = d. 98mm x m = Subtract the answer in point 5 (0.124) from the highest contour value ( ). a. Grid C2 = = b. Grid D2 = = c. Grid E2 = = d. Grid C2 = = mm 45mm 72mm 98mm x x x x x mm 6

7 Step 5 Sometimes the point required is not between contours but between a contour and the edge of the drawing. A x A Grid Point B5 This point is not between 2 contours. It is between a contour and the edge of the drawing. In all previous interpolation exercises we have assumed that the ground level is found in a straight line between the 2 contour lines. We can review this principle by determining the height of Grid Point B4. Spot Height = Higher Contour ((Higher Contour Lower Contour)) x (Distance from Higher Contour to Grid Distance between Contours)) = (( ) x (12/30)) = =

8 30mm 48 mm Grid Spot Height mm We can also look at this graphically in Section A-A. Spot Height RL Located on straight line between contours Contour RL RL RL RL Contour Section A-A Plan View Excerpt We use this principle to determine the spot height at the edges of the drawing. If we look at Section A-A again the straight line between the and contours can be extended to the edge of the drawing to Grid Point B5. Spot Height RL Located on straight line between contours Contour RL RL RL RL Grid Point B Contour Section A-A Plan View Excerpt We can use our formula from the previous example Spot Height = Higher Contour ((Higher Contour Lower Contour)) x (Distance from Higher Contour to Grid Distance between Contours)) In this case the distance from the Higher Contour to Grid will be larger than the Distance between the contours. Distance between Contours = 30 Distance from Higher Contour to Grid Point = 48 We can determine the spot height for Grid B5 as follows = (( ) x (48/30)) = =

9 55mm -35mm x x Now lets look at Grid Point F1, it is located on the edge of the drawing. Distance between contours = 55mm Distance from Higher Contour = -35mm (It is important to enter the distance as a negative as it is directional i.e. heading away from the lower contour) We can determine the spot height for Grid F1 as follows Spot Height = Higher Contour ((Higher Contour Lower Contour)) x (Distance from Higher Contour to Grid Distance between Contours)) Note Distance from Higher Contour to Grid is Distance from Higher Contour to Grid heading towards the lower contour. = (( ) x (-35/55)) = (-0.140) = =

10 x x x The above example was used in a prelude to the next discussion. As builders on many occasions from contour drawings you need to determine the ground levels adjacent to proposed structures. In the following page we have a proposed garage to be built on a property with an existing house on it. 10

11 Scale 1:200 N

12 The first item to consider is what is the contour interval? The interval is 0.5m. The next task is what is the existing ground level at the 4 corners of the garage? South West Corner This South West corner of the Garage is located between the Contour and the Contour. We can calculate the ground level at this point by using the same formula we used previously, Spot Height = Higher Contour ((Higher Contour Lower Contour)) x (Distance from Higher Contour to Feature Distance between Contours)) When measuring the distance between the contours in this situation you should measure as close as possible in the direction of fall in the land. This is at 90 to the contours along the dotted line. Higher Contour = Lower Contour = Distance from Higher Contour to Feature = 35mm Distance between Contours = 45mm Spot Height = (( ) x (35 45) Spot Height = Spot Height = South East Corner Higher Contour = Lower Contour = Distance from Higher Contour to Feature = 30mm Distance between Contours = 60mm x Spot Height = (( ) x (30 60) Spot Height = Spot Height =

13 North East Corner This part of the building is not between 2 contours but located between a contour and the edge of the drawing. We can use the method outlined previously. Higher Contour = Lower Contour = Distance from Higher Contour to Feature = 60mm Distance between Contours = 40mm x Spot Height = (( ) x ( ) Spot Height = Spot Height = Spot Height = As mentioned before interpreting contours is not an exact science. You need to use judgement when determining contours. In this example the spot height calculated was 0.750m above the contour. The contour interval is 0.500m so you would expect the contour between the spot height location and the contour. If you remember in your field day you conducted your grid survey at the edge of the grided area i.e. the fence line. It would be unlikely that the survey was not conducted to the fence line. It is common practice to leave some spot heights at the edges of a drawing to assist you to clarify these issues. In this case you should reject your answer and suspect that the land plateaus and adopt a spot height of say North West Corner x X Higher Contour = Lower Contour = Distance from Higher Contour to Feature = 48mm Distance between Contours = 50mm x X Spot Height = (( ) x (-48 50) Spot Height = Spot Height = Spot Height =

FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006

FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 FUNDAMENTALS OF LANDSCAPE TECHNOLOGY GSD Harvard University Graduate School of Design Department of Landscape Architecture Fall 2006 6106/ M2 BASICS OF GRADING AND SURVEYING Laura Solano, Lecturer Name

More information

Chapter 5: Working with contours

Chapter 5: Working with contours Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in

More information

Three daily lessons. Year 5

Three daily lessons. Year 5 Unit 6 Perimeter, co-ordinates Three daily lessons Year 4 Autumn term Unit Objectives Year 4 Measure and calculate the perimeter of rectangles and other Page 96 simple shapes using standard units. Suggest

More information

Unit 6 Direction and angle

Unit 6 Direction and angle Unit 6 Direction and angle Three daily lessons Year 4 Spring term Unit Objectives Year 4 Recognise positions and directions: e.g. describe and find the Page 108 position of a point on a grid of squares

More information

Bar Graphs and Dot Plots

Bar Graphs and Dot Plots CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs

More information

Linear functions Increasing Linear Functions. Decreasing Linear Functions

Linear functions Increasing Linear Functions. Decreasing Linear Functions 3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described

More information

3D Drawing. Single Point Perspective with Diminishing Spaces

3D Drawing. Single Point Perspective with Diminishing Spaces 3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be

More information

Graphical Integration Exercises Part Four: Reverse Graphical Integration

Graphical Integration Exercises Part Four: Reverse Graphical Integration D-4603 1 Graphical Integration Exercises Part Four: Reverse Graphical Integration Prepared for the MIT System Dynamics in Education Project Under the Supervision of Dr. Jay W. Forrester by Laughton Stanley

More information

WHAT MAPS SHOW US Maps do 4 things:

WHAT MAPS SHOW US Maps do 4 things: WHAT MAPS SHOW US Maps show us a range of features, for example: Landforms: Settlement: Communication: Land Use: Geology: Other Info: - hills - valleys - mountains - isolated dwellings - farms - villages

More information

Level 1 - Maths Targets TARGETS. With support, I can show my work using objects or pictures 12. I can order numbers to 10 3

Level 1 - Maths Targets TARGETS. With support, I can show my work using objects or pictures 12. I can order numbers to 10 3 Ma Data Hling: Interpreting Processing representing Ma Shape, space measures: position shape Written Mental method s Operations relationship s between them Fractio ns Number s the Ma1 Using Str Levels

More information

Maximum and minimum problems. Information sheet. Think about

Maximum and minimum problems. Information sheet. Think about Maximum and minimum problems This activity is about using graphs to solve some maximum and minimum problems which occur in industry and in working life. The graphs can be drawn using a graphic calculator

More information

Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

More information

Freehand Sketching. Sections

Freehand Sketching. Sections 3 Freehand Sketching Sections 3.1 Why Freehand Sketches? 3.2 Freehand Sketching Fundamentals 3.3 Basic Freehand Sketching 3.4 Advanced Freehand Sketching Key Terms Objectives Explain why freehand sketching

More information

Creating a 2D Geometry Model

Creating a 2D Geometry Model Creating a 2D Geometry Model This section describes how to build a 2D cross section of a heat sink and introduces 2D geometry operations in COMSOL. At this time, you do not model the physics that describe

More information

3D Drawing. Single Point Perspective with Diminishing Spaces

3D Drawing. Single Point Perspective with Diminishing Spaces 3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Topographic Survey. Topographic Survey. Topographic Survey. Topographic Survey. CIVL 1101 Surveying - Introduction to Topographic Modeling 1/8

Topographic Survey. Topographic Survey. Topographic Survey. Topographic Survey. CIVL 1101 Surveying - Introduction to Topographic Modeling 1/8 IVL 1 Surveying - Introduction to Topographic Modeling 1/8 Introduction Topography - defined as the shape or configuration or relief or three dimensional quality of a surface Topography maps are very useful

More information

Situation Analysis. Example! See your Industry Conditions Report for exact information. 1 Perceptual Map

Situation Analysis. Example! See your Industry Conditions Report for exact information. 1 Perceptual Map Perceptual Map Situation Analysis The Situation Analysis will help your company understand current market conditions and how the industry will evolve over the next eight years. The analysis can be done

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

Unit 5 Length. Year 4. Five daily lessons. Autumn term Unit Objectives. Link Objectives

Unit 5 Length. Year 4. Five daily lessons. Autumn term Unit Objectives. Link Objectives Unit 5 Length Five daily lessons Year 4 Autumn term Unit Objectives Year 4 Suggest suitable units and measuring equipment to Page 92 estimate or measure length. Use read and write standard metric units

More information

Determine If An Equation Represents a Function

Determine If An Equation Represents a Function Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

More information

Estimating Differences. Finding Distances on a Map

Estimating Differences. Finding Distances on a Map Estimating Differences Problem Solving: Finding Distances on a Map Estimating Differences How do we use rounding to estimate differences? Sometimes subtraction is like addition. There are times when we

More information

Convert between units of area and determine the scale factor of two similar figures.

Convert between units of area and determine the scale factor of two similar figures. CHAPTER 5 Units of Area c GOAL Convert between units of area and determine the scale factor of two. You will need a ruler centimetre grid paper a protractor a calculator Learn about the Math The area of

More information

TRIGONOMETRY FOR ANIMATION

TRIGONOMETRY FOR ANIMATION TRIGONOMETRY FOR ANIMATION What is Trigonometry? Trigonometry is basically the study of triangles and the relationship of their sides and angles. For example, if you take any triangle and make one of the

More information

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

Developing Conceptual Understanding of Number. Set J: Perimeter and Area

Developing Conceptual Understanding of Number. Set J: Perimeter and Area Developing Conceptual Understanding of Number Set J: Perimeter and Area Carole Bilyk cbilyk@gov.mb.ca Wayne Watt wwatt@mts.net Perimeter and Area Vocabulary perimeter area centimetres right angle Notes

More information

Lesson 21. Circles. Objectives

Lesson 21. Circles. Objectives Student Name: Date: Contact Person Name: Phone Number: Lesson 1 Circles Objectives Understand the concepts of radius and diameter Determine the circumference of a circle, given the diameter or radius Determine

More information

Excel -- Creating Charts

Excel -- Creating Charts Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel

More information

Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES

Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES. Introduction (simple) This helpsheet is concerned with the ways that we express quantities that are not whole numbers,

More information

TRIGONOMETRY Compound & Double angle formulae

TRIGONOMETRY Compound & Double angle formulae TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

More information

SIGNING SEQUENCE IN ADVANCE OF VEHICLE INSPECTION. STATIONS (VIS & MIS) Page 1of 3

SIGNING SEQUENCE IN ADVANCE OF VEHICLE INSPECTION. STATIONS (VIS & MIS) Page 1of 3 Issued: JUL 2007 STATIONS (VIS & MIS) Page 1of 3 RECOMMENDED PRACTICES PART SECTION SUB-SECTION HIGHWAY SIGNS TYPICAL SIGNING PLANS General The safety of motorists using Alberta highways, and the maintenance

More information

Representing Vector Fields Using Field Line Diagrams

Representing Vector Fields Using Field Line Diagrams Minds On Physics Activity FFá2 5 Representing Vector Fields Using Field Line Diagrams Purpose and Expected Outcome One way of representing vector fields is using arrows to indicate the strength and direction

More information

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5 Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

6 3 The Standard Normal Distribution

6 3 The Standard Normal Distribution 290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since

More information

Schedule A. Civic Addressing Policy. of By-Law

Schedule A. Civic Addressing Policy. of By-Law Schedule A Civic Addressing Policy of By-Law 1. PURPOSE 1.1 This policy will guide the municipal staff, who have been given the responsibility by Council, in assigning property identification numbers,

More information

Unit 9. Unit 10. Unit 11. Unit 12. Introduction Busy Ant Maths Year 2 Medium-Term Plans. Number - Geometry - Position & direction

Unit 9. Unit 10. Unit 11. Unit 12. Introduction Busy Ant Maths Year 2 Medium-Term Plans. Number - Geometry - Position & direction Busy Ant Maths Year Medium-Term Plans Unit 9 Geometry - Position & direction Unit 0 ( Temperature) Unit Statistics Unit Fractions (time) 8 Busy Ant Maths Year Medium-Term Plans Introduction Unit Geometry

More information

A Resource for Free-standing Mathematics Qualifications

A Resource for Free-standing Mathematics Qualifications To find a maximum or minimum: Find an expression for the quantity you are trying to maximise/minimise (y say) in terms of one other variable (x). dy Find an expression for and put it equal to 0. Solve

More information

Charts, Tables, and Graphs

Charts, Tables, and Graphs Charts, Tables, and Graphs The Mathematics sections of the SAT also include some questions about charts, tables, and graphs. You should know how to (1) read and understand information that is given; (2)

More information

MATHEMATICS Y6 Geometry 6750 Use co-ordinates and extend to 4 quadrants Equipment MathSphere www.mathsphere.co.uk

MATHEMATICS Y6 Geometry 6750 Use co-ordinates and extend to 4 quadrants Equipment MathSphere www.mathsphere.co.uk MATHEMATICS Y6 Geometry 675 Use co-ordinates and etend to quadrants Paper, pencil, ruler Equipment MathSphere 675 Use co-ordinates and etend to quadrants. Page Concepts Children should be familiar with

More information

Part 1: Background - Graphing

Part 1: Background - Graphing Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

More information

Experiment 3 Lenses and Images

Experiment 3 Lenses and Images Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently

More information

Unit 4 Measures time, mass and area

Unit 4 Measures time, mass and area Unit 4 Measures time, mass and area Five daily lessons Year 4 Spring term (Key objectives in bold) Unit Objectives Year 4 Estimate/check times using seconds, minutes, hours. Page 98 Know and use the relationships

More information

EdExcel Decision Mathematics 1

EdExcel Decision Mathematics 1 EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

USING ADOBE PhotoShop TO MEASURE EarthKAM IMAGES

USING ADOBE PhotoShop TO MEASURE EarthKAM IMAGES USING ADOBE PhotoShop TO MEASURE EarthKAM IMAGES By James H. Nicholson and Ellen Vaughan Charleston County School District CAN DO Project for the EarthKAM Teacher Training Institute Introduction EarthKAM

More information

MATHS LEVEL DESCRIPTORS

MATHS LEVEL DESCRIPTORS MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and

More information

Mathematics standards

Mathematics standards Mathematics standards Grade 6 Summary of students performance by the end of Grade 6 Reasoning and problem solving Students represent and interpret routine and non-routine mathematical problems in a range

More information

Numeracy and mathematics Experiences and outcomes

Numeracy and mathematics Experiences and outcomes Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different

More information

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an

More information

Basic Elements of Reading Plans

Basic Elements of Reading Plans Center for Land Use Education and Research at the University of Connecticut Basic Elements of Reading Plans University of Connecticut. The University of Connecticut supports all state and federal laws

More information

Getting Started in Tinkercad

Getting Started in Tinkercad Getting Started in Tinkercad By Bonnie Roskes, 3DVinci Tinkercad is a fun, easy to use, web-based 3D design application. You don t need any design experience - Tinkercad can be used by anyone. In fact,

More information

PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

More information

Electromagnetic radiation exposure: assessment against ACA mandated limits

Electromagnetic radiation exposure: assessment against ACA mandated limits Electromagnetic radiation exposure: assessment against ACA mandated limits Paging services (Edition May 2002) Disclaimer Unless otherwise specified, the information contained in these guidelines is intended

More information

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

More information

Common Multiples. List the multiples of 3. The multiples of 3 are 3 1, 3 2, 3 3, 3 4,...

Common Multiples. List the multiples of 3. The multiples of 3 are 3 1, 3 2, 3 3, 3 4,... .2 Common Multiples.2 OBJECTIVES 1. Find the least common multiple (LCM) of two numbers 2. Find the least common multiple (LCM) of a group of numbers. Compare the size of two fractions In this chapter,

More information

INDEX. SR NO NAME OF THE PRACTICALS Page No. Measuring the bearing of traverse lines, calculation of included angles and check.

INDEX. SR NO NAME OF THE PRACTICALS Page No. Measuring the bearing of traverse lines, calculation of included angles and check. INDEX SR NO NAME OF THE PRACTICALS Page No 1 Measuring the bearing of traverse lines, calculation of included angles and check. 1 2 To study the essential parts of dumpy level & reduction of levels 3 To

More information

Guide To Creating Academic Posters Using Microsoft PowerPoint 2010

Guide To Creating Academic Posters Using Microsoft PowerPoint 2010 Guide To Creating Academic Posters Using Microsoft PowerPoint 2010 INFORMATION SERVICES Version 3.0 July 2011 Table of Contents Section 1 - Introduction... 1 Section 2 - Initial Preparation... 2 2.1 Overall

More information

2.3 Maximum and Minimum Applications

2.3 Maximum and Minimum Applications Section.3 155.3 Maximum and Minimum Applications Maximizing (or minimizing) is an important technique used in various fields of study. In business, it is important to know how to find the maximum profit

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

Vocabulary Cards and Word Walls Revised: June 29, 2011

Vocabulary Cards and Word Walls Revised: June 29, 2011 Vocabulary Cards and Word Walls Revised: June 29, 2011 Important Notes for Teachers: The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education,

More information

Unit 8 Angles, 2D and 3D shapes, perimeter and area

Unit 8 Angles, 2D and 3D shapes, perimeter and area Unit 8 Angles, 2D and 3D shapes, perimeter and area Five daily lessons Year 6 Spring term Recognise and estimate angles. Use a protractor to measure and draw acute and obtuse angles to Page 111 the nearest

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

MD5-26 Stacking Blocks Pages 115 116

MD5-26 Stacking Blocks Pages 115 116 MD5-26 Stacking Blocks Pages 115 116 STANDARDS 5.MD.C.4 Goals Students will find the number of cubes in a rectangular stack and develop the formula length width height for the number of cubes in a stack.

More information

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line. Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

More information

MATHEMATICS TEST. Paper 1 calculator not allowed LEVEL 6 TESTS ANSWER BOOKLET. First name. Middle name. Last name. Date of birth Day Month Year

MATHEMATICS TEST. Paper 1 calculator not allowed LEVEL 6 TESTS ANSWER BOOKLET. First name. Middle name. Last name. Date of birth Day Month Year LEVEL 6 TESTS ANSWER BOOKLET Ma MATHEMATICS TEST LEVEL 6 TESTS Paper 1 calculator not allowed First name Middle name Last name Date of birth Day Month Year Please circle one Boy Girl Year group School

More information

Make maths fun!! Give your child lots of praise and encouragement!

Make maths fun!! Give your child lots of praise and encouragement! Make maths fun!! Give your child lots of praise and encouragement! Talk to your child about how you work things out. CALCULATION The maths work your child is doing at school may look very different to

More information

Mathematics Navigator. Misconceptions and Errors

Mathematics Navigator. Misconceptions and Errors Mathematics Navigator Misconceptions and Errors Introduction In this Guide Misconceptions and errors are addressed as follows: Place Value... 1 Addition and Subtraction... 4 Multiplication and Division...

More information

Year 9 mathematics test

Year 9 mathematics test Ma KEY STAGE 3 Year 9 mathematics test Tier 6 8 Paper 1 Calculator not allowed First name Last name Class Date Please read this page, but do not open your booklet until your teacher tells you to start.

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

MCB4UW Optimization Problems Handout 4.6

MCB4UW Optimization Problems Handout 4.6 MCB4UW Optimization Problems Handout 4.6 1. A rectangular field along a straight river is to be divided into smaller fields by one fence parallel to the river and 4 fences perpendicular to the river. Find

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

Lab 2: Vector Analysis

Lab 2: Vector Analysis Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

More information

28.0 Development Permit Area #2 (Neighbourhood District)

28.0 Development Permit Area #2 (Neighbourhood District) 28.0 Development Permit Area #2 (Neighbourhood District) Goals and Objectives To provide a guide for infill and new development in the Neighbourhood District. To outline the nature, form and character

More information

Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 6 8

Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 6 8 Ma KEY STAGE 3 Mathematics test TIER 6 8 Paper 1 Calculator not allowed First name Last name School 2009 Remember The test is 1 hour long. You must not use a calculator for any question in this test. You

More information

Introduction. Circular curve constant radius. Transition curve decreasing radius then increasing radius. Department of Civil Engineering

Introduction. Circular curve constant radius. Transition curve decreasing radius then increasing radius. Department of Civil Engineering Department of Civil Engineering Name Class Date set Surveying II Lecturer DSF Date due Horizontal Curves Ref. v 1 Grade Introduction Straight sections of road or track are connected by curves Horizontal

More information

2.2 Derivative as a Function

2.2 Derivative as a Function 2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x

More information

Five daily lessons. Page 23. Page 25. Page 29. Pages 31

Five daily lessons. Page 23. Page 25. Page 29. Pages 31 Unit 4 Fractions and decimals Five daily lessons Year 5 Spring term Unit Objectives Year 5 Order a set of fractions, such as 2, 2¾, 1¾, 1½, and position them on a number line. Relate fractions to division

More information

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to, LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

More information

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple. Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

More information

Mathematics K 6 continuum of key ideas

Mathematics K 6 continuum of key ideas Mathematics K 6 continuum of key ideas Number and Algebra Count forwards to 30 from a given number Count backwards from a given number in the range 0 to 20 Compare, order, read and represent to at least

More information

FOREWORD. Executive Secretary

FOREWORD. Executive Secretary FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National

More information

Advanced Programming with LEGO NXT MindStorms

Advanced Programming with LEGO NXT MindStorms Advanced Programming with LEGO NXT MindStorms Presented by Tom Bickford Executive Director Maine Robotics Advanced topics in MindStorms Loops Switches Nested Loops and Switches Data Wires Program view

More information

Map reading made easy

Map reading made easy Map reading made easy What is a map? A map is simply a plan of the ground on paper. The plan is usually drawn as the land would be seen from directly above. A map will normally have the following features:

More information

First published in 2013 by the University of Utah in association with the Utah State Office of Education.

First published in 2013 by the University of Utah in association with the Utah State Office of Education. First published in 201 by the University of Utah in association with the Utah State Office of Education. Copyright 201, Utah State Office of Education. Some rights reserved. This work is published under

More information

Lesson 4: Solving and Graphing Linear Equations

Lesson 4: Solving and Graphing Linear Equations Lesson 4: Solving and Graphing Linear Equations Selected Content Standards Benchmarks Addressed: A-2-M Modeling and developing methods for solving equations and inequalities (e.g., using charts, graphs,

More information

Leica 3D Disto Application Veranda / Conservatory

Leica 3D Disto Application Veranda / Conservatory Leica 3D Disto Application Veranda / Conservatory What do you need to know? 1) What position you are going to fit the Veranda in? 2) What is the height and width? 3) What is the length? 4) Is the wall

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

720 Contour Grading. General. References. Resources. Definitions

720 Contour Grading. General. References. Resources. Definitions 720 Contour Grading General Contour grading directs water to a desired point, prevents erosion, provides noise deflection, provides visual fit of the facility into the landscape, and protects desirable

More information

Electromagnetic radiation exposure: assessment against ACA mandated limits

Electromagnetic radiation exposure: assessment against ACA mandated limits Electromagnetic radiation exposure: assessment against ACA mandated limits General radio services (operating above 0 MHz) (Edition May 0) Disclaimer Unless otherwise specified, the information contained

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information