Operating with varying fuel properties without additional Wobbe-Indexmeasurement

Size: px
Start display at page:

Download "Operating with varying fuel properties without additional Wobbe-Indexmeasurement"

Transcription

1 Operating with varying fuel properties without additional Wobbe-Indexmeasurement on SGT-600 Authors: Mats Blomstedt Geir Nevestveit Per Johansson Siemens Industrial Turbomachinery AB Sweden

2 Introduction Operating a gas turbine with fuel properties (such as composition, heating value and density) varying over time is of increasing interest, for example from refineries but also if the fuels are supplied from different sources. This normally requires a separate hardware installation such as a Wobbe-index measurement. Such hardware not only increases the cost of the installation but also adds a component that may lead to increased risk of unavailability of the unit. Siemens have developed another solution, where this hardware is not necessary. A new loop has been introduced in the control system in order to take care of these variations in fuel properties, utilizing the normal installation of instruments for the gas turbine and the auxiliary equipment. With this control-loop it is now possible to run the SGT-600 (both conventional combustor type as well as the Dry Low Emission variant) with a fluctuating composition (and Wobbe index) over time without any additional installation. Nomenclature WI - Wobbe Index; normalized heating value: heating value/(square root of gas specific gravity). DLE - Dry Low Emission SGT - Siemens Gas Turbine MGT - Medium sized Gas Turbines within Siemens family (SGT-500/600/700/800) OEM - Original Equipment Manufacturer PG - Power Generation MD - Mechanical Drive LNG - Liquefied Natural Gas Fuel supply Historically the gas turbine business has mainly utilized standard natural gas fuel. This fuel has a quite narrow range in terms of variation of composition. Typically, a natural gas composition is dominated by methane (CH 4 ) and has a heating value in the range of 48 MJ/kg. Gas turbines have been optimized for this fuel, including minimizing the emissions. Today, interest in varying the fuel composition is increasing rapidly, driven by three major motivators: Environment - Minimize flaring by fuel utilization Economy - Use waste gas streams in the plant/source for increased profitability, e.g. end flash gas or heavy hydrocarbons. Reliability: Improve availability by avoiding complex and expensive fuel treatment equipment.

3 Picture 1: Flaring gas in the sunset - adding CO 2 to the environment. It can be noted that flaring & venting today corresponds to 150 billion m 3 gas annually. This is the same amount as 30% of the EU annual gas consumption. Flaring adds 400 million tons of CO 2 annually. This is more than targeted reductions for submitted projects under the Kyoto Protocol. Fuel properties The WI is used to compare the combustion energy output of different composition fuel gases. If two fuels have identical Wobbe Indices, given same pressure and valve settings, the energy output will also be identical. Variations of up to five percent are typical for a fuel supply and normally constitute the acceptance limit of combustion without some type of adjustment/compensation. Example of alternative gases for fuel supply: Inert (CO/N2) gases from processes, Coke Oven Gas (COG) and Syngas. Results in lower WI Liquefied Petroleum Gas (LPG) in natural gas. Results in a higher WI Hydrogen in refinery gas and COG Ethane from Liquefied Natural Gas (LNG) processing Heavy hydrocarbons (C 5 +) from LNG processing

4 Wobbe Index [MJ/Nm 3 ] Lower Heating Value [MJ/kg] Picture 2: WI versus heating value from customer s fuel specifications From the fuel specifications received from customers for evaluation it can be noted that the spread in fuel properties is high and it can also be noted that the spread is increasing over time. The picture above shows the fuel specifications received regarding the MGT-units during 2009 and 2010, where the high concentration of specifications in the middle mostly represents natural gases. SGT-600 core engine design The SGT-600 is a twin-shaft machine where the same design is used both for PG and MD. Compressor inlet 2 Variable guide vanes 2 Bleed valves Fuel Rod DLE combustor 2 stage compressor turbine 2 stage power turbine 10 stage compressor, EB welded rotor Picture 3: Cross section of the SGT-600 This machine has been on the market for more than 20 years with some 250 units sold and 7 million operating hours accumulated. Originally it was equipped with a conventional combustor but already in the early 90 s the DLE combustion chamber was introduced. The DLE share of the total operation experience is approximately

5 80%. The option between DLE and conventional type is cost-neutral and the DLE is therefore considered as the standard for this machine thanks to the lower emissions emitted. Conventional combustion can be offered on request for those customers looking for some wider fuel range (see picture below). Fully released; Conventional Fully released; DLE Sales approved case by case Low Calorific Value (LCV) Medium Calorific Value (MCV) Normal Pipeline NG High Calorific Value (HCV) Wobbe Index (MJ/Nm³) Picture 4 Fuel range definition for SGT SGT-600 fuel-control design The medium sized (15 50 MW) Siemens gas turbines are produced in Finspong, Sweden. This includes SGT-500/600/700/800. All these gas turbines have a common philosophy regarding the design of the fuel system where there are no individually controlled fuel injectors/burners. The burners are all supplied with fuel from a common manifold and are calibrated from the factory in order to have the same pressure drop over the burner and thus the same amount of fuel flow through all burners. The fuel supply to a manifold is controlled by one valve. This design philosophy applies both to the conventional combustor type as well as the DLE. M ain c o ntro l va lve Pilot control valve

6 Picture 5: Fuel supply system for the SGT-600 The fuel is supplied to two manifolds: pilot fuel which is used for start-up and will be reduced when load increases, and the main fuel. The ratio between the pilot and the main fuel is a function of the load and is controlled automatically. Combustion challenges Widening the range of acceptable fuels is a high priority challenge for all gas turbine suppliers: both conventional (non-dle) and DLE combustion chamber types. The parameters normally optimized for a specific fuel are flow number (area) of burner and combustion chamber and velocities of the air and the fuel entering the system. By optimizing these parameters the acceptable fuel properties may be changed considerably. The issues that may occur when stretching closer to the limits of a design include (but are not limited to): Flash-back the fuel ignites before this is intended and the flame gets closer to the burner tip (or even into the internals of the burner/injector). May lead to over-heating of hardware. Pulsations not optimum ratio between air and fuel injection causing vibration/humming of the combustion. May lead to cracking (high cycle fatigue) of components. Flame-out too lean mixture of fuel/air leads to a flame-out. Then there is a risk of re-ignition (explosion) further downstream of the installation where hot gas (including path) will be a source for ignition. Emissions non-optimal combustion. Combustion efficiency may be low and emissions of e.g. NO x and CO x will increase dramatically. Usually the combustion can be optimized for a specific, defined, fuel. The next level of challenge occurs if the fuel composition varies considerably (>5%) over time i.e. composition, heating value and WI. If a design allows such a variation, one way to handle these variations is to monitor the properties (WI-measurement is the most common way) and compensate for these variations - in the control system and/or valves for fuel and air operation - continuously. This causes an increased hardware cost as well as a reliability issue: the additional hardware (valves and measurement devices) may disturb the operation and there may be a delay in the control due to evaluation/compensation of the measured values. Operational load control For the MGT s the main parameter to control the load of the gas turbine is the fuel supply and the upper limit of the fuel supply is the maximum turbine inlet temperature. So increasing or reducing the load is as simple as opening/closing the two valves according to the specified ratio between them. No compensation applies for fuel composition, ambient conditions or other parameters. Conclusion is that, considering the control for the load, it is not necessary know the WI-value at all.

7 Necessity of defining the WI-value However, due to a few other reasons, the WI-value is of importance. Some examples for the MGT gas turbine control: Since there are no additional moving parts or control corrections, the load can be changed very rapidly: load rejection from 100% load is possible without flame-out, but in order to keep the machine running at idle after a load rejection it is necessary to have a proper minimum setting value of the valves when they are closing almost instantly. With a too-low valve setting (area) there will be a flame-out and with a too-high setting there is a risk of overspeed in the power turbine (too high fuel flow without load will increase the speed). During start-up of a unit a specific amount of heat shall be injected in order to get a proper start. If the WI-index is unknown, the start-up sequence may fail with an aborted start as a consequence. In those cases when the start-up is going to be made with the same fuel as was utilized in the most recent shutdown, a defined WI-value will conclude a proper valve setting in order to supply the right amount of fuel heat at start-up There are upper and lower limits to what fuel range is verified and accepted in the design. It is therefore necessary to keep track of the fuel supplied in order not to operate outside the defined limits. Determination of WI-value without a WI-measurement According to the presented control parameters of the SGT-600 there is a way to calculate the WI-value without introduction of any additional measurements. It is a well known fact that any gas turbine will have a varying output depending on the boundary conditions, e.g. lowering ambient temperature will increase the output. The basic for this calculation is the fact that the efficiency of the MGT gas turbines (and most of the other OEM s as well) is a function of the output independent of the boundary conditions, i.e. running at 20MW will give the same efficiency irrespective of whether it is a full load at hot ambient conditions or a part load at cold conditions. The WI-determination stepwise: 1. By monitoring the output 1 from the unit, the efficiency is known 2. The output divided by the efficiency will give the heat input to the unit 3. The feed-back signal of the position of the two fuel valves will give the flow number (area) of the valves according to defined calibration of the valves. 4. The defined heat input at the specified valve positioning (area) and the fuel supply pressure will result in a calculated WI-value. See chapter Fuel properties above. Verification & implementation Verification of this method has been carried out in the test stand at the Siemens facility in Finspong/Sweden. The demonstration was made on an engine equipped with a DLE combustion system. The way to demonstrate this was to inject/blend inert 1 Directly: at the generator terminals of a PG unit or a torque-meter for a MD unit. Alternatively: indirectly for an MD-unit utilizing characteristics for the driven equipment or the gas turbine.

8 gas (nitrogen) into the natural gas supply. This caused the WI to vary over time (see figure 6 below). The load was kept constantly at 20MW. The nitrogen content increased to 55% (by weight) in 40 minutes. In addition to the normal control parameters, the NOx-levels were measured as well as the combustor dynamics (pulsations). No abnormal values could be seen and the combustion was efficient without any disturbances. N2 content [wt%] and NOx [ppm] Combustion Dynamics [% of larm level] N2 NOx Comb Dyn Load Time [minutes] Load [MW] Picture 6: Measurements from test with nitrogen blending After 40 minutes the nitrogen tank was empty and the unit was shifting to run with 100% natural gas again. During these two minutes of shifting, the WI-index value changed 80% without any disturbances of the operation. A minor increase of NOx during the switch can be noted but the combustion dynamics are kept on the same level, indicating stable combustion. This method of operating units with varying WI-values has been implemented on a number of units (both SGT-500 and SGT-600) in Europe and Africa both with conventional combustion chamber and DLE. The installations of those units are in refineries and LNG-plants, where the WI-values are varying continuously due to the processes in which they are installed. Summary The demand for operation with varying fuel properties is already here and interest is expected to increase. For environmental, economical and reliability reasons it will be necessary to stretch the approved fuel properties and to have the flexibility to utilize different sources. It has now been demonstrated that the control principle developed for this machine is working as intended. The MGT gas turbines can operate successfully on fuels with varying properties that previously required further refining, were flared and/or required a continuous WI-measurement.

Industrial Gas Turbines utilization with Associated Gases

Industrial Gas Turbines utilization with Associated Gases Industrial Gas Turbines utilization with Associated Gases Géraldine ROY Lead Market Analyst - Business Development Siemens Industrial Turbomachinery Ltd Siemens PG I satisfies customer needs from a single

More information

Gas Turbine Combustor Technology Contributing to Environmental Conservation

Gas Turbine Combustor Technology Contributing to Environmental Conservation 6 Gas Turbine Combustor Technology Contributing to Environmental Conservation KATSUNORI TANAKA KOICHI NISHIDA WATARU AKIZUKI In order to combat global warming, the reduction of greenhouse-gas emissions

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications

Enhanced power and heat generation from biomass and municipal waste. Torsten Strand. Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten Strand Siemens Power Generation Industrial Applications Enhanced power and heat generation from biomass and municipal waste Torsten

More information

Gas turbine performance and maintenance continuous improvement

Gas turbine performance and maintenance continuous improvement Gas turbine performance and maintenance continuous improvement Dr. V. Navrotsky, Siemens Industrial Turbomachinery AB, Sweden Abstract To meet the dynamic market changes and to improve power plant competitiveness

More information

Combustion characteristics of LNG

Combustion characteristics of LNG Combustion characteristics of LNG LNG Fuel Forum, Stockholm 21. September 2011 Øyvind Buhaug, Principal Engineer - Fuels and Engine Technology, Statoil Content LNG compositions in the global market LNG

More information

ADVANCED CONTROL TECHNIQUE OF CENTRIFUGAL COMPRESSOR FOR COMPLEX GAS COMPRESSION PROCESSES

ADVANCED CONTROL TECHNIQUE OF CENTRIFUGAL COMPRESSOR FOR COMPLEX GAS COMPRESSION PROCESSES ADVANCED CONTROL TECHNIQUE OF CENTRIFUGAL COMPRESSOR FOR COMPLEX GAS COMPRESSION PROCESSES by Kazuhiro Takeda Research Manager, Research and Development Center and Kengo Hirano Instrument and Control Engineer,

More information

Recent Developments in Small Industrial Gas turbines

Recent Developments in Small Industrial Gas turbines Recent Developments in Small Industrial Gas turbines Ian Amos Product Strategy Manager Siemens Industrial Turbomachinery Ltd Lincoln, UK Content Gas Turbine as Prime Movers Applications History Technology

More information

ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT LNG RECEIVING TERMINALS

ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT LNG RECEIVING TERMINALS ECONOMICAL OPTIONS FOR RECOVERING NGL / LPG AT RECEIVING TERMINALS Presented at the 86 th Annual Convention of the Gas Processors Association March 13, 2007 San Antonio, Texas Kyle T. Cuellar Ortloff Engineers,

More information

THM Gas Turbines Heavy duty gas turbines for industrial applications

THM Gas Turbines Heavy duty gas turbines for industrial applications THM Gas Turbines THM Gas Turbines Heavy duty gas turbines for industrial applications Combined advantages The THM 1304 heavy duty gas turbine family consists of two members with ISO power outputs of 10,500

More information

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1 Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault

More information

Natural Gas Information Contents

Natural Gas Information Contents Natural Gas Information Contents What is natural gas Natural Gas Components Physical Properties of Natural Gas Different Forms of Natural Gas The Use of Natural Gas Co-generation System Natural Gas and

More information

Offshore Gas Turbines and Dry Low NOx Burners. An analysis of the Performance Improvements (PI) Limited Database

Offshore Gas Turbines and Dry Low NOx Burners. An analysis of the Performance Improvements (PI) Limited Database Offshore Gas Turbines and Dry Low NOx Burners An analysis of the Performance Improvements (PI) Limited Database Date Rev October 2014 0 February 2015 1 Technical Note [ENV002] Rev01 Page 1 of 29 February

More information

07 2015 CIMAC Position Paper

07 2015 CIMAC Position Paper 07 2015 CIMAC Position Paper Impact of Gas Quality on Gas Engine Performance By CIMAC WG17 Gas Engines This publication is for guidance and gives an overview regarding the assessment of impact of gas quality

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities Device Charts For Oil and Gas Handling and Production Facilities Purpose/Scope: The purpose of this document is to provide standardized guidance for use by the regulated community and air permit reviewers,

More information

Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service

Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service BP Lower 48 Onshore Operations Safety Manual Page 4.19 1 Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service I. General Requirements A. After motor vehicle accidents and underground excavation

More information

Source: EIA Natural Gas Issues and Trends 1998

Source: EIA Natural Gas Issues and Trends 1998 7.0 System Redesign Analysis 7.1 Emissions Natural gas is a clean burning fossil fuel. It consists of a mixture of hydrocarbon gases, primarily Methane (CH 4 ). In analyzing the combustion process, it

More information

Industrial Gas Turbines

Industrial Gas Turbines Industrial Power Industrial Gas Turbines The comprehensive product range from 5 to 50 megawatts Scan the QR code with the QR code reader in your mobile! siemens.com / energy / gasturbines Meeting your

More information

Power-Gen International 2008 Orlando, Florida www.siemens.com

Power-Gen International 2008 Orlando, Florida www.siemens.com ULTRA LOW NOX COMBUSTION TECHNOLOGY Power-Gen International 2008 Orlando, Florida www.siemens.com PowerGen International Orlando, Florida December 2008 2 ULTRA LOW NOX COMBUSTION TECHNOLOGY Clifford Johnson,

More information

Thermal Mass Flow Meters

Thermal Mass Flow Meters Thermal Mass Flow Meters for Greenhouse Gas Emissions Monitoring Natural Gas Measurement for Emissions Calculations Flare Gas Monitoring Vent Gas Monitoring Biogas and Digester Gas Monitoring Landfill

More information

SGT5-4000F Trusted Operational Excellence

SGT5-4000F Trusted Operational Excellence Power Gen Europe, Cologne / June 2014 SGT5-4000F Trusted Operational Excellence Dr. Eberhard Deuker, Siemens Energy siemens.com/answers Table of Content SGT5-4000F Trusted Operational Excellence Fleet

More information

www.klmtechgroup.com TABLE OF CONTENT

www.klmtechgroup.com TABLE OF CONTENT Page : 1 of 20 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 2 REFERENCES

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

Backup Fuel Oil System Decommissioning & Restoration Plan

Backup Fuel Oil System Decommissioning & Restoration Plan Backup Fuel Oil System Page 1 of 19 Overview of Physical Fuel Oil System and Decommissioning Steps The fuel oil system at Milford Power consists of a number of subsystems. These include the following:

More information

Design and Test Operation Performance of 1,500 C Class Gas Turbine Combined-Cycle Power Plant:

Design and Test Operation Performance of 1,500 C Class Gas Turbine Combined-Cycle Power Plant: 31 Design and Test Operation Performance of 1,500 C Class Gas Turbine Combined-Cycle Power Plant: Construction of Group 1 of the Tokyo Electric Power Company s Kawasaki Thermal Power Station KIYOSHI KAWAKAMI

More information

February 2013. Service Division. Unrestricted Siemens AG 2013. All rights reserved.

February 2013. Service Division. Unrestricted Siemens AG 2013. All rights reserved. February 2013 Service Division 170 180 20 siemens.com/energy Energy Service Division Market and Locations Market Growing market for efficiency Ageing fleet with potential for modernization & upgrade services

More information

Successfully Integrating Natural Gas from Multiple Origins: The Spanish Case Story

Successfully Integrating Natural Gas from Multiple Origins: The Spanish Case Story Successfully Integrating Natural Gas from Multiple Origins: The Spanish Case Story José A. Lana Enagás, S.A. Direction of Technology and Innovation Zaragoza, Spain Index 1. Enagás 2. Natural gas in Spain,

More information

Biogas as transportation fuel

Biogas as transportation fuel Biogas as transportation fuel Summary Biogas is used as transportation fuel in a number of countries, but in Europe it has only reached a major breakthrough in Sweden. All of the biogas plants in Sweden

More information

LOW EMISSION COMBUSTION TECHNOLOGY FOR STATIONARY GAS TURBINE ENGINES

LOW EMISSION COMBUSTION TECHNOLOGY FOR STATIONARY GAS TURBINE ENGINES LOW EMISSION COMBUSTION TECHNOLOGY FOR STATIONARY GAS TURBINE ENGINES by Stuart A. Greenwood Group Manager Solar Turbines Inc. San Diego, California Stuart A. Greenwood is the Group Manager of the Advanced

More information

Tips for burner modulation, air/fuel cross-limiting, excess-air regulation, oxygen trim and total heat control

Tips for burner modulation, air/fuel cross-limiting, excess-air regulation, oxygen trim and total heat control Boiler control Tips for burner modulation, air/fuel cross-limiting, excess-air regulation, oxygen trim and total heat control Boilers are often the principal steam or hot-water generators in industrial

More information

SGT-800 GAS TURBINE CONTINUED AVAILABILITY AND MAINTAINABILITY IMPROVEMENTS. Dr. Vladimir Navrotsky Lena Strömberg Claes Uebel

SGT-800 GAS TURBINE CONTINUED AVAILABILITY AND MAINTAINABILITY IMPROVEMENTS. Dr. Vladimir Navrotsky Lena Strömberg Claes Uebel SGT-800 GAS TURBINE CONTINUED AVAILABILITY AND MAINTAINABILITY IMPROVEMENTS Dr. Vladimir Navrotsky Lena Strömberg Claes Uebel Siemens Industrial Turbomachinery AB Finspong, Sweden POWER-GEN Asia 2009 Bangkok,

More information

Gas Standards and Safety. Guidance Note GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000

Gas Standards and Safety. Guidance Note GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000 Gas Standards and Safety Guidance Note January 2015 (GN106) Version 1.0 GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000 A guide to assist in the design of biogas

More information

INDEX 9-7-100 GENERAL

INDEX 9-7-100 GENERAL REGULATION 9 INORGANIC GASEOUS POLLUTANTS RULE 7 NITROGEN OXIDES AND CARBON MONOXIDE FROM INDUSTRIAL, INSTITUTIONAL AND COMMERCIAL BOILERS, STEAM GENERATORS AND PROCESS HEATERS INDEX 9-7-100 GENERAL 9-7-101

More information

COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR

COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR COMBUSTION STUDIES OF NATURAL GAS AND SYN-GAS WITH HUMID AIR Abstract Dr. Michael Nakhamkin Eric Swensen Hubert Paprotna Energy Storage and Power Consultants 200 Central Avenue Mountainside, New Jersey

More information

GT2007-28337 GT 2007-28337

GT2007-28337 GT 2007-28337 Proceedings of GT2007 ASME Turbo Expo 2007: Power Proceedings for Land, Sea of and GT2007 Air ASME Turbo Expo May 2007: 14-17, Power 2007, for Montreal, Land, Sea Canada and Air May 14-17, 2007, Montreal,

More information

Gas Detection for Refining. HA University

Gas Detection for Refining. HA University Gas Detection for Refining HA University Refinery Process and Detection Needs Refining i Crude Oil Final Products Coke Asphalt Waxes, Lubricating Oils and Greases Kerosene, Jet Fuel, Diesel Fuel, Home

More information

F ox W hi t e Paper. Reduce Energy Costs and Enhance Emissions Monitoring Systems

F ox W hi t e Paper. Reduce Energy Costs and Enhance Emissions Monitoring Systems F ox W hi t e Paper Reduce Energy Costs and Enhance Emissions Monitoring Systems A Technical White Paper from Fox Thermal Instruments Rich Cada, VP Sales & Marketing, Fox Thermal Instruments, Inc. 399

More information

Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district

Torino Nord. Cogeneration Plant. The gas turbine. The steam generator. The Torino Nord cogeneration plant produces electricity and heat for district PLANT TORINO NORD Iren Energia is the company in the Iren Group whose core businesses are the production and distribution of electricity, the production and distribution of thermal energy for district

More information

LEAN LNG PLANTS HEAVY ENDS REMOVAL AND OPTIMUM RECOVERY OF LIGHT HYDROCARBONS FOR REFRIGERANT MAKE-UP

LEAN LNG PLANTS HEAVY ENDS REMOVAL AND OPTIMUM RECOVERY OF LIGHT HYDROCARBONS FOR REFRIGERANT MAKE-UP LEAN LNG PLANTS HEAVY ENDS REMOVAL AND OPTIMUM RECOVERY OF LIGHT HYDROCARBONS FOR REFRIGERANT MAKE-UP Laurent Brussol Dominique Gadelle Arnaud Valade Process & Technologies Division Technip Paris La Défense

More information

Development of Coal Gasification System for Producing Chemical Synthesis Source Gas

Development of Coal Gasification System for Producing Chemical Synthesis Source Gas 27 Development of Coal Gasification System for Producing Chemical Synthesis Source Gas TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *1 KATSUHIRO OTA *2 TAKASHI IWAHASHI *3 YUUICHIROU KITAGAWA *4 KATSUHIKO YOKOHAMA

More information

Clean Energy Systems, Inc.

Clean Energy Systems, Inc. Clean Energy Systems, Inc. Clean Energy Systems (CES) technology is a zero emission, oxy-fuel combustion power plant. CES approach has been to apply gas generators and high-temperature, high-pressure,

More information

Application and Design of the ebooster from BorgWarner

Application and Design of the ebooster from BorgWarner Application and Design of the ebooster from BorgWarner Knowledge Library Knowledge Library Application and Design of the ebooster from BorgWarner With an electrically assisted compressor, the ebooster,

More information

Gas Burner Technology & Gas Burner Design for Application

Gas Burner Technology & Gas Burner Design for Application Gas Burner Technology & Gas Burner Design for Application 1 Dr. Gunther Bethold Managing Director Dr.Luca Barozzi Ing. Massimo Dotti Ing. Massimo Gilioli Dr. Gabriele Gangale Engineering Staff 2 Index

More information

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University) A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics

More information

Laws and price drive interest in LNG as marine fuel

Laws and price drive interest in LNG as marine fuel Laws and price drive interest in LNG as marine fuel The use of LNG as a marine fuel is one of the hottest topics in shipping. This growing interest is driven by legislation and price. By Henrique Pestana

More information

The Use of Exhaust Gas Recirculation (EGR) Systems in Stationary Natural Gas Engines. The Engine Manufacturers Association August 2004

The Use of Exhaust Gas Recirculation (EGR) Systems in Stationary Natural Gas Engines. The Engine Manufacturers Association August 2004 www.enginemanufacturers.org Two North LaSalle Street Suite 2200 Chicago, Illinois 60602 Tel: 312/827-8700 Fax: 312/827-8737 The Use of Exhaust Gas Recirculation (EGR) Systems in Stationary Natural Gas

More information

Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project

Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project Bengt Ridell Carl Bro Energikonsult AB, Sweden, 2005-04-15 bengt.ridell@carlbro.se 1. Background The largest private utility company

More information

Operational Flexibility Enhancements of Combined Cycle Power Plants. Dr. Norbert Henkel, Erich Schmid and Edwin Gobrecht

Operational Flexibility Enhancements of Combined Cycle Power Plants. Dr. Norbert Henkel, Erich Schmid and Edwin Gobrecht Operational Flexibility Enhancements of Combined Cycle Power Plants Dr. Norbert Henkel, Erich Schmid and Edwin Gobrecht Siemens AG, Energy Sector Germany POWER-GEN Asia 2008 Kuala Lumpur, Malaysia October

More information

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers For Industrial Heating Equipment and Boilers Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC

More information

DURR Thermal Oxidizer Research. 4/27/2004 Intel Corporation Community Meeting

DURR Thermal Oxidizer Research. 4/27/2004 Intel Corporation Community Meeting DURR Thermal Oxidizer Research History of Research A small group consisting of community members Steve Martinez and Edward Pineda along with Intel employees Peter Clugston, Heath Foott and Bill Westmoreland

More information

Why and How we Use Capacity Control

Why and How we Use Capacity Control Why and How we Use Capacity Control On refrigeration and air conditioning applications where the load may vary over a wide range, due to lighting, occupancy, product loading, ambient weather variations,

More information

GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS

GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli

More information

Technical Solutions for Emissions Reduction

Technical Solutions for Emissions Reduction Genera 2015 Technical Solutions for Emissions Reduction Juan Nogales GE Power & Water Madrid, February 24, 2015 2015 General Electric Company. All rights reserved. This material may not be copied or distributed

More information

It s time for H.E.R.O. Energy Saving Strategy for. Tunnel & Shuttle Kilns

It s time for H.E.R.O. Energy Saving Strategy for. Tunnel & Shuttle Kilns Energy Saving Strategy for Tunnel & Shuttle Kilns SANITARY WARE 1 Introduction The application of the Kyoto protocol and the effects of the recent energy crisis, have highlighted just how important it

More information

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines 36 Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines KEIICHI SHIRAISHI *1 YOSHIHISA ONO *2 YUKIO YAMASHITA *3 MUSASHI SAKAMOTO *3 The extremely slow steaming of ships has become

More information

The California GHG Emissions Reporting Tool

The California GHG Emissions Reporting Tool 12/01/2010 11:48:54 Facility Information: Chevron Products Company - Richmond Refinery, 94802 Facility Name Chevron Products Company - Richmond Refinery, 94802 ARB ID 101384 Primary Sector Secondary Sectors

More information

Fiscal Measurement Natural Gas

Fiscal Measurement Natural Gas White Paper FSG-WP-0012 February 2014 Fiscal Measurement Natural Gas Fiscal Measurement How much? Fiscal Measurement must not be confused with Custody Transfer; in fact, fiscal measurement is a more general

More information

Facts about gas physical properties

Facts about gas physical properties Facts about gas physical properties Gas as fuel for propulsion of ships status and perspectives Ingeniørhuset, 3. March 2008 By Asger Myken, DONG Energy DONG Energy 2 Agenda Basic information on gas types

More information

SNAP CODE: 090206. SOURCE ACTIVITY TITLE: Flaring in Gas and Oil Extraction NOSE CODE: 109.03.14

SNAP CODE: 090206. SOURCE ACTIVITY TITLE: Flaring in Gas and Oil Extraction NOSE CODE: 109.03.14 SNAP CODE: 090206 SOURCE ACTIVITY TITLE: WASTE INCINERATION Flaring in Gas and Oil Extraction NOSE CODE: 109.03.14 NFR CODE: 1 B 2 c 1 ACTIVITIES INCLUDED Flaring is gas combusted without utilisation of

More information

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology The IGCC Process: From Coal To Clean Electric Power Outlook on Integrated Gasification Combined Cycle (IGCC) Technology Testimony of Edward Lowe Gas Turbine-Combined Cycle Product Line Manager General

More information

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES Filippo Turra Product Manager Cooling Technology INTRODUCTION

More information

Signature and ISX CM870 Electronics

Signature and ISX CM870 Electronics Signature and ISX CM870 Electronics Cummins West Training Center System Description General Information The Signature and ISX CM870 engine control system is an electronically operated fuel control system

More information

Micro Motion 3098 Gas Specific Gravity Meter

Micro Motion 3098 Gas Specific Gravity Meter Product Data Sheet PS-001161, Rev. D April 2013 Micro Motion 3098 Gas Specific Gravity Meter Micro Motion density and concentration meters are built to tackle the most demanding process and fiscal applications.

More information

Zero Emission Engine. An Economic and Environmental Benefit

Zero Emission Engine. An Economic and Environmental Benefit Zero Emission Engine An Economic and Environmental Benefit Saskia Scherfling Registration number: 731805 Department: VIII Course of studies: Process and Environmental Engineering September 2007 Table of

More information

Perspective on R&D Needs for Gas Turbine Power Generation

Perspective on R&D Needs for Gas Turbine Power Generation Perspective on R&D Needs for Gas Turbine Power Generation Eli Razinsky Solar Turbine Incorporated 2010 UTSR Workshop October 26, 2011 1 Research Requirements Overview Specific Requirements 2 Society Requirements

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatE21: Last updated: 15th January 2011 Author: Patrick J. Kelly This patent describes methods for altering HHO gas so that it can be used in vehicle engines

More information

CNG, LNG, and Other Fuels from Landfill Gas ---Prospects for Future Development----

CNG, LNG, and Other Fuels from Landfill Gas ---Prospects for Future Development---- CNG, LNG, and Other Fuels from Landfill Gas ---Prospects for Future Development---- California Biomass Collaborative 4 th Annual Forum March 28, 2007 Sacramento, California Patrick Sullivan SCS Engineers

More information

BorsodChem MCHZ, Czech Republic. 6,000 Nm 3 /h HTCR Topsøe Hydrogen Plant A Case Story: 18 Months from Engineering to Operation

BorsodChem MCHZ, Czech Republic. 6,000 Nm 3 /h HTCR Topsøe Hydrogen Plant A Case Story: 18 Months from Engineering to Operation 6,000 Nm 3 /h HTCR Topsøe Hydrogen Plant 2 1. Introduction... 3 2. The BorsodChem MCHZ Company... 3 3. HTCR Process and Reformer Principle...4 4. Engineering of the BorsodChem MCHZ HTCR Plant... 6 5. Workshop

More information

Optimizing Flare System Performance at the Valero Sunray Refinery

Optimizing Flare System Performance at the Valero Sunray Refinery Engineering Excellence Webinar Series: Optimizing Flare System Performance at the Valero Sunray Refinery Presented by: James Holoboff Process Ecology April 28, 2011 2010 Aspen Technology, Inc. All rights

More information

Combustion, Fuels and Emissions for Industrial Gas Turbines

Combustion, Fuels and Emissions for Industrial Gas Turbines Proceedings of the Forty-Second Turbomachinery Symposium October 1-3, 2012, Houston, Texas Combustion, Fuels and Emissions for Industrial Gas Turbines Michael Welch Industry Marketing Manager Siemens Industrial

More information

Flame Conductivity VS Flame Rectification Systems

Flame Conductivity VS Flame Rectification Systems Flame Conductivity VS Flame Rectification Systems There are two basic principles in flame rod detection systems-flame conductivity and flame rectification. Conductivity systems are, for the most part no

More information

Efficiency Options for Thermal & Catalytic Oxidizers

Efficiency Options for Thermal & Catalytic Oxidizers Efficiency Options for Thermal & Catalytic Oxidizers Kyle Momenee / Application Engineer Anguil Environmental Systems Inc. www.anguil.com EPA Roundtable March 25 th, 2009 1 Background-Anguil Environmental

More information

US Heavy Duty Fleets - Fuel Economy

US Heavy Duty Fleets - Fuel Economy US Heavy Duty Fleets - Fuel Economy Feb. 22, 2006 Anthony Greszler Vice President Advanced Engineering VOLVO POWERTRAIN CORPORATION Drivers for FE in HD Diesel Pending oil shortage Rapid oil price increases

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

Dry Gas Seals for LNG Compressors

Dry Gas Seals for LNG Compressors SEALING solutions Dry Gas Seals for LNG Compressors Sealing answers for liquefied natural gas By Daniel Goebel and Francesco Grillo, EagleBurgmann With the discoveries of large new natural gas deposits,

More information

Putting a chill on global warming

Putting a chill on global warming Carbon capture and storage Putting a chill on global warming SABINE SULZER SULZER PUMPS MARKUS DUSS SULZER CHEMTECH Whenever fuel is burned, carbon dioxide (CO ) is emitted into the atmosphere. The subsequent

More information

How To Make A High Co 2 Gas Blend

How To Make A High Co 2 Gas Blend ECONOMICAL OPTION FOR CO 2 / METHANE SEPARATION IN PRODUCED GAS CONTAINING A HIGH CO 2 FRACTION F. Patrick Ross, P.E. TPR Consulting 9907 Sagecourt Drive Houston, Texas 77089 (713) 870-9208 pat.ross@att.net

More information

Industrial Power. SGT-800 Gas Turbine. Power Generation: (ISO) 47.5 MW(e) / 50.5 MW(e) www.siemens.com / energy

Industrial Power. SGT-800 Gas Turbine. Power Generation: (ISO) 47.5 MW(e) / 50.5 MW(e) www.siemens.com / energy Industrial Power SGT-800 Gas Turbine Power Generation: Simple Cycle Combined Cycle 2x1 (ISO) 47.5 MW(e) / 50.5 MW(e) (ISO) 135.4 MW(e) / 143.6 MW(e) www.siemens.com / energy Nomenclature SC: CC: SCC: DLE:

More information

Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems. Combustion Technology

Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems. Combustion Technology Combustion Technology INNOVATIVE SOLUTIONS FOR COMBUSTION AND EMISSIONS CHALLENGES Process Heater Burners, Flare Systems, Thermal Oxidizers and Catalyst Systems Callidus Technologies by Honeywell - Experie

More information

Note: This information obtained from internet sources and not verified- use at your own risk!!!!

Note: This information obtained from internet sources and not verified- use at your own risk!!!! Cummins Engine Diagnostic Fault Codes for 2003 and later engines (generally for 2004 and later Alpines; see page 13 for earlier engine diagnostic codes): Note: This information obtained from internet sources

More information

Use of Nitrogen Purge in Flare and Vent Systems

Use of Nitrogen Purge in Flare and Vent Systems DANISH OPERATORS Offshore Oil and Gas Operators in Denmark Use of Nitrogen Purge in Flare and Vent Systems 7 September 2009 Esplanaden 50 1263 Copenhagen K Denmark Telephone: +45 3363 4097 E-mail: info@danishoperators.com

More information

Technical Specification. Generating Set with Waukesha engine burning natural gas

Technical Specification. Generating Set with Waukesha engine burning natural gas Technical Specification Generating Set with Waukesha engine burning natural gas The following presents the Gas Engine Generating Set (GEGS) APG1000 type, based on Waukesha gas engine 16V150LTD. Using the

More information

Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project

Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project WHEC 16 / 13-16 June 2006 Lyon France 1(10) Malmö Hydrogen and CNG/Hydrogen filling station and Hythane bus project Bengt Ridell Carl Bro Energikonsult AB, Sweden, 2006-04-21 bengt.ridell@carlbro.se Abstract:

More information

Common Boiler Excess Air Trends and Strategies to Optimize Efficiency

Common Boiler Excess Air Trends and Strategies to Optimize Efficiency Common Boiler Excess Air Trends and Strategies to Optimize Efficiency Kevin Carpenter and Chris Schmidt, Energy & Resource Solutions Kelly Kissock, University of Dayton ABSTRACT Boilers are among the most

More information

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with

More information

E-gas Instant Gas Water Heaters

E-gas Instant Gas Water Heaters The Proven Preferred Choice! E-gas Instant Gas Water Heaters Training & Information Manual: There are important functional and operational differences between the conventional hot water geyser and the

More information

DRY SCREW COMPRESSOR PERFORMANCE AND APPLICATION RANGE

DRY SCREW COMPRESSOR PERFORMANCE AND APPLICATION RANGE DRY SCREW COMPRESSOR PERFORMANCE AND APPLICATION RANGE by Jürgen Wennemar Design Engineer Dry Screw Compressors MAN Turbo AG Oberhausen, Germany Jürgen Wennemar is a Design Engineer for Dry Screw Compressors

More information

NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS

NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS NITROGEN OXIDES FORMATION in combustion processes NITROGEN OXIDES FORMED DURING COMBUSTION N 2 O - nitrous oxide NO - nitric oxide NO 2 - nitrogen dioxide N = 14, O 2 =16, NO = 30, NO 2 = 46 CONTRIBUTION

More information

Nitrogen Blanketing for Methanol Storage and Transportation

Nitrogen Blanketing for Methanol Storage and Transportation Nitrogen Blanketing for Methanol Storage and Transportation Overview Air is the enemy of many materials. Not only can oxygen cause safety concerns and product degradation, but moisture, dirt, hydrocarbons

More information

Company Name: City, State, Zip Code: Annual Report Summary

Company Name: City, State, Zip Code: Annual Report Summary Company Information 2014 Company Name: Contact: Title: Address: City, State, Zip Code: Telephone: Fax: E-mail: Transmission Sector Summary BMP 1: Directed inspection and maintenance at compressor stations

More information

Turbine Inlet Cooling

Turbine Inlet Cooling Section 2 Turbine Inlet Cooling Reference Charts 32 Relative system costs for an F-class combined cycle 33 Change in power output with ambient air temperature 34 Example of MS7001 design heat rate, flow

More information

Originators of the Flexible Water Tube design

Originators of the Flexible Water Tube design BRYAN FLEXIBLE WATER TUBE AB SERIES STEAM AND WATER BOILER 900,000 TO 3,000,000 BTUH FORCED DRAFT GAS, OIL OR DUAL FUEL FIRED Water Boiler AB120-W-FDGO Steam Boiler AB250-S-150-FDG Originators of the Flexible

More information

Effect of Self-Heat Circulation on VOCs Decomposition in Regenerative Thermal Oxidizer

Effect of Self-Heat Circulation on VOCs Decomposition in Regenerative Thermal Oxidizer Effect of Self- Circulation on VOCs Decomposition in Regenerative Thermal Oxidizer Shinsuke Iijima 1, Katsuya Nakayama 1, Koichi Ushiroebisu 1 Mitsuhiro Kubota 2 and Hitoki Matsuda 2 1. Engineering Division,

More information

M/MR Modulating Valves TABLE OF CONTENTS DESCRIPTION SPECIFICATIONS. For Atmospheric, Infrared, and Direct Fired Burners

M/MR Modulating Valves TABLE OF CONTENTS DESCRIPTION SPECIFICATIONS. For Atmospheric, Infrared, and Direct Fired Burners M/MR Modulating Valves design certified For Atmospheric, Infrared, and Direct Fired urners TALE OF CONTENTS Description/Specifications... 1 Introduction... 2 Direct Fired Applications (Negative Pressure)...

More information

Siemens Gas Turbines over 100 MW

Siemens Gas Turbines over 100 MW Siemens Gas Turbines over 100 MW Proven and reliable Answers for energy. State-of-the-art and innovative gas turbines to meet today s energy needs Changes in today s energy markets are presenting power

More information

Top Technology for Industry, Agriculture, Business and Communities

Top Technology for Industry, Agriculture, Business and Communities Top Technology for Industry, Agriculture, Business and Communities CHP The Technology with a Potential for Saving Energy Combined Heat and Power (CHP) is a highly efficient technology for the conversion

More information

HSE information sheet. Fire and explosion hazards in offshore gas turbines. Offshore Information Sheet No. 10/2008

HSE information sheet. Fire and explosion hazards in offshore gas turbines. Offshore Information Sheet No. 10/2008 HSE information sheet Fire and explosion hazards in offshore gas turbines Offshore Information Sheet No. 10/2008 Contents Introduction.. 2 Background of gas turbine incidents in the UK offshore sector...2

More information

EMISSIONS FROM MARINE ENGINES VERSUS IMO CERTIFICATION AND REQUIREMENTS OF TIER 3

EMISSIONS FROM MARINE ENGINES VERSUS IMO CERTIFICATION AND REQUIREMENTS OF TIER 3 Journal of KONES Powertrain and Transport, Vol. 18, No. 2 2011 EMISSIONS FROM MARINE ENGINES VERSUS IMO CERTIFICATION AND REQUIREMENTS OF TIER 3 Jerzy Herdzik Gdynia Maritime University Marine Power Plant

More information

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more

More information