in the Periodic Table Reading: Gray: (2-2) to (2-4) and (2-9) OGN: (3.1), (15.8) and (15.9)

Size: px
Start display at page:

Download "in the Periodic Table Reading: Gray: (2-2) to (2-4) and (2-9) OGN: (3.1), (15.8) and (15.9)"

Transcription

1 in the Periodic Table Reading: Gray: (2-2) to (2-4) and (2-9) OGN: (3.1), (15.8) and (15.9)

2 Now We Can Understand Arrangement of the Periodic Table of Elements Trends in Atomic Size Trends in Ionization Energy Trends in Electron Affinity Trends in Electronegativity Various Types of Chemical Bonds Combining Ratios of Oxides and Hydrides Shapes of Molecules

3 Dmitri Mendeleev St. Petersburg University Invented the periodic table in Also in that year, he published his book, "Principles of Chemistry." His book compared the atomic weights and the properties of elements that were not known back then. 1906: One vote away from winning a Nobel Prize Died in 1907

4 Solid-State Molar Volumes ( 3D ) Molar volume cm 3 mol ( ) Cs Rb K 20 0 H Li Na Ca Sr Ba Mg N O F B C Al Si P S Cl Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Lu Hf Ta W ReOs Ir Pt Au Hg Tl Pb Bi Po At Be He Ne Ar Kr Xe Rn In 1875, Lothar Meyer deduces a periodic trend

5 Energy of One Electron in a H atom * E(eV) (vacuum energy) 4s 4p 4d 4f 3s 3p 3d s 2p s * E = -k n 2 where k=13.6 ev; n is the principal quantum number

6 Multiple-Electron Atoms None of the e - eclipsed: Z eff = Z One e - eclipsed: Z eff = Z - 1 On Average, Z eff < Z How Much Less Z eff < Z Determines Atomic Properties

7 r 2 R 2 1s 2s z r 2 R 2 1s 2p x x

8 Shielding r 2 R 2 1s 2p 2s r 2 R 2 = probability of finding an electron on the sphere of radius r An electron in the 2p orbital penetrates somewhat into the 1s orbital r

9 Shielding r 2 R 2 1s 2p 2s r 2 R 2 = probability of finding an electron on the sphere of radius r But a 2s electron penetrates the 1s orbital better than a 2p electron r

10 r 2 R 2 Shielding 1s 3d 3p 3s Penetration: 3s > 3p > 3d A 3s electron penetrates the 1s orbital better than a 3p electron r

11 r 2 R 2 1s 4f Shielding 4d 4p 4s Penetration: 4s > 4p > 4d > 4f A 4s electron penetrates the 1s orbital better than a 4p electron r

12 Another View of 2s vs 2p Shielding 1s 2s 1s 2p shielded electron density 2s Penetrates More into 1s Than Does 2p 2s is Therefore Lower in E Than 2p

13 Energy of Multi-Electron Atoms 0 (e t c.) 5s 4s 4p 3d E 3s 2s 1s 3p 2p due to shielding, orbitals with the same principal quantum number(n) do NOT have the same energies

14 Mnemonic for Filling Order 1s 2s 2p hence the filling order is: 1s, 2s, 2p, 3s, 3p, 4s, 3d, etc. 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f

15 0 e t c. Valence Electrons 5s 4s 3p E 3s 1. H (1s) 1 2s 1s 4p 2p Valence Electrons: electrons in the outermost shell (in other words, the set 3d of electrons with highest principal quantum number) 2. He (1s) 2 3. Li (1s) 2 (2s) 1 4. Be (1s) 2 (2s) 2 5. B (1s) 2 (2s) 2 (2p) 1 6. C (1s) 2 (2s) 2 (2p) 2 7. N (1s) 2 (2s) 2 (2p) 3 8. O (1s) 2 (2s) 2 (2p) 4 9. F (1s) 2 (2s) 2 (2p) Ne (1s) 2 (2s) 2 (2p) 6 e t c. element shell electrons in shell valence electrons (underlined) 2p- orbital

16 Orbital Filling Energies Example: lowest energy for 3 electrons in p orbital energy increases when a second electron is put in same orbital energy also increases when spins are mixed in orbitals

17 Organization of Periodic Chart 1s 2s 3s 4s 5s 6s 7s 3d 4d 5d 6d 2p 3p 4p 5p 6p 1s 4f 5f

18 H Li Na Be Mg Exceptions to Filling Order 2s 3s 4s 3d 2p 3p 4p B Al C Si N P O S F Cl He Ne Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 23. V (4s) 2 (3d) Cr (4s) 1 (3d) Mn (4s) 2 (3d) Zr (5s) 2 (4d) Nb (5s) 1 (4d) Mo (5s) 1 (4d) 5 Exceptions occur because electrons don t like to pair up in orbitals; so the highlighted atoms have lower energy. 4s 3d

19 Element Groups Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L r Lanthanides Actinides

20 Hydrogen: From Greek: Hydro-genes: Water forming Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L r Lanthanides Actinides

21 Iodine: violet crystals From Greek iodes : violet Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L r Lanthanides Actinides

22 Carbon From Latin carbo : charcoal Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L r Lanthanides Actinides

23 Calcium From Latin calx : limestone Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L r Lanthanides Actinides

24 Iron: Fe From Latin iron : ferrum Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L r Lanthanides Actinides

25 Gold: Au From Latin aurum : shining dawn Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L r Lanthanides Actinides

26 Lead: Pb From Latin plumbum : heavy Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No L r Lanthanides Actinides

27 Cobalt: Co From German kobold : goblin or evil spirits Unwanted metal in what were thought to be copper ores Alkali metals Inert or Noble gases H Alkali earths Halogens He Li Na Be Mg Transition metals B Al C Si N P O S F Cl Ne Ar K Rb Cs Ca Sr Ba Sc Y La T i Z r Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg Ga In Tl Ge Sn Pb As Sb Bi Se Te Po Br I At Kr Xe Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Lanthanides Actinides

28 Effective Nuclear Charge e - p (Z eff = 1.0) p e - e - H H - (Z eff 0.7) (Z eff = 1.0) e - H p e - p p e - (Z eff 1.8) He

29 Atomic Size and Ionization Energy e - (Z eff = 1.0) e - p p Bigger e - H H - (Z eff 0.7) (Z eff = 1.0) e - p e - p p e - Smaller H He (Z ef f 1.8)

30 Trends in Z eff e - p 1s e - p p e - 1s Smaller H (Z eff =1.0) He (Z eff 1.8) 1s e - p p p e - e - Bigger 2s e - 1s p p e - p p e - e - Smaller Again 2s Li (Z eff 1.2 in n=2) Be (Z eff 2.0 in n=2)

31 Bigger Atomic Sizes H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Ac Bigger Z=4 Z=11 Z=3 Li Be Z eff 1.2 (n=2) Z eff 2.0 (n=2) Na Z eff 1.0 (n=3)

32 Solid-State Molar Volumes ( 3D ) Molar volume cm 3 mol ( ) Cs Rb K 20 0 H Li Na Ca Sr Ba Mg N O F B C Al Si P S Cl Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Lu Hf Ta W ReOs Ir Pt Au Hg Tl Pb Bi Po At Be He Ne Ar Kr Xe Rn

33 H Atomic Radius: A Closer Look He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Ac Closed 2s shell; r Smaller than expected 2p more fully screened than 2s r Bigger than Expected (relative atomic sizes) (expected size) H He Li Be B C 2p: 2s: 1s:

34 H Exceptions to Atomic Radius Trend He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Ac Half-filled p Shell r Smaller Than Expected Extra Repulsion in 2p set r Bigger Than Expected B C N O F Ne (relative atomic sizes) (expected sizes) 2p: 2s: 1s:

35 Larger Ionization Energies H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm B k Cf Es Fm Md No Lr e - p Larger 1s 0 E H Smaller r Higher I.E. e - p p e - 1s H (Z eff =1.0) He (Z eff 1.8) He Smaller Atoms Harder to Remove Electrons

36 First Ionization Energy ( 3D ) st IE ( ) kj mol

37 Details of Ionization Energies 2500 He Ionization Energy (kj/mol) H 2p vs 2s shielding N Be C O F Ne 500 Li B 2p pairing penalty Atomic Number Smaller r = Higher I.E.

38 3 Ionic Radii Ionic Radius Å Be 2+ N Rb + Cs + Na K + Li + Ti 4+ Zr 4+ Hf 4+ Al P3- As3- Sb Atomic Number Radius decreases for isoelectronic atoms as Positive charge increases ( ) Discontinuity at K + due to d-orbitals (increased Z eff )

39 Lanthanide Contraction Ionic Radius Å Series La 1 Ce 2 Pr 3 Nd 4 Pm 5 Sm 6 Eu 7 Gd 8 Tb 9 10 Dy Ho 11 Er 12 Tm Yb Lu 15 (M 3+ ) All are 5s 2 5p 6 4f n-1 Responsible for many features of TM s that follow Lanthanides in periodic table

40 Electron Affinity Energy Released By Addition of an Electron to the Element e - p + e - E.A.of H e - p e - H E = 77 kj/mol H - E.A. = 77 kj/mol By Definition, E.A is Positive when Energy is Released (Opposite the thermodynamic definition!)

41 Electron Affinity vs. Ionization Energy e - p e - E.A.of H + e - p I.E. of H - H e - H - = (+) Electron Affinity of Element X (+) Ionization Energy of Anion X -

42 Larger Electron Affinity H He Li Be B C N O F Ne Na K Rb Cs Fr Mg Ca Sr Ba Ra La Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm B k Cf Es Fm Md No Lr Sc Y Ti V Cr Mn Fe Co Ni Zr Nb Mo Tc Ru Rh Pd Al Si Cu Zn Ga Ge Ag Cd In Sn P S Cl Ar As Se Br Kr Sb Te I Xe Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Larger O F Ne EA kj/mol

43 Electron Affinity ( 3D ) E.A. ( kj ) mol Note: Black elements have negative EA s

44 Electron Affinity vs. Ionization Energy Electron Affinity Can be either + or - in sign No atom has a positive 2 nd E.A. Ionization Energy Always Positive 2 nd I.E.s are always > 1 st I.E. s

45 Electronegativity Larger EN = I.E. + E.A. 2 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm B k Cf Es Fm Md No Lr Larger Electronegativity Generally Follows I.E. Trend

46 Electronegativity ( 3D ) (Arbitrary Pauling units)

47 Electronegativity, I.E., and E.A. In a bond, the distribution of electrons is determined by how much each atom pulls on its own as well as the other atom s electrons. So electronegativity = I.E. + E.A. Example: Na Na has low E.A. and I.E. Cl has high E.A. and I.E. EN Electronegativity = (I.E. + E.A.)/2 Cl is more electronegative than Na. small e Cl Table Salt big EN

48 Larger Some Representative Electronegativities H Li Na K Rb Cs Be Mg Ca Sr Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Sc Y Lu Ti Zr Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg B Al Ga In Tl C Si Ge Sn Pb N P As Sb Bi O S Se Te Po F Cl Br I At He Ne Ar Kr Xe Rn Fr Ra Ac Th Pa U Np Pu Am Cm B k Cf Es Fm Md No Lr Larger Electronegativities: Be = 1.6 C = 2.6 Na = 0.9 As = 2.2 Fr = 0.7 F = 4.0 Fluorine has the highest electronegativity, Francium has the lowest E.N.

49 Types of Chemical Bonds Ionic Bonding Na + Cl [Na] + [Cl] - Na has Low I.E., low E.A. Lower EN; loses e - Cl has High I.E., high E.A. Higher EN; gains e - Li + H [Li] + [ H] - Li has Low I.E., low E.A. loses e - H has High I.E., high E.A. e - Lower EN; Higher EN; gains

50 Types of Chemical Bonds Covalent Bonding Cl + Cl Cl Cl = Cl Cl H + Br H Br = H Br Electrons Shared Equally Hydrogen Bonding: Cl H... OH 2 Van der Waals Bonding: Ar... HCl

51 Now We Can Understand Arrangement of the Periodic Table of Elements Trends in Atomic Size Trends in Ionization Energy Trends in Electron Affinity Trends in Electronegativity Various Types of Chemical Bonds Combining Ratios of Oxides and Hydrides Shapes of Molecules

52 Periodic Trends in Bonding Stoichiometry of Binary Hydrides LiH BeH 2 BH 3 CH 4 NH 3 H 2 O HF NaH MgH 2 AlH 3 SiH 4 PH 3 H 2 S HCl H H - H + He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

53 Periodic Trends in Bonding Stoichiometry of Binary Oxides Li 2 O BeO Na 2 O MgO B 2 O 3 CO 2 N 2 O 5 O 2 OF 2 Al 2 O 3 SiO 2 P 2 O 5 SO 3 OCl 2 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr H a X b for Hydrides; O a/2 X b (Usually) for Oxides

54 H.M.S. Sheffield Falklands War of 1982 Al normally inert due to formation of tough surface coating of Al 2 O 3 Al metal burns in air and if hot enough, will form Al 2 O 3 continuously from H 2 O

55 Acid/Base Properties of Oxides Basic Na 2 O(s) + H 2 O 2 Na + (aq) + 2 OH - (aq) BaO(s) + H 2 O Ba 2+ (aq) + 2 OH - (aq) Basic MnO(s) + 2H + NiO(s) + 2H + Mn 2+ (aq) + H 2 O Ni 2+ (aq) + H 2 O Acidic SO 3 (s) + H 2 O H + (aq) + HSO 4- (aq) P 4 O 10 (s) + 6H 2 O 4 H + (aq) + 4H 2 O PO 3- (aq) Basic oxides have pushed too much electron density Onto O, and it loses it by reacting with H 2 O (liberating OH - ) Acidic oxides have less electron density than they can accomodate, and so grab more O from H 2 O (liberating H + )

56 Acid/Base Properties of Oxides Li 2 O BeO Na 2 O MgO B 2 O 3 CO 2 N 2 O 5 O 2 OF 2 Al 2 O 3 SiO 2 P 2 O 5 SO 3 OCl 2 Basic H Li Be B C N O F He Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Acidity increases going up and to right

57 End in the Periodic Table Reading: Gray: (2-2) to (2-4) and (2-9) OGN: (3.1), (15.8) and (15.9)

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

All answers must use the correct number of significant figures, and must show units!

All answers must use the correct number of significant figures, and must show units! CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA

More information

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for n! 179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

More information

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers. So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability

More information

From Quantum to Matter 2006

From Quantum to Matter 2006 From Quantum to Matter 006 Why such a course? Ronald Griessen Vrije Universiteit, Amsterdam AMOLF, May 4, 004 vrije Universiteit amsterdam Why study quantum mechanics? From Quantum to Matter: The main

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

Electronegativity and Polarity

Electronegativity and Polarity and Polarity N Goalby Chemrevise.org Definition: is the relative tendency of an atom in a molecule to attract electrons in a covalent bond to itself. is measured on the Pauling scale (ranges from 0 to

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found. CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

chemrevise.org 19/08/2013 Periodicity N Goalby chemrevise.org

chemrevise.org 19/08/2013 Periodicity N Goalby chemrevise.org chemrevise.org 19/8/213 eriodicity Goalby chemrevise.org locks An s-block element will always have an electronic structure where the outer electron is filling a s-sublevel. kewise the outer electron of

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

More information

Chapter 8 Atomic Electronic Configurations and Periodicity

Chapter 8 Atomic Electronic Configurations and Periodicity Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3:30 pm Section Exam II ohn II. Gelder October 16, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last three pages include a periodic

More information

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Role of Hydrogen Bonding on Protein Secondary Structure Introduction Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein

More information

Look at a periodic table to answer the following questions:

Look at a periodic table to answer the following questions: Look at a periodic table to answer the following questions: 1. What is the name of group 1? 2. What is the name of group 2? 3. What is the name of group 17? 4. What is the name of group 18? 5. What is

More information

The Role of Triads in the Evolution of the Periodic Table: Past and Present

The Role of Triads in the Evolution of the Periodic Table: Past and Present The Role of Triads in the Evolution of the Periodic Table: Past and Present Eric Scerri Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095; scerri@chem.ucla.edu

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s Section 8.5 Objectives Describe how electronegativity is used to determine bond type. Compare and contrast polar and nonpolar covalent bonds and polar and nonpolar molecules. Generalize about the characteristics

More information

Chapter 2 Lecture Notes: Atoms

Chapter 2 Lecture Notes: Atoms Educational Goals Chapter 2 Lecture Notes: Atoms 1. Describe the subatomic structure of an atom. 2. Define the terms element and atomic symbol. 3. Understand how elements are arranged in the periodic table

More information

5.4 Trends in the Periodic Table

5.4 Trends in the Periodic Table 5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more

More information

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table.

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. Chapter 5 Periodic Table Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. How did he organize the elements? According to similarities in their chemical and physical

More information

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES

CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES PRACTICE EXAMPLES 1A 1B A B A Atomic size decreases from left to right across a period, and from bottom to top in a family. We expect the smallest

More information

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

More information

Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Chapter 3. Elements, Atoms, Ions, and the Periodic Table Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's

More information

Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned

More information

ORTEC DET-SW-UPG. Latest Software Features. Ease of Use. Source Location with the Detective V3 Software

ORTEC DET-SW-UPG. Latest Software Features. Ease of Use. Source Location with the Detective V3 Software ORTEC DET-SW-UPG Latest Software Features Three Search Modes: Gamma/Neutron total count rate. SNM search mode. Sliding average "monitor" mode. (NEW) User choice of identification schemes: Classify mode

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a. Assessment Chapter Test A Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a 13. c 14. d 15. c 16. b 17. d 18. a 19. d 20. c 21. d 22. a

More information

TRENDS IN THE PERIODIC TABLE

TRENDS IN THE PERIODIC TABLE Noble gases Period alogens Alkaline earth metals Alkali metals TRENDS IN TE PERIDI TABLE Usual charge +1 + +3-3 - -1 Number of Valence e - s 1 3 4 5 6 7 Electron dot diagram X X X X X X X X X 8 Group 1

More information

Inorganic Chemistry review sheet Exam #1

Inorganic Chemistry review sheet Exam #1 Inorganic hemistry review sheet Exam #1 h. 1 General hemistry review reaction types: A/B, redox., single displacement, elimination, addition, rearrangement and solvolysis types of substances: elements,

More information

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real

More information

Chapter Outline. Review of Atomic Structure Electrons, Protons, Neutrons, Quantum mechanics of atoms, Electron states, The Periodic Table

Chapter Outline. Review of Atomic Structure Electrons, Protons, Neutrons, Quantum mechanics of atoms, Electron states, The Periodic Table Review of Atomic Structure Electrons, Protons, Neutrons, Quantum mechanics of atoms, Electron states, The Periodic Table Atomic Bonding in Solids Bonding Energies and Forces Periodic Table Chapter Outline

More information

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:) Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

More information

Nomenclature of Ionic Compounds

Nomenclature of Ionic Compounds Nomenclature of Ionic Compounds Ionic compounds are composed of ions. An ion is an atom or molecule with an electrical charge. Monatomic ions are formed from single atoms that have gained or lost electrons.

More information

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the

More information

WASTE STREAM 2Y51 Analytical Services Process Facilities - North Labs

WASTE STREAM 2Y51 Analytical Services Process Facilities - North Labs WASTE STREAM 2Y51 Analytical Services Process Facilities North Labs SITE SITE OWNER WASTE CUSTODIAN WASTE TYPE Sellafield Nuclear Decommissioning Authority Sellafield Limited LLW WASTE VOLUMES Stocks:

More information

Chapter 3, Elements, Atoms, Ions, and the Periodic Table

Chapter 3, Elements, Atoms, Ions, and the Periodic Table 1. Which two scientists in 1869 arranged the elements in order of increasing atomic masses to form a precursor of the modern periodic table of elements? Ans. Mendeleev and Meyer 2. Who stated that the

More information

Trends of the Periodic Table Basics

Trends of the Periodic Table Basics Trends of the Periodic Table Basics Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

= 11.0 g (assuming 100 washers is exact).

= 11.0 g (assuming 100 washers is exact). CHAPTER 8 1. 100 washers 0.110 g 1 washer 100. g 1 washer 0.110 g = 11.0 g (assuming 100 washers is exact). = 909 washers 2. The empirical formula is CFH from the structure given. The empirical formula

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding

Unit 3: Quantum Theory, Periodicity and Chemical Bonding Selected Honour Chemistry Assignment Answers pg. 9 Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 7: The Electronic Structure of Atoms (pg. 240 to 241) 48. The shape of an s-orbital is

More information

Nomenclature and Formulas of Ionic Compounds. Section I: Writing the Name from the Formula

Nomenclature and Formulas of Ionic Compounds. Section I: Writing the Name from the Formula Purpose: Theory: Nomenclature and Formulas of Ionic Compounds 1. To become familiar with the rules of chemical nomenclature, based on the classification of compounds. 2. To write the proper name of the

More information

CHEM 107 (Spring-2005) Final Exam (100 pts)

CHEM 107 (Spring-2005) Final Exam (100 pts) CHEM 107 (Spring-2005) Final Exam (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY 8.1 Elements are listed in the periodic table in an ordered, systematic way that correlates with a periodicity of their chemical and physical properties.

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

More information

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11 Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

Test Review Periodic Trends and The Mole

Test Review Periodic Trends and The Mole Test Review Periodic Trends and The Mole The Mole SHOW ALL WORK ON YOUR OWN PAPER FOR CREDIT!! 1 2 (NH42SO2 %N 24.1 %H 6.9 %S 27.6 %O 41.3 % Al %C 35.3 %H 4.4 %O 47.1 Al(C2H3O23 13.2 3 How many moles are

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

1332 CHAPTER 18 Sample Questions

1332 CHAPTER 18 Sample Questions 1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+

More information

CHAPTER 8 THE PERIODIC TABLE

CHAPTER 8 THE PERIODIC TABLE CHAPTER 8 THE PERIODIC TABLE 8.1 Mendeleev s periodic table was a great improvement over previous efforts for two reasons. First, it grouped the elements together more accurately, according to their properties.

More information

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution Oxides; acidic, basic, amphoteric Classification of oxides - oxide

More information

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Development of Table

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013 3 Elements and Compounds Chapter Outline 3.1 Elements A. Distribution of Elements Foundations of College Chemistry, 14 th Ed. Morris Hein and Susan Arena Copyright This reclining Buddha in Thailand is

More information

Natural Sciences I. Lecture 15: Elements and the Periodic Table

Natural Sciences I. Lecture 15: Elements and the Periodic Table Natural Sciences I Lecture 5: Elements and the Periodic Table Classifying MATTER Chapter 0 of your text opens with a discussion of the types of chemical bonds, and also includes a review (pp. 4-4) of the

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Nuclear ZPE Tapping. Horace Heffner May 2007

Nuclear ZPE Tapping. Horace Heffner May 2007 ENERGY FROM UNCERTAINTY The uncertainty of momentum for a particle constrained by distance Δx is given, according to Heisenberg, by: Δmv = h/(2 π Δx) but since KE = (1/2) m v 2 = (1/(2 m) ) (Δmv) 2 ΔKE

More information

Unit 3.2: The Periodic Table and Periodic Trends Notes

Unit 3.2: The Periodic Table and Periodic Trends Notes Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the

More information

Unit 2 Matter and Chemical Change. Unit Test

Unit 2 Matter and Chemical Change. Unit Test Unit Test Student Name Class Section 1 Properties of Matter 1. Aluminum foam is used to create lighter, safer cars. The reason that a lighter car is a safer car is because aluminum foam is A. less rigid

More information

APPENDIX B: EXERCISES

APPENDIX B: EXERCISES BUILDING CHEMISTRY LABORATORY SESSIONS APPENDIX B: EXERCISES Molecular mass, the mole, and mass percent Relative atomic and molecular mass Relative atomic mass (A r ) is a constant that expresses the ratio

More information

Periodic Table Trends in Element Properties Ron Robertson

Periodic Table Trends in Element Properties Ron Robertson Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations.

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. The Periodic Table Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. Vertical Rows are called Families or Groups.

More information

Ionizing Radiation, Czech Republic, CMI (Czech Metrology Institute)

Ionizing Radiation, Czech Republic, CMI (Czech Metrology Institute) Ionizing Radiation, Czech Republic, (Czech Metrology Institute) Calibration or Measurement RADIOACTIVITY 1.0E+00 1.0E+02 Bq cm -2 C-14 1.0E+01 1.0E+02 Bq cm -2 Co-60 1.0E+01 1.0E+02 Bq cm -2 Sr-90 1.0E+01

More information

Chapter 8 - Chemical Equations and Reactions

Chapter 8 - Chemical Equations and Reactions Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

Oxidation / Reduction Handout Chem 2 WS11

Oxidation / Reduction Handout Chem 2 WS11 Oxidation / Reduction Handout Chem 2 WS11 The original concept of oxidation applied to reactions where there was a union with oxygen. The oxygen was either furnished by elemental oxygen or by compounds

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules.

We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules. Chapter 10 Bonding: Lewis electron dot structures and more Bonding is the essence of chemistry! Not just physics! Chemical bonds are the forces that hold atoms together in molecules, in ionic compounds,

More information

Chapter 2 Atoms, Molecules, and Ions

Chapter 2 Atoms, Molecules, and Ions Chapter 2 Atoms, Molecules, and Ions 1. Methane and ethane are both made up of carbon and hydrogen. In methane, there are 12.0 g of carbon for every 4.00 g of hydrogen, a ration of 3:1 by mass. In ethane,

More information

Models of the Atom and periodic Trends Exam Study Guide

Models of the Atom and periodic Trends Exam Study Guide Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8 HOMEWORK CHEM 107 Chapter 3 Compounds Putting Particles Together 3.1 Multiple-Choice 1) How many electrons are in the highest energy level of sulfur? A) 2 B) 4 C) 6 D) 8 2) An atom of phosphorous has how

More information

ATOMS. Multiple Choice Questions

ATOMS. Multiple Choice Questions Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)

More information

WASTE STREAM 2F35 Excellox-Type Transport Flasks and French-Design Dry Flasks

WASTE STREAM 2F35 Excellox-Type Transport Flasks and French-Design Dry Flasks SITE SITE OWR WASTE CUSTODIAN WASTE TYPE Sellafield Nuclear Decommissioning Authority Sellafield Limited LLW WASTE VOLUMES Stocks: At 1.4.2013... Future arisings - Total future arisings: 45.4 m³ Comment

More information