Geothermal energy is the heat deep inside Earth heat that is thought to be generated by the natural decay of

Size: px
Start display at page:

Download "Geothermal energy is the heat deep inside Earth heat that is thought to be generated by the natural decay of"

Transcription

1 Geothermal Energy Geothermal energy is the heat deep inside Earth heat that is thought to be generated by the natural decay of radioactive material. It is virtually inexhaustible a vast potential source of power. But can it be tapped economically and in large enough quantities to be useful? Theoretically, geothermal energy could be obtained at any point on Earth by drilling deeply enough and providing some method for extracting the heat. In most parts of the world, the hot interior mass is too deep to reach with existing drilling technology. In some areas, however, such as portions of the western United States, New Zealand, Iceland, and Italy, large heat sources are very close to the surface. Hot springs, geysers, and recent volcanic activity frequently indicate the presence of thermal reserves close to the surface. Forms of Geothermal Energy Three basic forms of geothermal heat have been used for human purposes: natural steam; hot water; and hot, dry rock. So far, geothermal steam has been used mainly to generate electricity. Hot water with and without steam has been employed largely for heating purposes in a few locations, but its application to power generation is only now being seriously studied. Dry, hot rock, which is the largest heat resource, has not yet been tapped commercially, but new methods for using it are being tested. Steam to Electricity

2 Historically, the commercial application of geothermal energy for generating electricity dates back to 1904 in Larderello, Italy. Today the this area in central Tuscany produces 10 percent of the world's geothermal energy. Electrical power is also produced from geothermal sources in the United States, New Zealand, Japan, Iceland, Mexico, Philippines, and Russia. The Geysers, a natural steam field in northern California, is the world's largest producer of renewable geothermal power. There, steam is collected from a number of wells, filtered, and passed through turbines that drive electric generators. However, because of the lower pressures and temperatures of the steam at The Geysers, the amount of available heat that is converted to electrical energy is less than that achieved by conventional fossil-fuel plants. Nevertheless, this type of geothermal installation costs less and is easier to build than a conventional steam plant of the same capacity. And, once constructed and put into operation, the "fuel" that runs the generators is virtually free. These factors usually compensate for the lower efficiency of geothermal heating. The overall cost of natural-steam power is less than that of power generated by fossil-fuel or nuclear-power plants. The technology is limited in its application, however, because additional "dry-steam" (steam not mixed with hot water) fields are unlikely to be discovered. But The Geysers has successfully produced a steady supply of natural-steam power since the 1960s. Today, it continues to generate enough energy to meet the electricity needs of both San Francisco and Oakland. Hot Water to Electricity The geothermal wells in The Geysers region of California and at Larderello in Italy produce steam without hot water. It is more common for geothermal wells to yield a mixture of steam and hot water. The steam is produced because a portion of the hot water spontaneously boils as it comes to the surface. The combination of steam and hot water is not as economically useful as dry steam. Much greater quantities of fluid must be produced by the geothermal well for a given plant's generating capacity, and more water must therefore be disposed of, usually by reinjection into Earth. Also, since, in most cases, only the steam is used to generate power, as much as half of the available heat may be discarded with the water. The overall efficiency in using the original thermal energy is therefore correspondingly less than for dry steam. There are many places where hot-water wells without steam are located, but only limited use has been made of these resources. In one method of harnessing this energy, known as the "vapor-turbine cycle," the hot water is passed under pressure through a heat exchanger. The water causes a sealed-in secondary liquid with a lower boiling point such as isobutane or freon to vaporize. This vapor expands through a turbine, which drives an

3 electric generator. It is then condensed to a liquid and returned to the heat exchanger to start the cycle all over again. The original well water, which does not boil because it is kept under considerable pressure, is returned to the ground. The most important feature of the vapor-turbine concept is that it permits the generation of electricity from geothermal waters at temperatures that would not be practical or efficient for steam turbines. An installation of this type is in operation in Russia, and several small prototype units are also currently operating in the United States. Another method, formulated at the U.S. Energy Research and Development Administration's (ERDA's) Lawrence Livermore Laboratory, is operating in Cerro Prieto, Mexico, as part of a demonstration project originally sponsored by the U.S. Department of Energy (DOE). This system, which is referred to as the "total-flow" concept, is designed to convert a portion of the thermal energy of the pressurized steam and hot-water mixture directly into kinetic energy. This is done through the use of a converging-diverging nozzle, roughly comparable to a jet engine. The resulting high-velocity output is used to drive a modified hydraulic-impulse turbine and, in turn, an electric generator. This system produces 25 to 40 percent more power than other methods designed to extract energy from geothermal waters at the temperatures and pressures involved. Hot Water for Heating Hot water from underground sources has been used extensively for many years in Iceland, not only for generating electricity, but also for heating purposes. Today, nearly all of the nation's buildings are heated by hot water piped through an elaborate network from geothermal wells and hot springs. In fact, only 0.1 percent of Iceland's electricity production comes via fossil fuels. Residential and commercial buildings are also heated with geothermal water in parts of Japan, China, Sweden, Romania, Russia, Hungary, Italy, France, and Belgium. In the western United States, hot-water wells provide heat for more than 270 communities, including Boise, Idaho, and Klamath Falls, Oregon. In Japan, other applications have included soil heating and experimental fish-farming projects. In Russia and New Zealand, geothermal water is employed for industrial purposes, such as in air-conditioning and refrigeration systems, and to provide heat for greenhouses, fish ponds, and livestock farms.

4 Hot, Dry Rock Although the practical uses of geothermal energy have been associated with naturally occurring steam or a mixture of steam and hot water, evidence indicates that by far the largest potential geothermal-energy resource is hot, dry rock, which reaches temperatures of about 464 F (240 C) at a depth of about 2.5 miles (4 kilometers). One promising method of extracting heat from deposits of dry rock employs a technique similar to that used in petroleum recovery. In this scheme, two deep wells, forming a closed loop, are drilled into solid rock, such as granite, which overlays an area of high-heat flow from Earth's interior. Cold water under very high pressure is forced into the well, creating a network of cracks in the hot rock. The pressurized water is heated by the hot rock, and rises through the second well to the surface, where it enters a heat exchanger. This process has been used to power electric generators at an experimental site near Los Alamos, New Mexico. Another method of using these sources of dry heat is to create large artificial cracks by means of relatively powerful explosives, and then to circulate water from the surface through the cracks in order to extract the heat. This technique requires extensive investigation because there are several major problems involved, including the effect of blast waves on surface facilities, the economics of creating sufficient fresh rock surface to extract heat in useful quantities, and the speed with which the rock will conduct heat to the cracks from which it is being withdrawn. Locating Geothermal Resources Sources of geothermal energy must be located and explored before they can be used. One of the most important first steps is to identify and outline broad regions where the outward flow of heat near Earth's surface is significantly greater than average. For various reasons, temperatures at the surface can be misleading, and it is therefore more reliable to make measurements at depths of about 60 to 300 feet (20 to 90 meters). Geothermal exploration has in the past been largely confined to locations in the vicinity of hot springs, and has used methods developed by the petroleum industry. Such techniques are not necessarily well suited to discover and evaluate possible new geothermal fields, and new specialized methods are now being developed. Measurements of how well rock masses at various depths conduct electricity as well as magnetic, electromagnetic, and gravity readings are analyzed to determine if the rock structure is such that geothermal

5 energy is likely. Seismic methods are also used. In addition, chemical analyses of waters can give further information about the nature of related geothermal deposits. It is also vital that the technology of deep drilling and drilling at high temperatures be improved. At depths of more than 19,800 feet (6,000 meters), drilling costs increase sharply. Furthermore, at temperatures of approximately 390 F (200 C) and above, the reliability of instruments used to obtain information about conditions at the bottom of a well deteriorates rapidly. Particularly needed are higher-performance drills and drilling fluids, as well as instruments that will operate more reliably in geothermal wells. Environmental Effects From an environmental standpoint, putting geothermal energy to work has many advantages. An important one is that almost all the activities related to the production of geothermal power are in the immediate vicinity of the plant. The kind of distant support operations required for fossil-fuel or nuclear plants such as mining, fuel processing, transportation, storage, and other activities are not involved. On the negative side, there are certain undesirable environmental effects that could extend for some distance from a geothermal-plant location. For example, the proper disposal of wastewater from steam or hot-water wells can become an important problem, particularly when the water has a substantial mineral content. Gaseous discharge is a significant factor for those geothermal wells that produce noxious gases. Other difficulties, which are similar to those experienced by fossil-fuel or nuclear-power plants, include waste-heat disposal and the atmospheric effect of cooling towers. In some instances, undesirable environmental impacts may be produced by seismic effects and the sinking of land surfaces that lie above reservoirs from which geothermal fluids are withdrawn. In most cases, however, the environmental problems encountered through the use of geothermal energy are not as serious as those connected with steam-electric plants burning fossil or nuclear fuel. Furthermore, geothermal problems can usually be satisfactorily handled by known technology. Prospects for the Future The inherent advantages of geothermal energy make it an important potential supplement to nuclear and fossil fuels for many purposes. The most important characteristic of geothermal energy is its potential availability in truly enormous quantities possibly on an inexhaustible basis wherever it can be located, tapped, and utilized. The most

6 readily accessible resources for geothermal power in the United States are located in Alaska, Hawaii, and several western states. Researchers studying the feasibility of tapping the heat contained in magma subterranean molten rock believe that this virtually inexhaustible source of energy could be successfully utilized. Most magma is located more than 20 miles (32 kilometers) below the surface of Earth, but it is much closer to the surface in some places, particularly in volcanic craters. Technological advances may make magma a viable energy source, but some experts think that hot, dry rocks are the best option. The key is determining just the right location and well depth to provide a geothermal facility with heated water for up to 20 years. Several technological advances have provided improvements in both drilling methods and equipment, and as a result, energy from geothermal sources is produced more efficiently than it was in the past. Over the past decade, geothermal energy production has increased 50 percent, serving some 47 million people worldwide. Geothermal plants account for 0.3 percent of total U.S. electricity production. The U.S. Department of Energy predicts a modest increase (to 0.8 percent) by Geothermal Field 1 (of 1) How to cite this article: MLA (Modern Language Association) style: "Geothermal Energy." The New Book of Popular Science Grolier Online. 23 Apr < APA (American Psychological Association) style: Geothermal Energy. (2009). The New Book of Popular Science. Retrieved April 23, 2009, from Grolier Online Chicago Manual of Style: "Geothermal Energy." The New Book of Popular Science. Grolier Online (accessed April 23, 2009). Source: The New Book of Popular Science

GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS

GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature geothermal resources are often interested

More information

Hot Rocks Geothermal Drilling, Operations and Insurance Implications

Hot Rocks Geothermal Drilling, Operations and Insurance Implications Hot Rocks Geothermal Drilling, Operations and Insurance Implications Gary Mawditt MatthewsDaniel London September 28, 2012 Geothermal Drilling, Operations & Insurance Implications What is it / Where is

More information

Three main techniques are used to exploit the heat available: geothermal aquifers, hot dry rocks and ground-source heat pumps.

Three main techniques are used to exploit the heat available: geothermal aquifers, hot dry rocks and ground-source heat pumps. GEOTHERMAL ENERGY TECHNOLOGY DESCRIPTION Geothermal energy is the natural heat that exists within the earth and that can be absorbed by fluids occurring within, or introduced into, the crustal rocks. Although,

More information

Geothermal: The Clean Energy Secret May 7, 2008

Geothermal: The Clean Energy Secret May 7, 2008 Geothermal: The Clean Energy Secret May 7, 2008 Published by Dr. Patrick Moore in conjunction with the New York Affordable Reliable Electricity Alliance (New York AREA) Geothermal: The Clean Energy Secret

More information

Deep geothermal FAQ s

Deep geothermal FAQ s What is geothermal energy? Deep geothermal FAQ s What is the deep geothermal resource in Cornwall? What are the benefits for Cornwall? What are Engineered/Enhanced Geothermal Systems (EGS) or Hot Dry Rocks?

More information

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros: P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation

More information

THE GEYSERS Renewable, Geothermal Energy. Mike Rogers, Senior Vice President Calpine Geothermal Operations

THE GEYSERS Renewable, Geothermal Energy. Mike Rogers, Senior Vice President Calpine Geothermal Operations THE GEYSERS Renewable, Geothermal Energy Mike Rogers, Senior Vice President Calpine Geothermal Operations Impact Sonoma Energy: Plugging Into Sonoma County s Future 18 October 2012 Geothermal Fields: Resources

More information

12.5: Generating Current Electricity pg. 518

12.5: Generating Current Electricity pg. 518 12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical

More information

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies.

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. Lecture 23: Terrestrial Worlds in Comparison Astronomy 141 Winter 2012 This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. The small terrestrial planets have

More information

EVALUATION OF GEOTHERMAL ENERGY AS HEAT SOURCE OF DISTRICT HEATING SYSTEMS IN TIANJIN, CHINA

EVALUATION OF GEOTHERMAL ENERGY AS HEAT SOURCE OF DISTRICT HEATING SYSTEMS IN TIANJIN, CHINA EVALUATION OF GEOTHERMAL ENERGY AS HEAT SOURCE OF DISTRICT HEATING SYSTEMS IN TIANJIN, CHINA Jingyu Zhang, Xiaoti Jiang, Jun Zhou, and Jiangxiong Song Tianjin University, North China Municipal Engineering

More information

Design and Re-Use Of Shovadans In Today's Architecture "With Due Attention To Have Thermal Energy Of The Earth"

Design and Re-Use Of Shovadans In Today's Architecture With Due Attention To Have Thermal Energy Of The Earth RESEARCH INVENTY: International Journal of Engineering and Science ISBN: 2319-6483, ISSN: 2278-4721, Vol. 1, Issue 8 (November 2012), PP 60-64 www.researchinventy.com Design and Re-Use Of Shovadans In

More information

Benefits of Geothermal Energy By Dr. Silas Simiyu

Benefits of Geothermal Energy By Dr. Silas Simiyu Benefits of Geothermal Energy By Dr. Silas Simiyu Introduction Geo means Thermal means Intoduction The Earth Crust Mantle Outer core Inner core Is renewable and sustainable Reservoir managed well (Re-injection)

More information

Geothermal energy When light emerges from deep within the Earth

Geothermal energy When light emerges from deep within the Earth Geothermal energy When light emerges from deep within the Earth All of Enel Green Power s geothermal numbers Italy Years of history over 100 Power plants 34 Efficient power 769 MW Wells 490 MW Steam pipelines

More information

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal. 413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above

More information

Advanced systems for power production from geothermal low-enthalpy resources

Advanced systems for power production from geothermal low-enthalpy resources Advanced systems for power production from geothermal low-enthalpy resources Improving ORC power generation systems performance and cost-effectiveness Marco Paci Enel Engineering & Innovation Research

More information

FUTURE OF GEOTHERMAL ENERGY

FUTURE OF GEOTHERMAL ENERGY PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010 SGP-TR-188 FUTURE OF GEOTHERMAL ENERGY Subir K. Sanyal GeothermEx, Inc.

More information

Conventional Energy Sources

Conventional Energy Sources 9.2 Conventional Energy Sources Key Question: What benefits and problems come with common sources of energy? Hints The word plant here is not the kind that grows out of the ground. In this section, plants

More information

ENEL research activities on low enthalpy geothermal resources

ENEL research activities on low enthalpy geothermal resources ENEL research activities on low enthalpy geothermal resources GeoThermExpo 2009 Nicola Rossi Enel Engineering & Innovation Research Technical Area Ferrara, September 23 th 2009 Geothermal energy: a big

More information

L'ATTIVITÀ DI ENEL NEL CAMPO DELLE RISORSE

L'ATTIVITÀ DI ENEL NEL CAMPO DELLE RISORSE L'ATTIVITÀ DI ENEL NEL CAMPO DELLE RISORSE GEOTERMICHE A BASSA ENTALPIA Marco Paci ENEL Engineering & Innovation Research Technical Area Giovanni Pasqui ENEL Green Power Engineering & Construction Ferrara,

More information

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS

THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS THE PRODUCTION OF ELECTRICITY FROM WOOD AND OTHER SOLID BIOMASS RTP TM /ADVANCED CYCLE VS. COMBUSTION STEAM CYCLES OR WHY NOT SIMPLY COMBUST? For decades, the only commercial option available for the production

More information

Renewable vs. non-renewable energy sources, forms and technologies prepared by. A.Gritsevskyi, IAEA

Renewable vs. non-renewable energy sources, forms and technologies prepared by. A.Gritsevskyi, IAEA Renewable vs. non-renewable energy sources, forms and technologies prepared by. A.Gritsevskyi, IAEA Objective of this paper is to provide International Recommendations for Energy Statistics (IRES) with

More information

Ground Source Heat Pumps The Fundamentals. Southington, Connecticut 860 628 4622 John F. Sima III P.E.

Ground Source Heat Pumps The Fundamentals. Southington, Connecticut 860 628 4622 John F. Sima III P.E. Ground Source Heat Pumps The Fundamentals Southington, Connecticut 860 628 4622 John F. Sima III P.E. Winter/Spring 2010 Ground Source Heat Pumps The Fundamentals TOPICS: Heat Pump Terminology Basic Physics

More information

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY Introduction Canadians are among the highest energy consumers in the world. Why? (list 3 possible reasons) Northern climate/very cold temperatures

More information

Geothermal Energy: Modern Uses and Environmental Issues

Geothermal Energy: Modern Uses and Environmental Issues Geothermal Energy: Modern Uses and Environmental Issues Written by Olivia Miller June 10, 2010 Figure 1. [Mammoth Pacific, 2003] Mammoth Pacific Geothermal Power Plant, Mammoth Lakes, California. Abstract

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information

In science, energy is the ability to do work. Work is done when a force causes an

In science, energy is the ability to do work. Work is done when a force causes an What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated

More information

Station #1 Interpreting Infographs

Station #1 Interpreting Infographs Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles

More information

GEOTHERMAL HEATING AND COOLING INTRODUCTION

GEOTHERMAL HEATING AND COOLING INTRODUCTION GEOTHERMAL HEATING AND COOLING INTRODUCTION Geothermal Heating and Cooling Systems provide space conditioning -- heating, cooling, and humidity control. They may also provide water heating -- either to

More information

GEOTHERMAL HEAT PUMPS - TRENDS AND COMPARISONS - John W. Lund Geo-Heat Center

GEOTHERMAL HEAT PUMPS - TRENDS AND COMPARISONS - John W. Lund Geo-Heat Center GEOTHERMAL HEAT PUMPS - TRENDS AND COMPARISONS - John W. Lund Geo-Heat Center Heat pumps are used where geothermal water or ground temperatures are only slightly above normal, generally 50 to 90 o F. Conventional

More information

Nonrenewable Natural Gas. Natural Gas Basics. How Was Natural Gas Formed?

Nonrenewable Natural Gas. Natural Gas Basics. How Was Natural Gas Formed? Did You Know? Because natural gas is colorless, odorless, and tasteless, mercaptan (a chemical that smells like sulfur) is added before distribution, to give it a distinct unpleasant odor (it smells like

More information

Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle

Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle INL/CON-05-00740 PREPRINT Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle Geothermal Resources Council Annual Meeting Greg Mines October 2005 This is a preprint of a paper intended for publication

More information

Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels

Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels international energy agency agence internationale de l energie Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels IEA Information paper In Support of the G8 Plan of Action

More information

GEOTHERMAL ENERGY: ANOTHER ALTERNATIVE

GEOTHERMAL ENERGY: ANOTHER ALTERNATIVE GEOTHERMAL ENERGY: ANOTHER ALTERNATIVE By Lorraine A. Manz Mention the term geothermal energy to most people and they will probably picture something similar to the illustration in figure 1. This kind

More information

FIELD TRIP TO A POWER PLANT - A Reading Guide

FIELD TRIP TO A POWER PLANT - A Reading Guide TITLE: TOPIC: FIELD TRIP TO A POWER PLANT - A Reading Guide Energy and the sources of energy used in power plants GRADE LEVEL: Secondary CONTENT STANDARD: Earth and Space Science CONTENT OBJECTIVE: For

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Geothermal Binary Power Plant for Lahendong, Indonesia: A German-Indonesian Collaboration Project

Geothermal Binary Power Plant for Lahendong, Indonesia: A German-Indonesian Collaboration Project Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Geothermal Binary Power Plant for Lahendong, Indonesia: A German-Indonesian Collaboration Project Stephanie Frick 1, Ali

More information

Scope and Sequence Interactive Science grades 6-8

Scope and Sequence Interactive Science grades 6-8 Science and Technology Chapter 1. What Is Science? 1. Science and the Natural World 2.Thinking Like a Scientist 3. Scientific Inquiry Scope and Sequence Interactive Science grades 6-8 Chapter 2. Science,

More information

The impact Equation where scientists and engineers fit in the picture

The impact Equation where scientists and engineers fit in the picture The impact Equation where scientists and engineers fit in the picture In a series of papers in 1970-74, Paul Ehrlich and John Holdren proposed the following equation to estimate the overall impact of our

More information

Harnessing the Sun s Energy 1. Harnessing the Sun s Energy: Solar Power for Homes

Harnessing the Sun s Energy 1. Harnessing the Sun s Energy: Solar Power for Homes Harnessing the Sun s Energy 1 Harnessing the Sun s Energy: Solar Power for Homes Dan Tong Cluster 2 July 2008 Harnessing the Sun s Energy 2 Harnessing the Sun s Energy: Solar Power for Homes The use of

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

Geothermal. . To reduce the CO 2 emissions a lot of effort is put in the development of large scale application of sustainable energy.

Geothermal. . To reduce the CO 2 emissions a lot of effort is put in the development of large scale application of sustainable energy. Geothermal Energy With increasing fossil fuel prices, geothermal energy is an attractive alternative energy source for district heating and industrial heating. In recent years the use of geothermal energy

More information

Sustainable Energy Sources By: Sue Peterson

Sustainable Energy Sources By: Sue Peterson www.k5learning.com Objective sight words (consumption, terrain, integral, orbit, originated, contemporary, remote); concepts (sustainable, renewable, photovoltaics, gasification) Vocabulary consumption

More information

SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF SECOND GRADE VOLCANOES WEEK 1. PRE: Investigating the parts of a volcano. LAB: Comparing the parts of a

More information

ENERGY PRODUCING SYSTEMS

ENERGY PRODUCING SYSTEMS ENERGY PRODUCING SYSTEMS SOLAR POWER INTRODUCTION Energy from the sun falls on our planet on a daily basis. The warmth of the sun creates conditions on earth conducive to life. The weather patterns that

More information

Great Energy Debate Game Students evaluate the advantages and disadvantages of the major energy sources in an innovative debate format.

Great Energy Debate Game Students evaluate the advantages and disadvantages of the major energy sources in an innovative debate format. Great Energy Debate Game Students evaluate the advantages and disadvantages of the major energy sources in an innovative debate format. SUBJECT AREAS Science Social Studies Math Language Arts? s s STUDENT

More information

Nuclear Energy: Nuclear Energy

Nuclear Energy: Nuclear Energy Introduction Nuclear : Nuclear As we discussed in the last activity, energy is released when isotopes decay. This energy can either be in the form of electromagnetic radiation or the kinetic energy of

More information

Renewable Energy from Depleted Oil Fields using Geothermal Energy. Ramsey Kweik Southern Methodist University Geothermal Lab

Renewable Energy from Depleted Oil Fields using Geothermal Energy. Ramsey Kweik Southern Methodist University Geothermal Lab Renewable Energy from Depleted Oil Fields using Geothermal Energy Ramsey Kweik Southern Methodist University Geothermal Lab Outline What is Geothermal Energy? Why geothermal in Texas? Types of Power Plants

More information

Regents Questions: Plate Tectonics

Regents Questions: Plate Tectonics Earth Science Regents Questions: Plate Tectonics Name: Date: Period: August 2013 Due Date: 17 Compared to the oceanic crust, the continental crust is (1) less dense and more basaltic (3) more dense and

More information

Fossil Energy Study Guide: Oil

Fossil Energy Study Guide: Oil Petroleum or crude oil is a fossil fuel that is found in large quantities beneath the Earth s surface and is often used as a fuel or raw material in the chemical industry. It is a smelly, yellow-to-black

More information

5-Minute Refresher: RENEWABLE ENERGY

5-Minute Refresher: RENEWABLE ENERGY 5-Minute Refresher: RENEWABLE ENERGY Renewable Energy Key Ideas Renewable energy is a source of energy that can be used and replenished naturally in a relatively short period of time. Non renewable energy

More information

Geothermal Energy. Þórir M. Wardum VIA University Horsens. 2010 Dissertation 7. Semester

Geothermal Energy. Þórir M. Wardum VIA University Horsens. 2010 Dissertation 7. Semester Geothermal Energy Þórir M. Wardum VIA University Horsens 2010 Dissertation 7. Semester Preface This dissertation is a part of my curriculum for the 7 th semester B.sc in Architecture Technology and construction

More information

PAMUN XV ENVIRONMENT COMMITTEE PROMOTING THE MOVEMENT TOWARDS RENEWABLE RESOURCES OF ENERGY

PAMUN XV ENVIRONMENT COMMITTEE PROMOTING THE MOVEMENT TOWARDS RENEWABLE RESOURCES OF ENERGY PAMUN XV ENVIRONMENT COMMITTEE PROMOTING THE MOVEMENT TOWARDS RENEWABLE RESOURCES OF ENERGY Introduction of Topic Currently non-renewable resources make up 85% of the world's energy consumption; a major

More information

How To Use A Water Source Heat Pump

How To Use A Water Source Heat Pump Geothermal Energy Using Water-Source Heat Pumps By VIRSTAR Corporation Geothermal Expertise Since 1978 All information contained herein is the exclusive property of VIRSTAR Corporation, all rights reserved.

More information

SAMPLE CHAPTERS UNESCO EOLSS

SAMPLE CHAPTERS UNESCO EOLSS STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

Determination of Thermal Conductivity of Coarse and Fine Sand Soils

Determination of Thermal Conductivity of Coarse and Fine Sand Soils Proceedings World Geothermal Congress Bali, Indonesia, - April Determination of Thermal Conductivity of Coarse and Fine Sand Soils Indra Noer Hamdhan 1 and Barry G. Clarke 2 1 Bandung National of Institute

More information

Alternative Energy. Terms and Concepts: Relative quantities of potential energy resources, Solar constant, Economies of scale

Alternative Energy. Terms and Concepts: Relative quantities of potential energy resources, Solar constant, Economies of scale Objectives Key Terms and Concepts Introduction Solar Wind Hydroelectric Power Geothermal Sources Biofuels Summary: Economies of Scale Questions for the video if time permits Alternative Energy Objectives:

More information

Deep Geothermal energy and groundwater in

Deep Geothermal energy and groundwater in Deep Geothermal energy and groundwater in the UK Jon Busby Deep Geothermal energy and groundwater in the UK Outline 1. UK geothermal 2. Deep saline aquifers 3. Engineered geothermal systems 4. Fractured

More information

RENEWABLE RESOURCES. Kinds of renewable resources. 1. Solar energy

RENEWABLE RESOURCES. Kinds of renewable resources. 1. Solar energy RENEWABLE RESOURCES Natural resources (also called land or raw materials) occur naturally within environments that exist relatively undisturbed by mankind, in a natural form. Natural resources are derived

More information

[Geology Layers of the Earth] [Basic: Grade 2-3] [Advanced: Grade 5: Introduction to Plate Tectonics}

[Geology Layers of the Earth] [Basic: Grade 2-3] [Advanced: Grade 5: Introduction to Plate Tectonics} [Geology Layers of the Earth] [Basic: Grade 2-3] [Advanced: Grade 5: Introduction to Plate Tectonics} BACKGROUND Scientists and geologists have been able to do some drilling on Earth. They are also able

More information

What are the subsystems of the Earth? The 4 spheres

What are the subsystems of the Earth? The 4 spheres What are the subsystems of the Earth? The 4 spheres Essential Questions What are the 4 spheres of the Earth? How do these spheres interact? What are the major cycles of the Earth? How do humans impact

More information

Issue. September 2012

Issue. September 2012 September 2012 Issue In a future world of 8.5 billion people in 2035, the Energy Information Administration s (EIA) projected 50% increase in energy consumption will require true all of the above energy

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

Volcanoes Erupt Grade 6

Volcanoes Erupt Grade 6 TEACHING LEARNING COLLABORATIVE (TLC) EARTH SCIENCE Volcanoes Erupt Grade 6 Created by: Debra McKey (Mountain Vista Middle School); Valerie Duncan (Upper Lake Middle School); and Lynn Chick (Coyote Valley

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

Student Energy Primer

Student Energy Primer Where Does Energy Come From? You can t see it, touch it, smell it, or taste it, and yet it powers everything in nature as well as everything people do. What is it? Energy, of course. Energy is the ability

More information

Geothermal Power Plant Potential Rico, Colorado

Geothermal Power Plant Potential Rico, Colorado Geothermal Power Plant Potential Rico, Colorado Christopher Tipple, Amy Richards, Micah Jakulewicz Table of Contents 1.0 Introduction 2 2.0 Geology...2 3.0 Power Demand...2 4.0 Motivation..3 5.0 Geothermal

More information

Layers of the Earth s Interior

Layers of the Earth s Interior Layers of the Earth s Interior 1 Focus Question How is the Earth like an ogre? 2 Objectives Explain how geologists have learned about the interior of the Earth. Describe the layers of the Earth s interior.

More information

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground. Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

More information

Natural Gas Information Contents

Natural Gas Information Contents Natural Gas Information Contents What is natural gas Natural Gas Components Physical Properties of Natural Gas Different Forms of Natural Gas The Use of Natural Gas Co-generation System Natural Gas and

More information

Evaporative Cooling System for Aquacultural Production 1

Evaporative Cooling System for Aquacultural Production 1 Fact Sheet EES-100 March 1993 Evaporative Cooling System for Aquacultural Production 1 C. D. Baird, R. A. Bucklin, C. A. Watson and F. A. Chapman 2 INTRODUCTION Florida aquaculture sales totaled $54 million

More information

Chapter 4 Forms of energy

Chapter 4 Forms of energy Chapter 4 Forms of energy Introduction This chapter compromises a set of activities that focuses on the energy sources and conversion. The activities illustrate The concept and forms of energy; The different

More information

ANALYZING ENERGY. Time and Student Grouping Energy Source Analysis and Consequence Wheel: One class period. Grade Levels: 6-12

ANALYZING ENERGY. Time and Student Grouping Energy Source Analysis and Consequence Wheel: One class period. Grade Levels: 6-12 ANALYZING ENERGY Lesson Concepts: Students will analyze the advantages and disadvantages of nine different energy sources. They will use their knowledge to predict what would happen if the world did not

More information

Geothermal Reservoir Modelling: Uses and Limitations. John O Sullivan, Engineering Science University of Auckland, New Zealand

Geothermal Reservoir Modelling: Uses and Limitations. John O Sullivan, Engineering Science University of Auckland, New Zealand Geothermal Reservoir Modelling: Uses and Limitations John O Sullivan, Engineering Science University of Auckland, New Zealand Outline Introduction to modelling Geothermal modelling process Modelling uses

More information

Report Tidal Power Generation Systems

Report Tidal Power Generation Systems The American University in Cairo Engineering Department ENGR 318 Spring 2001 Report Tidal Power Generation Systems Submitted to: Prof. Dr. Mahmoud Gilany By: Sherif Masoud Maher Amer Mohamed Samir Introduction

More information

ENGR 670: Geology of Geothermal Energy Resources

ENGR 670: Geology of Geothermal Energy Resources ENGR 670: Geology of Geothermal Energy Resources Instructor: Dave R. Boden, Ph.D. Truckee Meadows Community College Email: Please use the WebCampus Messages tool for the course. If WebCampus system is

More information

Kinetic Theory. Energy. Transfers and Efficiency. The National Grid

Kinetic Theory. Energy. Transfers and Efficiency. The National Grid AQA P1 Revision Infrared Radiation Heating and Insulating Buildings Kinetic Theory Energy Transfers and Efficiency Energy Transfer by Heating Transferring Electrical Energy Generating Electricity The National

More information

Chapter 4 EFFICIENCY OF ENERGY CONVERSION

Chapter 4 EFFICIENCY OF ENERGY CONVERSION Chapter 4 EFFICIENCY OF ENERGY CONVERSION The National Energy Strategy reflects a National commitment to greater efficiency in every element of energy production and use. Greater energy efficiency can

More information

Alternative Energy Resources

Alternative Energy Resources Alternative Energy Resources Energy Resource Advantages Disadvantages What are some renewable energy resources? A nonrenewable resource cannot be replaced in a reasonable amount of time. Fossil fuels such

More information

How does solar air conditioning work?

How does solar air conditioning work? How does solar air conditioning work? In a conventional air conditioning system; The working fluid arrives at the compressor as a cool, low-pressure gas. The compressor is powered by electricity to squeeze

More information

Abstract. emails: ronderby@earthlink.net, splazzara@aol.com, phone: 860-429-6508, fax: 860-429-4456

Abstract. emails: ronderby@earthlink.net, splazzara@aol.com, phone: 860-429-6508, fax: 860-429-4456 SOLAR THERMAL POWER PLANT WITH THERMAL STORAGE Ronald C. Derby, President Samuel P. Lazzara, Chief Technical Officer Cenicom Solar Energy LLC * Abstract TM employs 88 parabolic mirrors (concentrating dishes)

More information

Oil and Gas Exploration and Production Oil and gas exploration and production... 22a-472-1

Oil and Gas Exploration and Production Oil and gas exploration and production... 22a-472-1 Department of Environmental Protection Sec. 22a-472 page 1 (4-97) TABLE OF CONTENTS Oil and Gas Exploration and Production Oil and gas exploration and production... 22a-472-1 Department of Environmental

More information

Module 7 Forms of energy generation

Module 7 Forms of energy generation INTRODUCTION In rich countries like Australia, our standard of living is dependent on easily available energy. Every time you catch a bus, turn on a light or watch television energy is being used up. Over

More information

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound. Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

More information

How Ground/Water Source Heat Pumps Work

How Ground/Water Source Heat Pumps Work How Ground/Water Source s Work Steve Kavanaugh, Professor Emeritus of Mechanical Engineering, University of Alabama Ground Source s (a.k.a. Geothermal s) are becoming more common as the costs of energy

More information

Energy: renewable sources of energy. Renewable Energy Sources

Energy: renewable sources of energy. Renewable Energy Sources Energy: renewable sources of energy Energy Sources 1 It is technically and economically feasible to phase out net greenhouse gas (GHG) emissions almost entirely by 2050. A report by energy consulting firm

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

OTEC - Ocean Thermal Energy Conversion

OTEC - Ocean Thermal Energy Conversion OTEC - Ocean Thermal Energy Conversion By Maria Bechtel and Erik Netz Table of contents: Summary Introduction What is OTEC? Land-based powerplant Floating powerplant Land-based or floating plant? Closed-cycle,

More information

Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions. Nici Bergroth, Fortum Oyj FORS-seminar 26.11.

Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions. Nici Bergroth, Fortum Oyj FORS-seminar 26.11. Loviisa 3 unique possibility for large scale CHP generation and CO 2 reductions Nici Bergroth, Fortum Oyj FORS-seminar 26.11.2009, Otaniemi Loviisa 3 CHP Basis for the Loviisa 3 CHP alternative Replacement

More information

Introduction. So, What Is a Btu?

Introduction. So, What Is a Btu? Introduction The way of life that we Americans take for granted every day depends upon a stable and abundant supply of affordable energy. Energy shortages can quickly affect our everyday lives and harm

More information

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES Question1 Read the following article from the Fremont Gazette and answer the questions that follow. (a) Identify and describe TWO water-related environmental

More information

CHAPTER 6 THE TERRESTRIAL PLANETS

CHAPTER 6 THE TERRESTRIAL PLANETS CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.

More information

In the compression-refrigeration loop (air conditioning), which is likely to be warmer? 1. Condenser coil 2. Evaporator coil

In the compression-refrigeration loop (air conditioning), which is likely to be warmer? 1. Condenser coil 2. Evaporator coil In the compression-refrigeration loop (air conditioning), which is likely to be warmer? 1. Condenser coil 2. Evaporator coil Answer: (1) Condenser coil See the video. A.R.E. Building Systems Study Guide

More information

Earth Egg Model Teacher Notes

Earth Egg Model Teacher Notes Ancient Greeks tried to explain earthquakes and volcanic activity by saying that a massive bull lay underground and the land shook when it became angry. Modern theories rely on an understanding of what

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE DESCRIPTION This lesson plan gives students first-hand experience in analyzing the link between atmospheric temperatures and carbon dioxide ( ) s by looking at ice core data spanning hundreds of thousands

More information

Annex 5A Trends in international carbon dioxide emissions

Annex 5A Trends in international carbon dioxide emissions Annex 5A Trends in international carbon dioxide emissions 5A.1 A global effort will be needed to reduce greenhouse gas emissions and to arrest climate change. The Intergovernmental Panel on Climate Change

More information

Developments and trends shaping the future for Waste-to- Energy technology suppliers

Developments and trends shaping the future for Waste-to- Energy technology suppliers Developments and trends shaping the future for Waste-to- Energy technology suppliers 21 st October 2015 Copenhagen, Denmark Edmund Fleck ESWET President 2 Contents 1. About ESWET 2. Introduction 3. Modern

More information

Our Deep Geothermal Energy Potential: A Case Study in Saskatchewan with Application Throughout the Western Canadian Sedimentary Basin

Our Deep Geothermal Energy Potential: A Case Study in Saskatchewan with Application Throughout the Western Canadian Sedimentary Basin Our Deep Geothermal Energy Potential: A Case Study in Saskatchewan with Application Throughout the Western Canadian Sedimentary Basin Introduction Deep geothermal energy relates to the heat-energy stored

More information