RECEIVER TYPES AND CHARACTERISTICS
|
|
|
- Verity Patrick
- 9 years ago
- Views:
Transcription
1 RECEIVER TYPES AND CHARACTERISTICS Besides the considerations of noise and noise figure, the capabilities of receivers are highly dependant on the type of receiver design. Most receiver designs are trade-offs of several conflicting requirements. This is especially true of the Electronic Support Measures (ESM) receivers used in Electronic Warfare. This section consists of a figure and tables that provide a brief comparison of various common ESM receiver types. Figure 1 shows block diagrams of four common ESM receivers. Table 1 is a comparison of major features of receivers. Table 2 shows the receiver types best suited for various types of signals and Tables 3 and 4 compare several direction of arrival (DOA) and emitter location techniques. Table 5 shows qualitative and quantitative comparisons of receiver characteristics. CRYSTAL RECEIVER YIG TUNED NARROWBAND SUPERHET RF AMPLIFIER COMPRESSIVE AMPLIFIER BAND 1 BAND 2 YIG FILTER IF AMP IF FILTER LOG AMP BAND 3 TUNING YIG OSCILLATOR WIDEBAND SUPERHET INSTANTANEOUS FREQUENCY MEASUREMENT SIN WIDEBAND FILTER IF FILTER PHASE DETECTOR CONVERSION FREQUENCY INFORMATION FIXED FREQUENCY OSCILLATOR LIMITING AMPLIFIER DELAY LINE COS Figure 1. Common ESM Receiver Block Diagrams 5-3.1
2 Table 1. Comparison of Major Features of Receivers Receiver Advantages Disadvantages Principal Applications Wideband Simple, inexpensive, instantaneous, No frequency resolution RWR crystal video High POI in frequency range Poor sensitivity and Poor simultaneous signal performance Tuned RF Simple, Frequency measurement Slow response time Option in RWR, Frequency Crystal Video Higher sensitivity than wideband Poor POI measurement in hybrid IFM Relatively simple Cannot sort simultaneous signals Shipboard ESM, Frequency resolution Relatively poor sensitivity Jammer power management, Instantaneous, high POI SIGINT equipment Narrow-band High sensitivity Slow response time SIGINT equipment scanning Good frequency resolution Poor POI Air and ship ESM Superhet Simultaneous signals don't interfere Poor against frequency agility Analysis part of hybrid Wide-band Better response time and POI Spurious signals generated Shipboard ESM Superhet Poorer sensitivity Tactical air warning Channelized Wide bandwidth, Near instantaneous, High complexity, cost; Lower SIGINT equipment Moderate frequency resolution reliability; limited sensitivity Jammer power management Microscan Near instantaneous, High complexity, SIGINT equipment Good resolution and dynamic range, Limited bandwidth Applications for fine freq Good simultaneous signal capability No pulse modulation information analysis over wide range Critical alignment Acousto-optic Near instantaneous, Good resolution, High complexity; new technology Good simultaneous signal capability Good POI Signal Type Table 2. s vs. Signal Types Wide-Band TRF Crystal IFM Narrow-Band Wide-Band Channelized Microscan Acousto-optic CW Special design Special Yes, but Yes Yes Yes Yes Yes for CW design for interferes with CW pulsed reception Pulsed Yes Yes Yes Yes Yes Yes Yes Yes Multiple No No No Yes, but won't No Yes Yes Yes Frequency recognize as same source Frequency Yes, doesn't No Yes No Yes (within Yes Yes No/Yes, Agile measure passband) depending on frequency readout time PRI Yes Yes Yes No/Yes, Yes Yes No/Yes, No/Yes, Agile depending on imprecision depending on scan rate in TOA readout time Chirped Yes, within No Yes No/Yes, Yes Yes No/Yes, Yes (reduced acceptance depending on (reduced depending sensitivity) BW BW sensitivity) on scan rate Spread Yes, within No Yes No No/Yes, Yes Yes Yes (reduced Spectrum acceptance depending (reduced (reduced sensitivity) BW on BW sensitivity) sensitivity) 5-3.2
3 Table 3. Direction of Arrival Measurement Techniques Amplitude Comparison DF ACC. 12 bw )C db 24 S Phase Interferometer Sensor Configuration Typically 4 to 6 Equal Spaced Antenna 2 or more RHC or LHC Spirals in Fixed Elements for 360E Coverage Array DF Accuracy (Gaussian Antenna Shape) DF ACC. 8 2 B d cos2 )2 DF Accuracy Improvement Decrease Antenna BW; Decrease Amplitude Increase Spacing of Outer Antennas; Mistrack; Increase Squint Angle Decrease Phase Mistrack Typical DF Accuracy 3E to 10E rms 0.1E to 3E rms Sensitivity to High Sensitivity; Mistrack of Several db Can Relatively Insensitive; Interferometer Can be Multipath/Reflections Cause Large DF Errors Made to Tolerate Large Phase Errors Platform Constraints Locate in Reflection Free Area Reflection Free Area; Real Estate for Array; Prefers Flat Radome Applicable Receivers Crystal Video; Channelizer; Acousto-Optic; Superheterodyne Compressive; Superheterodyne )C = Amplitude Monopulse Ratio in db db S= Squint Angle in degrees 2 = Antenna Beamwidth in degrees BW Table 4. Emitter Location Techniques Measurement Technique Advantages Disadvantages Triangulation Single Aircraft Non-instantaneous location Inadequate accuracy for remote targeting Not forward looking Azimuth/elevation Single Aircraft Accuracy degrades rapidly at low altitude Instantaneous location possible Time Difference of Arrival high precision (Pulsed signals) Can support weapon delivery position requirements rapid, can handle short on-time threat Function of range complex, diverse systems required, at least 3 aircraft High quality receivers, DME (3 sites) very wideband data link high performance control processor; requires very high reliability subsystems 5-3.3
4 Feature Table 5. Qualitative Comparison of Receivers From NRL Report 8737 Wide-Band TRF Crystal Narrow-Band Wide-Band IFM Channelized Microscan Acousto-optic Instantaneous Analysis Narrow Narrow Moderate Wide Wide Moderate wide wide Bandwidth Frequency Fair Good Poor Fair Good Good Resolution poor good Poor Poor Fair/ Fair/ Sensitivity (No preamp) (No preamp) Fair Good good good good good Fair (preamp) Fair (preamp) Dynamic Fair/ Fair Good Fair Good Fair Poor Range good good Speed of Slow Slow Fast Fast Acquisition Fast Fast Fast Fast Short pulse Width Good Good Good Good Good Fair Fair good Capability Retention of Signal Fair/ Fair/ Fair Fair Poor Good Good Poor Character- good good istics Applicability Poor/ Fair/ Fair/ Fair/ to Exotic Poor Good Poor Good fair good good good Signals Poor (high Fair/good, High signal Fair false alarm Fair/ depending on Density Good Poor (depending on Good Poor rate from good architecture Performance BW) background) & processing Simultaneous Fair Fair/ Signal Poor Poor Good (depending on Good Good Good good Capability BW) Processing Complexity Moderate Moderate Low-high depending on depending on Moderate Moderate Moderate depending on Complex application application architecture Simple signal processing complex data processing Immunity Poor/ Poor/ Poor Fair Good Good Good Good to Jamming Fair Fair Power Low/ Moderate/ Low Moderate Moderate Moderate High Moderate Requirements Moderate High ( Multioctave >0.5 to 40 <0.01 to to to 60 <0.5 to 8 RF Range channelized (GHz) separate and down (0.5-40) conversion) As high as ~2 GHz Max Multi- Multi- 0.5 to 2 desired with without Instantane- octave octave depending equivalent 50 MHz 500 MHz degradation, 1 GHz ous Analysis (to 17.5 (1 octave on PW reduction in 17.5 GHz with Bandwidth GHz) per unit) limitation resolution degradation Measurement Measurement Frequency accuracy no accuracy no Accuracy better than better than analysis BW analysis BW 5-10 MHz 0.5% to 1% 0.5 to 3 MHz ±1 MHz 10 KHz ±1 MHz 5-3.4
5 Feature Wide-Band TRF Crystal Narrow-Band Wide-Band IFM Channelized Microscan Acousto-optic CW to ~20 ns CW to 100 ns CW to 4 ns CW to 30 ns Pulse Width CW to CW to CW to 250 CW to (depending with 20 MHz with 500 MHz (depending Range 50 ns 50 ns ns 0.5 µs on resolution) resolution resolution on resolution) ~400 MHz MHz Frequency to 1 (no better 25 MHz 1 MHz <0.1 MHz (less with 1 MHz Resolution MHz MHz than BW) freq vernier) -40 to -50 Better -40 (no Sensitivity (no preamp) than -80 preamp) -90, 1 MHz -80, 500 MHz -70, , 5-10 (dbm) -80 (with with -75 (preamp) 4 BW BW MHz BW MHz BW preamp) preamp GHz BW -70 to -80 Maximum 80 (w/preamp) Dynamic Range (db) (saturated) Tuning Time Signal ID Time.12 s 0.3 µs 0.5 ms 1.0 s - 50 ms - (200 MHz - LO scan (integration (1 octave) band) time time) 100 ns 50 ms 2-10 ms ~0.1 s ms ~1 µs - <20 (octave Minimum (with unit) for 0.5 Weight (tuner processor) (full to 18 GHz (lb) only) ) Sm/Moderate Large Size / Small Moderate Small Moderate Moderate Small Minimum 300 Several 375 ~ ( GHz Volume (in³) (w/processor) thousand miniaturized 100 (with 350 to 1200 Minimum ~ processor) <10 60 (without for 0.5 to Power (octave 150 (tuner without processor) 18 GHz (W) unit) only) processor Cost Low Moderate High Low/ Moderate/ Moderate/ Moderate/ Low/ Moderate High High High Moderate 5-3.5
Advanced Electronics Company. Photonics Based ELINT for Interception and Analysis of Radar Signals
Advanced Electronics Company (An Economic Offset Program Company) Radar Symposium 2014 Photonics Based ELINT for Interception and Analysis of Radar Signals Presented By: Engr. Ziad H. Al-Musallam Senior
Extended Resolution TOA Measurement in an IFM Receiver
Extended Resolution TOA Measurement in an IFM Receiver Time of arrival (TOA) measurements define precisely when an RF signal is received, necessary in the identification of type and mode of RF and radar
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency
MATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
Using Spectrum Analyzers For Signal Monitoring
Using Spectrum Analyzers For Signal Monitoring Presented by: 3 March 004 1 1 At the completion of this module you will have an understanding of how commercially available spectrum analyzers can be used
RF Communication System. EE 172 Systems Group Presentation
RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components
102 26-m Antenna Subnet Telecommunications Interfaces
DSMS Telecommunications Link Design Handbook 26-m Antenna Subnet Telecommunications Interfaces Effective November 30, 2000 Document Owner: Approved by: Released by: [Signature on file in TMOD Library]
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
HF Receiver Testing. Issues & Advances. (also presented at APDXC 2014, Osaka, Japan, November 2014)
HF Receiver Testing: Issues & Advances (also presented at APDXC 2014, Osaka, Japan, November 2014) Adam Farson VA7OJ/AB4OJ Copyright 2014 North Shore Amateur Radio Club 1 HF Receiver Performance Specs
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
A comparison of radio direction-finding technologies. Paul Denisowski, Applications Engineer Rohde & Schwarz
A comparison of radio direction-finding technologies Paul Denisowski, Applications Engineer Rohde & Schwarz Topics General introduction to radiolocation Manual DF techniques Doppler DF Time difference
AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz
AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2
Spectrum Analyzers vs. Monitoring Receivers. Paul Denisowski, Application Engineer Rohde & Schwarz
Spectrum Analyzers vs. Monitoring Receivers Paul Denisowski, Application Engineer Rohde & Schwarz Spectrum Management Requirements What signals are present at which frequencies? Additional responsibilities
RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes
Rec. ITU-R SM.1792 1 RECOMMENDATION ITU-R SM.1792 Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes (2007) Scope This Recommendation provides guidance to measurement
Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics
Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications
Propagation Channel Emulator ECP_V3
Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links
How To Use A Sound Card With A Subsonic Sound Card
!"## $#!%!"# &"#' ( "#' )*! #+ #,# "##!$ -+./0 1" 1! 2"# # -&1!"#" (2345-&1 #$6.7 -&89$## ' 6! #* #!"#" +" 1##6$ "#+# #-& :1# # $ #$#;1)+#1#+
Voice Communication Package v7.0 of front-end voice processing software technologies General description and technical specification
Voice Communication Package v7.0 of front-end voice processing software technologies General description and technical specification (Revision 1.0, May 2012) General VCP information Voice Communication
primary SURVEILLANCE 3D RADAR
AIR TRAFFIC MANAGEMENT AIRport & ROUTE primary SURVEILLANCE 3D RADAR Supplying ATM systems around the world for more than 90 years indracompany.com AIRport & ROUTE primary SURVEILLANCE 3D RADAR Latest
RFSPACE CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO
CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO 1 - SPECIFICATIONS Cloud-IQ INTRODUCTION The Cloud-IQ is a high performance, direct sampling software radio with an ethernet interface. It offers outstanding
F = S i /N i S o /N o
Noise figure Many receiver manufacturers specify the performance of their receivers in terms of noise figure, rather than sensitivity. As we shall see, the two can be equated. A spectrum analyzer is a
Electronic Warfare System 2015. Integrated Electronic Warfare System. Own the Enemy s Battlespace
Electronic Warfare System 2015 Integrated Electronic Warfare System Own the Enemy s Battlespace NOBODY WANTS A FAIR FIGHT DRS offers an Integrated Electronic Warfare (EW) System, with comprehensive training
RF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
3D LANZA FAMILY RADARS
DEFENSE AND SECURITY 3D LANZA FAMILY RADARS Defense and security in five continents indracompany.com LANZA-MRR/ LANZA-LRR 3D LANZA FAMILY RADARS Radar 3D mobile Long range 3D radar Radar 3D naval State-of-the
Application Note Noise Frequently Asked Questions
: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random
Realtime FFT processing in Rohde & Schwarz receivers
Realtime FFT in Rohde & Schwarz receivers Radiomonitoring & Radiolocation Application Brochure 01.00 Realtime FFT in Rohde & Schwarz receivers Introduction This application brochure describes the sophisticated
AM TRANSMITTERS & RECEIVERS
Reading 30 Ron Bertrand VK2DQ http://www.radioelectronicschool.com AM TRANSMITTERS & RECEIVERS Revision: our definition of amplitude modulation. Amplitude modulation is when the modulating audio is combined
Maximizing Receiver Dynamic Range for Spectrum Monitoring
Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile
Power Amplifier Gain Compression Measurements
Technical Brief Power Amplifier Gain Compression Measurements GPIB Private Bus Sweep Out Sweep In Pulse In AC Mod Out Blank/Marker Out Blanking In Overview The 1 db gain compression of an amplifier describes
The Phase Modulator In NBFM Voice Communication Systems
The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m
Features MINIATURE MODULE QM MODULATION OPTIMAL RANGE 1000m 433.05 434.79 ISM BAND 34 CHANNELS AVAILABLE SINGLE SUPPLY VOLTAGE Applications IN VEHICLE TELEMETRY SYSTEMS WIRELESS NETWORKING DOMESTIC AND
Testing of 10 GHz Instantaneous Bandwidth RF Spectrum Monitoring at Idaho National Labs
Testing of 10 GHz Instantaneous Bandwidth RF Spectrum Monitoring at Idaho National Labs Scott H. Bekker, Aaron S. Traxinger, Colton R. Stiffler, Alex J. Woidtke, Michael D. Chase, Wm. Randall Babbitt,
SIGNAL AND SYSTEM LEVEL SIMULATIONS ON WIDEBAND INTERCEPT RECEIVERS
SIGNAL AND SYSTEM LEVEL SIMULATIONS ON WIDEBAND INTERCEPT RECEIVERS A MASTER S THESIS in Electrical and Electronics Engineering Atilim University by İLTER KARADEDE JANUARY 2014 SIGNAL AND SYSTEM LEVEL
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing
PIATTAFORME STRATOSFERICHE SIGINT
Convegno: Gli Aeromobili a Pilotaggio Remoto: le nuove frontiere del cielo Gruppo di Lavoro PIATTAFORME STRATOSFERICHE SIGINT Ing. Rita Roscigno [email protected] 1 SIGINT PAYLOAD OVERVIEW
APPLICATION NOTES POWER DIVIDERS. Things to consider
Internet Copy Rev A Overview Various RF applications require power to be distributed among various paths. The simplest way this can be done is by using a power splitter/divider. Power dividers are reciprocal
Fast and Accurate Test of Mobile Phone Boards
Products: R&S FSP Fast and Accurate Test of Mobile Phone Boards Short test times in conjunction with accurate and repeatable measurement results are essential when testing and calibrating mobile phones
727 VHF/UHF/SHF Spectrum Monitoring System
727 VHF/UHF/SHF Spectrum Monitoring System The TCI Model 727 is a high-performance, compact member of TCI s 700 series of fieldproven Spectrum Monitoring Systems (SMS), and addresses the frequency ranges
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?
QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications
0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier
A Guide to Calibrating Your Spectrum Analyzer
A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,
737 LF/HF/VHF/UHF/SHF Spectrum Monitoring System
737 LF/HF/VHF/UHF/SHF Spectrum Monitoring System The ITU-Compliant TCI Model 737 is the highest performance member of TCI s 700 series of fieldproven Spectrum Monitoring Systems (SMS), which addresses
Create. Monitor. Reconfigure. Switching RF Over Fiber. Case Study. The Problem. www.glimmerglass.com
Switching RF Over Fiber Case Study US Agency Create Monitor The benefits of using fiber for data transmissions are significant and undisputed. However, RF engineers have believed that fiber optics delivers
Tx/Rx A high-performance FM receiver for audio and digital applicatons
Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder
Evolution of Satellite Communication Systems
Mathieu DERVIN Brussels, 6th May 2015 Brussels, May 2015 Agenda I. From Sputnik to wideband satellite services: The key technological evolutions II. Increase the satellite system capacity: A global system
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
K2 CW Filter Alignment Procedures Using Spectrogram 1 ver. 5 01/17/2002
K2 CW Filter Alignment Procedures Using Spectrogram 1 ver. 5 01/17/2002 It will be assumed that you have already performed the RX alignment procedures in the K2 manual, that you have already selected the
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch
DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods
Summer of LabVIEW The Sunny Side of System Design
Summer of LabVIEW The Sunny Side of System Design 30th June - 18th July 1 Real Time Spectrum Monitoring and Signal Intelligence Abhay Samant Section Manager RF and PXI Aerospace and Defence National Instruments
Agilent E4401B, E4402B, E4404B, E4405B, and E4407B ESA-E Series Spectrum Analyzers
Agilent, E4402B, E4404B, E4405B, and E4407B ESA-E Series Spectrum Analyzers Technical Specifications All specifications apply over 0 C to + 55 C unless otherwise noted. The analyzer will meet its specifications
APSYN420A/B Specification 1.24. 0.65-20.0 GHz Low Phase Noise Synthesizer
APSYN420A/B Specification 1.24 0.65-20.0 GHz Low Phase Noise Synthesizer 1 Introduction The APSYN420 is a wideband low phase-noise synthesizer operating from 0.65 to 20 GHz. The nominal output power is
Modification Details.
Front end receiver modification for DRM: AKD Target Communications receiver. Model HF3. Summary. The receiver was modified and capable of receiving DRM, but performance was limited by the phase noise from
Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform
Application Note Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform By: Richard Komar Introduction With the rapid development of wireless technologies, it has become
Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP
Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement
Keysight N9000A CXA Signal Analyzer
Keysight N9000A CXA Signal Analyzer Notice: This document contains references to Agilent. Please note that Agilent s Test and Measurement business has become Keysight Technologies. For more information,
Optimizing IP3 and ACPR Measurements
Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.
Universal Form-factor. Wi Fi Troubleshooting Made Easy
AirMedic USB AirMedic USB is a powerful, easy-touse and affordable spectrum analysis tool that brings Wi-Fi troubleshooting to entry-level users. Built upon AirMagnet expertise in Wi-Fi troubleshooting,
Logging of RF Power Measurements
Logging of RF Power Measurements By Orwill Hawkins Logging of measurement data is critical for effective trend, drift and Exploring the use of RF event analysis of various processes. For RF power measurements,
Full-Band Capture Cable Digital Tuning
White Paper Full-Band Capture Cable Digital Tuning Cable operators are demanding devices that support an increasing number of simultaneous channels, which translates to multiple cable tuners and demodulators
DESIGNER POLARIZATION
DESIGNER POLARIZATION (for magazine publication) INTRODUCTION istorically, Radar Warning Receivers (RWR) employ cavity backed spiral antennas to detect and classify threats to the aircraft and to determine
Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics
Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics Magdy Attia, Ph.D. James B. Duke Distinguished Professor Chair, Computer Science & Engineering Department
Multi-Carrier GSM with State of the Art ADC technology
Multi-Carrier GSM with State of the Art ADC technology Analog Devices, October 2002 revised August 29, 2005, May 1, 2006, May 10, 2006, November 30, 2006, June 19, 2007, October 3, 2007, November 12, 2007
Title: Low EMI Spread Spectrum Clock Oscillators
Title: Low EMI oscillators Date: March 3, 24 TN No.: TN-2 Page 1 of 1 Background Title: Low EMI Spread Spectrum Clock Oscillators Traditional ways of dealing with EMI (Electronic Magnetic Interference)
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
TRACTION NETWORK MONITORING AND PROTECTION SYSTEM SMTN-3 CITY ELECTRIC TRANSPORT RAILWAYS METRO INDUSTRY
TRACTION NETWORK MONITORING AND PROTECTION SYSTEM SMTN-3 CITY ELECTRIC TRANSPORT RAILWAYS METRO INDUSTRY 2 TRACTION NETWORK MONITORING AND PROTECTION SYSTEM Traction network monitoring and protection system,
Test Report: Yaesu FTDX-1200, S/N 3F02051 (loaned by Bill Trippett W7VP)
Test Report: Yaesu FTDX-1200, S/N 3F02051 (loaned by Bill Trippett W7VP) Adam M. Farson VA7OJ/AB4OJ, 19-21 July 2013 1. Introduction and Scope: The following tests were conducted on the FTDX-1200: A. Receiver
Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7
Improving Network Analyzer Measurements of Frequency-translating Devices Application Note 1287-7 - + - + - + - + Table of Contents Page Introduction......................................................................
Keysight Technologies 8 Hints for Better Spectrum Analysis. Application Note
Keysight Technologies 8 Hints for Better Spectrum Analysis Application Note The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope
'Possibilities and Limitations in Software Defined Radio Design.
'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer
GNSS Anti-Jam Technology for the Mass Market
GNSS Anti-Jam Technology for the Mass Market Michael Jones, Senior Consultant Engineer, GNSS Protection Roke Manor Research Ltd Communications Sensors Information Systems Contract R&D Consultancy Specialist
ETSI EN 300 328-1 V1.2.2 (2000-07)
EN 300 328-1 V1.2.2 (2000-07) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband Transmission systems; data transmission equipment operating
Antenna Measurements with the Network Analyzer. Presented by Ernie Jackson RF/uW Applications Engineer Agilent Technologies
Antenna Measurements with the Network Analyzer Presented by Ernie Jackson RF/uW Applications Engineer Agilent Technologies Purpose During this presentation you will: Learn about interface requirements
Drones Jammer. A simple drone Jammer designed to hack unwelcomed civilian drones within your backyard range.
Drones Jammer A simple drone Jammer designed to hack unwelcomed civilian drones within your backyard range. Designed by: Ahmad Jisrawi [email protected] https://twitter.com/ajisrawi What are Jammers? Commonly
A Network Analyzer For Active Components
A Network Analyzer For Active Components EEEfCom 29-30 Juni ULM Marc Vanden Bossche, NMDG Engineering Remi Tuijtelaars, BSW Copyright 2005 NMDG Engineering Version 2 Outline Review of S-parameters Theory
Performance Evaluation of a UWB-RFID System for Potential Space Applications Abstract
Performance Evaluation of a UWB-RFID System for Potential Space Applications Abstract This talk presents a brief overview of the ultra-wideband (UWB) RFID system with emphasis on the performance evaluation
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
Communication Systems
AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)
Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz
Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz The Giga-tronics Model 8003 Precision Scalar Network Analyzer combines a 90 db wide dynamic range with the accuracy and linearity
LoRa FAQs. www.semtech.com 1 of 4 Semtech. Semtech Corporation LoRa FAQ
LoRa FAQs 1.) What is LoRa Modulation? LoRa (Long Range) is a modulation technique that provides significantly longer range than competing technologies. The modulation is based on spread-spectrum techniques
Phase Noise Measurement Methods and Techniques
Phase Noise Measurement Methods and Techniques Presented by: Kay Gheen, Agilent Technologies Introduction Extracting electronic signals from noise is a challenge for most electronics engineers. As engineers
Extreme Bandwidth Analyzer & Correlator (EBAC)
Extreme Bandwidth Analyzer & Correlator (EBAC) Enabling Transformational Knowledge, Use and Control of the Electromagnetic Spectrum National Science Foundation meeting Extending Access to the Radio Spectrum
Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson
Conquering Noise for Accurate RF and Microwave Signal Measurements Presented by: Ernie Jackson The Noise Presentation Review of Basics, Some Advanced & Newer Approaches Noise in Signal Measurements-Summary
Vector Signal Analyzer FSQ-K70
Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM
Four Wave Mixing in Closely Spaced DWDM Optical Channels
544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering
Impedance 50 (75 connectors via adapters)
VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:
ELEMENTS OF CABLE TELEVISION
1 ELEMENTS OF CABLE TELEVISION Introduction Cable television, from its inception, developed in western countries into two separate systems called Master Antenna Television (MATV) and Community Cable Television
Department of Information Engineering University of Pisa. Automotive Radar. Maria S. Greco. 2012 IEEE Radar Conference, May 7-11, Atlanta
Department of Information Engineering University of Pisa. Automotive Radar Maria S. Greco Automotive RADAR Why? Automotive RADARs as core sensor (range, speed) of driver assistance systems: long range
Secure and Reliable Wireless Communications for Geological Repositories and Nuclear Facilities
Session S14: Safeguards Needs at Geological Repositories and Encapsulation Facilities Secure and Reliable Wireless Communications for Geological Repositories and Nuclear Facilities Richard E. Twogood Dirac
FM Radio Transmitter & Receiver Modules
FM Radio Transmitter & Receiver Modules T5 / R5 Features MINIATURE SIL PACKAGE FULLY SHIELDED DATA RATES UP TO 128KBITS/S RANGE UPTO 300 METRES SINGLE SUPPLY VOLTAGE INDUSTRY PIN COMPATIBLE QFMT5-434 TEMP
Network Analyzer Operation
Network Analyzer Operation 2004 ITTC Summer Lecture Series John Paden Purposes of a Network Analyzer Network analyzers are not about computer networks! Purposes of a Network Analyzer Measures S-parameters
Measurement, analysis, and monitoring of RF signals
NRA-2500, NRA-3000 and NRA-6000 Narda Remote Spectrum Analyzer Measurement, analysis, and monitoring of RF signals 19" rack mountable Spectrum Analyzer for remote controlled measurements and analysis of
ARIES SAAS HELICOPTER CONTROL AND APPROACH RADAR
SECURITY AND DEFENSE ARIES SAAS HELICOPTER CONTROL AND APPROACH RADAR Defense and security in five continents indracompany.com ARIES-SAAS ARIES SAAS HELICOPTER CONTROL AND APPROACH RADAR ARIES-SAAS radar
HD Radio FM Transmission System Specifications Rev. F August 24, 2011
HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,
Switch Selection Guide
Switch Selection Guide FREQUENCY RANGE (GHz) 0.1 0.2 0.5 1 2 4 8 12.4 18 40 0.1 18 SWITCHES WITH INTEGRATED DRIVERS MODEL OR SERIES PAGE REFLECTIVE SPST SWITCHES* DM86, FM86 DM86H, FM86H 1 18 F91 0.2 4
Lab 9: The Acousto-Optic Effect
Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix
